TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.5, May 2014, pp
. 3811 ~ 38
1
7
DOI: http://dx.doi.org/10.11591/telkomni
ka.v12i5.5124
3811
Re
cei
v
ed
No
vem
ber 1
1
, 2013; Re
vi
sed
De
cem
ber 3
0
,
2013; Accep
t
ed Jan
uary 1
2
, 2014
Cloth Simulation Based on Simplified Mass-S
p
ring
Model
Wenqing
Hu
ang*, Jing Hu, Keqiang Y
u
, Yaming Wang, Mingfe
ng Jiang
Schoo
l of Information Sci
enc
e and T
e
chno
l
o
g
y
, Z
heji
a
n
g
Sci-T
e
ch Unive
r
sit
y
Z
heji
ang, Ha
ng
zhou, 31
00
18, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: patternreco
g
@
16
3.com
A
b
st
r
a
ct
T
he techn
o
lo
g
y
of cloth simul
a
tion ca
n be
u
s
ed in
ma
ny fi
elds. Base
d on
physica
l mod
e
l
of cloth
simulation, we established the sim
u
lation system
with a simplified mass-
spring
m
o
del. A m
o
dified im
plic
it
meth
od
w
a
s
prop
osed
i
n
order
to
prod
uces r
eal
istic
an
i
m
atio
n. T
h
is
method
c
an
incre
a
se
the
computati
o
n
a
l
efficiency to a
large
extent
and is
easy to
be rea
l
i
z
e
d
w
i
th a stabl
e an
d go
od re
al-ti
m
e
perfor
m
ance.
Furthermore, t
he appr
oac
h
of AABB (Axi
s
-
Aligned Bounding Box
e
s) is
adopted for the
detection of cloth collis
ion. Ex
peri
m
ental res
u
lts show
t
hat our system
can give excell
ent real-ti
m
e
effect of
cloth si
mu
latio
n
.
Ke
y
w
ords
: clo
t
h simu
lati
on, simplifi
ed
mass-
sprin
g
mode
l, imp
licit
meth
od,
collisi
on d
e
tec
t
ion.
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Since the
1
980
s, with the develo
p
m
ent of
com
p
uter technol
ogy, cloth si
mulation
techn
o
logy h
a
s b
een a
ppl
ied to many fields,
su
ch a
s
compute
r
a
n
imation, 3
D
game, ga
rme
n
t
and so on. Due to the chara
c
te
risti
c
s of cloth
[1],
for instan
ce,
large d
e
form
ation, non-li
n
ear
stre
ss and n
on-lin
ea
r con
s
traint
s, the simulatio
n
of cloth is com
p
lex. In the
past two o
r
thre
e
decade
s, ma
ny effective
method
s hav
e been sugg
ested by peo
ple. Nowada
ys these met
hod
s
can b
e
ro
ug
hly divided into three
cl
asse
s:
geom
etrically
-ba
s
e
d
method
s, physi
cally-b
a
s
ed
method
s and
hybrid meth
o
d
s.
In the metho
d
ba
sed
on g
eometri
c, we
do not
co
n
s
id
er the p
h
ysi
c
al factors of
cloth. For
example, the
mass of cl
oth
and t
he el
ast
i
c coefficie
n
t of cloth a
r
e n
o
t con
s
id
ere
d
. So we do
n
o
t
need to calcu
l
ate a lot of complex equ
ations a
bout
cl
oth’s phy
sical state.
The advantage
s of thi
s
method a
r
e t
hat it is simpl
e
and the
cal
c
ulatin
g sp
ee
d is fast. At the sa
me time
, this method
has
sho
r
tage
s. It is difficult to produ
ce dyn
a
m
ic anim
a
ti
o
n
reali
s
tically.
Acco
rdin
g to the princi
ple
s
of
kinem
atics, p
h
ysically-ba
s
ed metho
d
g
e
ts pa
rtia
l differential
equ
a
t
ions ba
se
d o
n
deform
a
tio
nal
relation
shi
p
,
whi
c
h i
s
pro
d
u
ce
d by th
e i
n
tera
cti
on
be
tween
pa
rticl
e
s. Solving
the e
quatio
ns by
usin
g n
u
me
ri
cal i
n
tegratio
n meth
od, th
e movem
ent
trail of
parti
cl
es i
n
time
se
quen
ce
is kn
own.
