Indonesi
an
Journa
l
of El
ect
ri
cal Engineer
ing
an
d
Comp
ut
er
Scie
nce
Vo
l.
9,
No.
2,
Februa
ry 20
18,
pp. 4
81
~
492
IS
S
N: 25
02
-
4752, DO
I:
10
.11
591/ijeecs
.v9.i
2.pp4
81
-
492
481
Journ
al h
om
e
page
:
http:
//
ia
es
core.c
om/j
ourn
als/i
ndex.
ph
p/ij
eecs
Improve
d Field
-
o
rien
t
ed Cont
ro
l
fo
r PWM Mul
ti
-
level
I
nvert
er
-
f
ed Ind
uction
Moto
r Drives
D.
L.
Mon N
z
ongo
1
,
E.
Leu
goue
2
,
J. H.
Zha
n
g
3
, G.
Eke
mb
4
1
Sm
art
Grid
and S
ensor
Te
chno
lo
g
y
,
Insti
tut
e
of
F
uzhou
Univer
si
t
y
,
Chin
a
2,3
Tra
nsm
ission &
Distribu
ti
on
S
y
stem R
ese
ar
ch insti
tute
,
North
China
El
e
ct
ri
c
P
ower
Univer
sit
y
,
China
4
Depa
rtment of
El
e
ct
ri
ca
l
Eng
in
ee
ring
,
Queb
ec
Chic
outi
m
i
Univ
ersity
,
Can
ada
Art
ic
le
In
f
o
ABSTR
A
CT
Art
ic
le
hist
or
y:
Re
cei
ved
15
N
ov
, 201
7
Re
vised
Jan
10
, 201
8
Accepte
d
Ja
n 2
9
, 2
01
8
Thi
s
pape
r
prop
oses
a
new
appr
oac
h
to
ensur
e
t
he
torque
de
cou
ple
d
to
th
e
rotor
flux
of
a
n
induc
t
ion
m
a
chi
ne
b
ase
d
on
the
Fi
el
d
Ori
e
nte
d
Contro
l
(FO
C).
The
suggested
m
et
hod
c
onsists
of
insert
ing
int
o
the
conv
ent
ion
al
d
-
q
s
y
nchr
onous
cu
rre
nt
cont
ro
ll
er
,
coup
li
ng
te
rm
s
of
m
otor
and
m
ult
i
-
le
v
el
inve
rt
er
m
odel
s.
Making,
the
d
ynamic
response
of
stat
or
cur
ren
t
components
dec
oupl
ed
as
well
as
the
rotor
fl
ux
and
torque
.
I
n
thi
s
pape
r,
the
m
at
hemati
c
m
odel
of
an
induc
ti
on
m
otor
an
d
m
ult
i
-
le
ve
l
inv
ert
er
ar
e
first
de
ri
ved.
Th
en,
the
s
y
n
chr
onous
cur
ren
t
cont
rol
l
er
and
m
odula
tion
strat
eg
y
for
high
power
inve
rt
ers
are
inv
esti
gated.
Fina
lly
,
th
e
validation
through
implementation
and
sim
ula
ti
on
of
a
4.
16
kV
e
lectr
i
c
driv
e
wit
h
MA
TL
AB/S
imulink
and
Sim
Po
werS
y
ste
m
s
is
per
form
ed
.
The
m
odel
sim
ula
t
ed
in
thi
s
pa
per
includes
an
induc
ti
on
m
ot
or,
nine
-
l
eve
l
c
a
sca
ded
H
-
bridge
inve
rte
r
and
a
c
arr
ie
r
base
d
spac
e
ve
ct
or
pul
se
-
width
-
m
odulation.
Th
e
result
s
of
the
sim
ula
ti
o
ns
of
ea
ch
m
et
hod
has
be
en
rec
ord
ed
an
d
the
compari
s
on
result
s
rev
e
al
th
at
th
e
proposed
m
et
ho
d
eff
e
ctively
m
aintai
ns
the
rotor
f
lux
de
coupl
ed
to
the t
orqu
e.
Ke
yw
or
d
s
:
C
arr
ie
r base
d
s
pace
vecto
r
pu
lse
w
it
h m
od
ulati
on
Decou
pling cu
rr
e
nt contr
ol
D
-
q
sy
nchr
onous c
urre
nt
Fiel
d
ori
ente
d con
t
ro
l
Ind
uction m
oto
r
Copyright
©
201
8
Instit
ut
e
o
f Ad
vanc
ed
Engi
n
ee
r
ing
and
S
cienc
e
.
Al
l
rights re
serv
ed
.
Corres
pond
in
g
Aut
h
or
:
D.
L. M
on N
z
ongo
,
Sm
artGr
id and
Sen
s
or Tec
hn
ology I
ns
ti
tute
,
Fu
z
hou U
niv
e
r
sit
y, 2 Xu
ey
ua
n
R
d,
3501
08, Fuz
hou, F
uj
ia
n, Chi
na
.
Em
a
il
:
m
on
nzongo
dan
ie
l@y
a
hoo.fr
1.