So we
ca
n o
b
tain 3d
sp
atial dynami
c
simulatio
n
of
cloth. Thi
s
method
can
be u
s
ed fo
r
the
simulatio
n
of cloth pron
e
to large de
formati
on. It also ca
n re
flect many different physi
cal
prop
ertie
s
of the cloth. Co
nsid
erin
g the
adv
antage
s and disadvan
tages
of geo
metrically-ba
s
e
d
method an
d
physi
cally-b
a
s
ed m
e
thod,
we combin
e
these two met
hod
s to pro
d
u
ce a n
e
w hy
brid
method. But
the existing
hybrid m
e
tho
d
ca
n o
n
ly si
mulate
some
simpl
e
, sp
e
c
ial a
nd
reg
u
l
ar
sha
pe of
clot
he, it ha
s
ce
rtain limitatio
ns in
the p
r
a
c
tical
appli
c
a
t
ions.
Collisi
o
n dete
c
tion
a
nd
respon
se
ha
ve a great i
n
fluen
ce o
n
the sp
eed
of cloth
simul
a
tion. So an
efficient colli
sion
detectio
n
alg
o
rithm is
one
of the key issue
s
fo
r clot
h’s
dyna
mic real-time simu
lation.
It
largely
affects the au
thenticity and
ac
cura
cy of cloth sim
u
lati
on.
2. Simplified
Mass-sprin
g
Model
Mass-sp
r
ing
model [2],
the typical
physi
cally-b
ase
d
metho
d
, is wi
dely
use
d
for
rep
r
e
s
entin
g cloth. It is a simple te
chni
que an
d the
algorith
m
is
easy to be i
m
pleme
n
ted,
high
comp
utationa
l efficien
cy i
s
obtain
ed
wit
h
ma
ss-spri
n
g mod
e
l. A t
y
pical m
odel
based
on m
a
ss-
spri
ng mod
e
l
is propo
se
d
by Provot [3
]. In
this
model, cloth is repre
s
e
n
ted a
s
a grid sy
stem
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3811 – 38
17
3812
c
o
ns
titu
te
d
by ma
ss
-p
o
i
n
t
s
an
d sp
r
i
ngs
, th
e link
be
tw
e
e
n
ma
ss
-
p
o
i
n
t
s ar
e
ma
in
ly th
ro
ug
h
spri
ng
s. In o
r
der to
a
c
cordi
ng
with
cloth’
s
cha
r
a
c
teri
st
ics of n
on-li
n
ear
stress,
sp
ring
s a
r
e
divi
ded
into three
kin
d
s: sh
ea
r sp
rings, st
ru
cture sp
ring
s an
d bendi
ng sp
ring
s. The b
a
s
ic m
a
ss-sp
r
i
ng
model is
sho
w
n in Figu
re
1.
Reali
s
tic
sim
u
lation u
s
u
a
ll
y along
with complex alg
o
ri
thm and
high
co
st of comp
uting, in
orde
r to improve the efficiency of com
p
uting,
the basic ma
ss-sp
r
i
ng model ha
s been
simpli
fied
in this pape
r. Experiment shows that it does n
o
t affe
ct the system significa
nt
ly whether it is wi
th
two sh
ear
sp
ring
s or o
ne
she
a
r spri
ng.
Therefo
r
e,
we discard on
e of the two she
a
r spri
ng
s to
simplify the model. The si
m
p
lified mass-spring m
odel i
s
sh
own in Figure 2.
Figure 1. Basic Ma
ss-spri
ng Mo
del
Figure 2. Simplified Mass-spring M
odel
3. Force An
a
l
y
s
is of the Model
In mass-sp
r
in
g model, the
motion of ea
ch ma
ss-p
oin
t
depend
s on
both intern
al
force
s
and
extern
al
force
s
that th
e ma
ss-p
oint
suffere
d.
And
the m
o
tion
o
f
all ma
ss-poi
nts
refle
c
ts t
h
e
deform
a
tion
of cloth
syste
m
. Internal fo
rce
s
i
n
cl
ude
elasti
city and
dampi
ng fo
rce, et
c. External
force
s
in
clud
e gravity and wind force, et
c.
3.1. Elasticity
Assu
ming th
at mass-point
i
and ma
ss-point
j
are co
nne
cted by a
spri
ng, a
c
co
rding to
Hoo
k
e'
s la
w,
the ch
ang
e in
length of
sp
ring is
pr
opo
rtional to fo
rces that the ma
ss-p
oints suffer
[4]. The elasti
c force is d
e
fined a
s
follows:
|
|
|
|
0
,
,
i
j
i
j
j
i
i
j
j
i
t
si
x
x
x
x
l
x
x
k
F
(1)
Whe
r
e,
j
i
k
,
is the elasti
c co
efficient of sp
rin
g
betwe
en m
a
ss-p
oint
i
an
d
j
,
i
x
and
j
x
represe
n
t
the positio
ns
of mass-p
oint
i
and
j
,
0
,
j
i
l
rep
r
e
s
ent
s the initial length of the spri
ng.
3.2. Dampin
g Force
Dampi
ng force is necessary to maintai
n
the stability of the system. For mass-point
i
,
whi
c
h is a
d
ja
cent to ma
ss-point
j
, the damping force i
s
define
d
as f
o
llows:
n
j
j
i
ij
t
di
v
v
d
F
0
(2)
Whe
r
e,
j
i
d
,
represe
n
ts the el
astic
coeffici
e
n
t of sprin
g
b
e
twee
n ma
ss-point
i
an
d
j
,
i
v
and
j
v
are the velocities of mass-point
i
and
j
.
)
,
(
j
i
P
)
,
(
j
i
P
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cloth Sim
u
lation Base
d on
Sim
p
lified
Mass-Spri
ng Mo
del (Wenqi
ng
Huan
g)
3813
3.3. Grav
it
y
The gravity th
at mass-p
oint
i
suffer is def
ined a
s
follows:
t
g
ii
Fm
g
(3)
Whe
r
e,
i
m
re
prese
n
ts th
e
mass
of ma
ss-poi
nt
i
,
g
is
th
e ac
ce
ler
a
tio
n
o
f
gr
avity, it h
a
s
a
con
s
tant valu
e.
3.4. Wind Fo
rce
We d
e
fine a
wind fo
rce to
make th
e si
m
u
lation mo
re
reali
s
tic. At the sam
e
time,
in ord
e
r
to simplify the cal
c
ulation,
we igno
re the ch
ange
s
whe
n
wind e
n
co
unters
wit
h
the cloth. The
wind force i
s
defined a
s
fol
l
ows:
i
w
w
t
wi
v
v
k
F
(4)
Whe
r
e,
w
k
is the wind coefficient,
w
v
rep
r
e
s
ents wi
nd sp
eed, and
i
v
is the velocity of mass-
point
i
.
Acco
rdi
ng to
Newto
n's
seco
nd law o
f
motion, the force that mass-point
i
s
u
ffer is
defined a
s
fol
l
ows:
t
wi
t
gi
t
di
t
si
t
i
F
F
F
F
F
(5)
4. Numerical
Integra
t
ion Metho
d
s
In the cloth
simulation b
a
sed on ma
ss-spri
ng mo
del
, numeri
c
al i
n
tegratio
n m
e
thod is
one of the co
re matters. Re
cently, the co
mmon num
er
i
c
al integ
r
al m
e
thod
s incl
ud
e explicit Euler
method [5], implicit Euler method [6] and imp
r
ove
d
method
s b
a
se
d on the
s
e two m
e
th
ods.
Implicit integration method is
g
ene
rally
use
d
to
solve
the ri
gid p
r
o
b
lem of
equ
a
t
ions. It avoid
s
large time st
eps in calcul
ation and ov
ercome
s in
stability proble
m
. But it also has a proble
m
of
low
efficiency
. Explicit Euler meth
od i
s
si
mple
and
ha
s fast
com
puti
ng
spe
ed. Bu
t in this meth
od,
the time step
must be
sm
al
l to obtain sta
b
ility.
Consid
ering th
e me
rits and
deme
r
its of these two
method
s, a modified impl
icit method is propo
se
d in
this pap
er. It
not only solves the insta
b
i
lity
probl
em
s a
n
d
small time
step
s in
explicit Eu
le
r
method,
but
also
avoid
s
l
a
rge
am
ount
of
cal
c
ulatio
ns i
n
implicit inte
gration
meth
od. The
fo
rm
ula of impli
c
it integratio
n
method i
s
de
fined
as
follows
:
i
n
i
n
i
n
i
m
F
h
v
v
1
1
(6)
1
1
n
i
n
i
n
i
v
h
x
x
(7)
In Equation (6),
1
n
i
F
is un
kno
w
n at cu
rrent
time, we can
use the follo
wing formula
for
approximate cal
c
ulatio
n
of
1
n
i
F
.
1
1
n
n
n
x
H
F
F
(8)
Whe
r
e
H
is the
Hessia
n mat
r
ix of the syst
em,
h
v
v
x
x
x
n
n
n
n
n
)
(
1
1
1
. So Equation
(6) a
nd Equat
ion (7
) ca
n be
rewritten as f
o
llows:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3811 – 38
17
3814
m
h
hHv
F
v
H
m
h
I
n
n
n
1
2
(9)
Whe
r
e
n
hHv
represe
n
ts th
e a
dditional
forces, the
s
e
force
s
can
be
cal
c
ulate
d
a
s
follows
mentione
d by Desbru
n [7]:
n
i
n
j
E
j
i
j
ij
i
n
v
v
k
h
hHv
|
,
(10)
De
sbrun
split
ted the sprin
g
force into t
w
o p
a
rt
s
and
con
s
id
ere
d
only the line
a
r pa
rt, then
the
approximated
Hessia
n matrix is defined
as follo
ws:
i
j
ij
ii
ij
ij
k
H
j
i
if
k
H
(11)
Whe
r
e
ij
H
denotes the value
of
H
at
i
th row and
j
th col
u
mn. The velocity chan
ge
of mass-
point
i
is only
rel
a
ted to
its adja
c
e
n
t ma
ss-poi
nts.
ij
H
is zero wh
en m
a
ss-p
oint
i
an
d
j
a
r
e
no
t
linke
d with a
spri
ng. The
r
e
f
ore, Equatio
n (9)
can b
e
rewritten a
s
fo
llows:
i
n
i
E
j
i
j
j
ij
i
i
i
ii
m
h
F
v
H
m
h
v
m
H
h
)
(
,
2
2
1
(12)
We a
dopte
d
the app
roxim
a
ted Hessian
matrix pro
p
o
se
d by De
sbrun to
simp
lify the
cal
c
ulatio
n. Assuming
that
the
sp
ri
ng
consta
nt of all
sp
ring
s i
s
k
, and th
e nu
m
ber
of ma
ss-
points li
nked
to mass-point
i
is
i
n
, then the app
roximat
ed Hessia
n
matrix ca
n b
e
re
written
a
s
follows
:
i
ii
ij
kn
H
k
H
(13)
Then the def
ormatio
n
formula of Equa
tion (12
)
is de
fined as follo
ws
:
i
i
inE
j
i
n
j
n
i
n
i
n
kh
m
v
kh
h
F
v
2
,
1
2
1
(14)
Whe
r
e
1
n
j
v
is
u
n
kn
own. Because we
can
not calculat
e
1
n
i
v
directly, a
n
app
roximat
e
d
formula i
s
ad
opted to cal
c
ulate
1
n
j
v
.
E
l
j
jl
j
n
j
n
j
k
h
m
h
F
v
,
2
1
(15)
Then
1
n
i
v
can be
cal
c
ulate
d
as
follows:
i
i
E
j
i
j
j
n
j
n
i
n
i
kn
h
m
kn
h
m
h
F
k
h
h
F
v
2
)
,
(
2
2
1
(16)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cloth Sim
u
lation Base
d on
Sim
p
lified
Mass-Spri
ng Mo
del (Wenqi
ng
Huan
g)
3815
No
w we ca
n
cal
c
ul
ate
1
n
i
v
di
rect
ly
sin
c
e
n
j
F
is kno
w
n.
In
this
m
e
thod, we do not
need
to
solv
e a l
a
rg
e lin
ear
syste
m
,
whi
c
h i
s
a crit
ical fla
w
in
implicit inte
gration meth
od
. It
update
s
th
e
state of m
a
ss-p
oints in
)
(
n
O
time when
the
numb
e
r of t
o
tal sprin
g
s
are
)
(
n
O
.
More
over, th
e ma
ss of m
a
ss-p
oint, time ste
p
a
n
d
sp
ring
coefficient
ca
n b
e
ea
sily modif
i
ed
without a
n
y
addition
al co
mputation
s
.
So it is fa
st
er tha
n
mo
st gene
ral im
plicit nu
meri
cal
integratio
n m
e
thod
s.
5. Collision Detection and Response
Colli
sion
dete
c
tion [8] a
nd
respon
se
are
very im
po
rta
n
t in cl
oth
si
mulation. At
each time
step, It is m
u
st be te
ste
d
wh
ether cl
oth colli
de
s
with the e
n
vironm
ent obj
e
c
t or
not. If the
colli
sion o
c
cu
rs, it is n
e
cessary to m
a
ke
a app
rop
r
iat
e
re
spo
n
se. Colli
sion d
e
te
ction al
gorith
m
s
can b
e
rou
ghly divided
into two types: Hi
era
r
chical Bou
ndi
ng Bolume
s [9] and Space
Discretizatio
n
techni
que
s [
10]. Hie
r
archi
c
al Bo
undin
g
Bolume
s wa
s first put forward by Voli
no
[11], the core
idea
of thi
s
approa
ch i
s
wra
ppin
g
u
p
the complex
geomet
ric obj
ect
with a
big
g
e
r
boun
ding b
o
x. Compa
r
ing
with the ge
o
m
etric o
b
je
c
t, the boun
ding
box is with
si
mpler g
eom
etric
feature
s
. Wh
en pe
rformin
g
colli
sio
n
de
tection, we
firs
t
c
a
rry on intersec
tion t
e
s
t
bet
ween
the
boun
ding b
o
x
es. Only when the b
o
u
nding b
o
xes have intersected
will fu
rther inte
rse
c
tion
cal
c
ulatio
n of
the wrap
ped
geom
etric
o
b
ject b
e
p
r
o
c
essed.
Hie
r
archi
c
al Bou
ndi
ng Bolum
e
s
can
exclude basi
c geomet
ric
element
s that will not
int
e
rsect
as
soon as
possi
ble. Thereby,
the
spe
ed of colli
sion d
e
tectio
n is increa
se
d.
AABB [12] is the mos
t
widely us
ed
c
o
llis
io
n detec
tion algorithm.
Calc
ulating t
he AABB
of a given
obj
ect is sim
p
le,
we ju
st n
eed
to
cal
c
ulate
the maximu
m
and mini
mum
values
of the
basi
c
geom
etric el
ements’
vertex coordinate. In
tersection test
betw
een AABB is
simpl
e
,
two
AABB are intersectant onl
y when the
projections in
t
h
ree
coordi
nate axes are
all overlap. We
need at most six compari
s
on operations to co
mpl
e
te an intersecti
on test between two AABB.
In the pro
c
e
ss of cl
oth si
mulation, it is not
allo
we
d that cloth is embe
dde
d
itself or
embed
ded
in
the obj
ect
s
in the
scene.
Wh
en a
co
ll
ision i
s
dete
c
ted,
we n
e
e
d
to pe
rform
a
colli
sion resp
onse at once.
6. Experimental Re
sults
Based
o
n
O
penG
L g
r
a
p
h
i
cs lib
rary,
we u
s
e
c++ a
s
a
d
e
velop
m
ent e
n
viron
m
ent fo
r
dynamic simu
lation
of cloth
.
Fi
gure 3 sh
ows
the
sequ
ence re
sults
of
cloth
simul
a
tion whe
n
cl
oth
in ho
ri
zontal
su
spe
n
si
on
p
o
sture. In
Fi
gure
3,
t
w
o
mass-point
s
are
con
s
train
ed to
be
fixed.
F
i
g
u
r
e
3(
a)
s
h
ows
th
e initia
l s
t
a
t
e o
f
c
l
o
t
h
s
i
mula
tion, and
the
interm
ediate
state
of
clo
t
h
s
i
mu
la
tion
is
s
h
ow
n
in
F
i
gu
r
e
3(
b
)
.
(a)
(b)
Figure 3. Sequen
ce of Clot
h Simulation
whe
n
Cloth in
Hori
zontal S
u
sp
en
sion Po
sture
The Seq
uen
ce re
sults
of cl
oth simul
a
tio
n
wh
en cl
oth
in vertical
su
spe
n
si
on po
sture a
r
e
sho
w
n in Fi
g
u
re 4. In the
same
way, two ma
ss
-p
oi
nts are co
nst
r
aine
d to be fixed. Figure
4(a
)
and (b
) sho
w
the initial state and interm
e
d
iate state of cloth sim
u
lati
on.
Figure 5 sho
w
s th
e sim
u
l
a
tion re
sult
s
of cloth t
hat falls un
de
r th
e effect of gravity. The
prelimi
nary st
ate of cloth falling un
der t
he effe
ct of gravity is sh
own in Fi
gure 5(a
)
, and t
h
e
interme
d
iate
state of cloth
falling is sho
w
n in Figu
re
5(b
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3811 – 38
17
3816
Figure 6 shows the sequ
ence result
s
of cloth that
collid
es with a
ball.
The state
of
prelimi
nary
collision i
s
sh
own in
Figu
re 6(a
)
, and F
i
gure
6(b
)
sh
ows the inte
rmediate
state
o
f
cloth collisi
o
n.
(a)
(b)
Figure 4. Sequen
ce of Clot
h Simulation
whe
n
Cloth in
Vertical Suspen
sion Po
sture
(a)
(b)
Figure 5. Sequen
ce of Clot
h Simulation
whe
n
Cloth F
a
lling und
er t
he Effect of Gravity
(a)
(b)
Figure 6. Sequen
ce of Clot
h Simulation
whe
n
Cloth
Colliding with a
Ball
From th
e ex
perim
ental re
sults,
we fin
d
that ou
r a
ppro
a
ch can
rapidly g
a
in
reali
s
tic
dynamic effe
ct of cloth sim
u
lation.
7. Conclusio
n
In digital
ag
e, cloth
sim
u
lation te
ch
n
o
l
ogy h
a
s b
r
oad
ap
plica
t
ion prospe
cts. Its
developm
ent will profo
undl
y influence o
u
r lives. The
reali
s
tic si
gnif
i
can
c
e
s
an
d pra
c
tical valu
e
s
of this techn
o
logy can n
o
t
be ignore
d
. In this
pape
r, the comp
utational e
fficie
n
cy is improved
with the sim
p
lified ma
ss-spri
ng mo
del
. The modifi
e
d
implicit me
thod is different from ge
n
e
ral
implicit meth
od, it doe
s
not involve solving a
la
rg
e linea
r
syst
em. And thi
s
method i
s
v
e
ry
intuitive and
easy to
be
i
m
pleme
n
ted.
The
ex
pe
ri
ments
sh
ow that
this met
hod ca
n
p
r
o
duce
plau
sible
ani
mation results with l
a
rg
e
time st
ep
s.
With the g
r
o
w
ing
dema
n
d
s fo
r fast
cl
oth
simulatio
n
ap
plicatio
ns, thi
s
me
thod h
a
s some refere
nce valu
es.
Ackn
o
w
l
e
dg
ements
This
wo
rk was fin
a
n
c
ially su
ppo
rted
b
y
the Natio
n
a
l Natural
Scien
c
e
Fou
n
dation of
Chin
a (Grant
No.
508
752
45, 61
070
06
3, 612
723
11,
309
003
22)
and th
e Z
h
e
jiang P
r
ovin
ce
Natural Scie
n
c
e Fou
ndatio
n (Grant No.
Y10755
8).
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cloth Sim
u
lation Base
d on
Sim
p
lified
Mass-Spri
ng Mo
del (Wenqi
ng
Huan
g)
3817
Referen
ces
[1]
Li Qingfu, Yuan Ye
, Ch
en J
u
n
x
i
a
. Segm
e
n
tation for F
a
bric W
eav
e P
a
ttern usi
ng E
m
pirica
l Mo
de
Decom
positi
o
n
base
d
Histo
gr
am.
T
E
LKOMNIKA Indon
esi
an Jo
urna
l
of Electrical E
n
g
i
neer
ing
. 20
13
;
11(4): 19
96-
20
01.
[2]
A Luc
ian
i
, S Ji
menez, J
L
F
l
or
ens, C
Ca
doz,
O Rao
u
lt. Com
putatio
na
l p
h
y
s
i
cs: a mo
de
ler
simulat
o
r fo
r
anim
a
ted p
h
y
si
cal ob
jects. In Eurogr
aph
i
cs’
9
1
, Vienn
a, Austria, Septemb
e
r
1991.
[3]
Provot
X
.
Def
o
rmation Constraints in A
Ma
ss-sprin
g
Mode
l
to
D
e
s
c
ribe Rig
id Cl
oth
Be
havi
o
r.
Procee
din
g
of Graphics Interf
ace 95, Que
b
e
c
. 1995; 14
7-1
55.
[4]
Jaru
w
a
n M, Ratan G, Shafaq C. 3D Soft
Body
Si
mu
latio
n
Usin
g Mass-sprin
g
Sy
stem
w
i
th Internal
Pressure F
o
rc
e and Sim
p
lifi
e
d Implicit Integr
ation.
Jour
na
l of Computers.
200
7; 2(8): 34-
43.
[5]
William Press,
Saul T
eukols
k
y
, Willi
am Ve
tterling,
Bria
n Flann
er
y
.
N
u
m
e
rical R
e
ci
pes
in C, second
editi
on. Cambr
i
dge U
n
ivers
i
t
y
Press, Ne
w
Yo
rk, USA. 1992.
[6]
David Baraff, Andre
w
Witkin.
Large steps in
cloth simulation.
In Michae
l C
ohe
n, editor
, SI
GGRAPH 98
Confer
ence P
r
oceedings,
Annual Conference Series, pages
43-54.
ACM SIGGRA
P
H, Addiso
n
We
sl
ey
. 19
98
.
[7]
M Desbr
un, P
Schro
der, A
Barr.
Interactiv
e a
n
i
m
ati
on
of structured
de
forma
b
l
e
o
b
jec
t
s
. Proc. of
Graphics Interf
ace. 199
9.
[8]
Z
a
chman
n
G, Lan
gete
pe E.
Geometric d
a
ta structur
es for
computer
gra
phics. N
a
tick, MA, USA: A.K.
Peters, Ltd; 20
06.
[9]
Norh
aid
a
M
o
h
d
Su
ai
b, Ab
d
u
lla
h B
a
d
e
, D
z
ulkifli
Mo
ham
ad. H
y
b
r
id
C
o
llisi
o
n
Cu
lli
ng
b
y
Bo
un
din
g
Volum
e
s Mani
pul
ation i
n
Massive Ri
gi
d Bod
y
Simu
lati
on.
T
E
LKOMNIKA Indones
i
an Jour
nal o
f
Electrical E
ngi
neer
ing.
2
013;
11(6): 31
15-
31
22.
[10]
T
e
schner
M,
Heid
el
berg
e
r
B,
Muller M, Pomera
nets D
,
Gross M.
Optimi
z
e
d s
pati
a
l has
hin
g
for
collis
io
n detecti
on of defor
mab
l
e ob
jects.
Proceed
ings
of vision, mod
e
li
ng,
visual
izati
on. 2
003; 47-
54.
[11]
Voli
no P,
Mag
nen
at-T
halman
n
N. Effici
ent
Se
lf
C
o
ll
isio
n Detectio
n on S
m
oothl
y Discr
e
t
ized
S
u
rfac
e
Animati
ons usi
ng Geometric
a
l
Shape R
e
g
u
la
rit
y
.
Co
mp
uter Graphics
F
o
ru
m
. 19
94; 13(
3): 155-1
66.
[12]
G.Vanden
Ber
gen. Efficie
n
t
Coll
isio
n D
e
te
ct
ion of C
o
mp
l
e
x Deform
abl
e
Mode
ls usi
n
g
AABB T
r
ee.
Journ
a
l of Graphics T
ools. 19
97; 2(4): 1-13.
Evaluation Warning : The document was created with Spire.PDF for Python.