INTROD
U
CTION
Durin
g
the
la
st
two
deca
des,
m
ul
ti
-
le
vel
inv
erters
ha
ve
be
com
e
ver
y
po
pula
r
in
high
powe
r
m
oto
r
dr
i
ve
a
pp
li
cat
ion
s
s
uch
as
fa
ns
,
pum
ps
,
c
onvey
or
s
,
tract
i
on
an
d
pro
pulsi
on
dri
ves
[
1,
2].
They
ha
ve
these
qu
al
it
ie
s
since
they
are
a
ble
to
ge
ner
at
e
a
s
te
pp
e
d
vo
lt
age
wavef
or
m
that
bette
r
ap
pro
xim
at
es
a
sinu
s
oid
al
wav
e
f
or
m
.
In
high
po
wer
dr
i
ve
ap
plica
ti
on
s
,
m
ult
i
-
le
vel
inv
erter
s
pro
vid
e
to
the
in
du
ct
io
n
m
oto
r
a
co
ntro
ll
e
d
vo
lt
age
an
d
frequ
e
ncy.
T
hre
e
tradit
iona
l
m
et
ho
ds
a
re
a
vaila
ble
to
m
anufactu
rer
s
to
co
ntro
l
volt
age
a
nd
f
re
qu
e
ncy
of
el
ect
ric
dr
ives
[
1
-
6].
They
are
:
(1
)
Scal
ar
co
ntr
ol,
(2)
Fiel
d
-
o
rie
nted
Co
ntr
ol
(F
OC
)
and
(
3)
Direct
T
orqu
e
Con
tr
ol
(
DT
C).
Scal
ar
c
on
trol
m
et
ho
d
c
onsist
s
to
m
ai
ntain
the
r
at
io
volt
age
per
fr
e
quency
const
ant
w
hen
con
tr
olli
ng
a
n
ind
ucti
on
m
a
chine
.
T
he
F
O
C
m
et
ho
ds
in
de
pende
ntly
con
tr
ol
the
tor
que
an
d
flu
x
com
ponent
that
inclu
des
coor
din
at
e
tra
nsfo
rm
at
ion
,
Pul
se
W
idth
Mo
dula
ti
on
(PWM
)
te
chn
i
qu
e
,
a
nd
tw
o
synch
ron
ous
con
t
ro
ll
ers
f
or
the
flu
x
an
d
to
rque
com
pone
nts.
The
DTC
m
et
ho
ds
are
li
ke
FO
C
m
et
ho
ds
but
require
neither
coord
i
nate
tr
ansfo
rm
ation
nor
P
WM
te
chn
i
qu
e
.
They
need
a
lo
ok
-
up
ta
ble
to
sel
ect
the
su
it
able
vo
lt
ag
e
vecto
r
of
the
inv
e
rter
a
nd
a
hyste
resis
c
on
t
ro
l.
[
3
-
4]
H
ow
ever,
hyste
resi
s
co
ntr
ols
ar
e
known
to
cause
tor
que
rip
ples
in
t
he
m
oto
r
and
po
or
ste
ady
-
sta
te
pe
rfor
m
ance
at
low
-
s
peed
s
.
T
hi
s
con
t
ro
l
m
ode
has
a
fast
respo
ns
e
and
a
sim
ple
s
tructu
re
[
7].
More
over,
t
hey
are
vulne
rab
le
a
nd
ca
n
cause
osc
il
la
ti
on
beca
us
e
of
la
rg
e
values
of
sta
tor/r
oto
r
r
esi
sta
nce
of
t
he
m
otor in
h
i
gh po
wer d
rives
.
I
n
ge
ner
al
,
th
e
m
ai
n
go
al
of
FO
C
m
et
ho
ds
is
to
kee
p
the
or
ie
nted
r
ot
or
flu
x
dec
ouple
d
to
tor
que
at
any
giv
in
g
ti
m
e
by
con
tr
olli
ng
the
sta
tor
th
ree
-
ph
a
se
cu
rrent
[8
-
11]
.
T
his
can
be
ac
hie
ved
by
us
in
g
sp
ee
d
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
481
–
492
482
sens
or
m
easur
em
ent,
coo
r
din
at
e
trans
f
or
m
at
ion
syst
e
m
s,
est
i
m
ation
m
et
ho
ds
and
sync
hro
nous
regulat
ors.
B
ut
,
the
no
n
-
li
ne
ar
nat
ur
e
of
th
e
AC
m
oto
rs
and
t
hr
ee
-
ph
as
e
inv
e
rters
t
hroug
h
their
co
upli
ng
te
rm
s,
m
akes
t
hat
go
al
d
iffic
ul
t
to
achieve.
S
ever
al
im
pr
ov
i
ng
m
et
ho
ds
o
f
FO
C
we
re
inv
e
sti
gated
in
li
te
ratur
e
[1
2
-
15]
.
Am
ong
them
,
the
station
ary
an
d
synch
r
onous
fr
a
m
e
PI
reg
ulat
ors,
ad
diti
on
al
PI
ty
pe
regulat
or
s
a
re
the
m
os
t
us
ed
[
12,
13]
,
this
is
because
,
they
are
base
d
on
a
si
m
ple
deco
upli
ng
c
urren
t
co
nt
ro
l. Wh
ic
h
is
based
on
i
ns
erti
on
in
to
the
sync
hro
nous
c
urren
t
c
on
t
ro
ll
er
sc
he
m
e
cou
plin
g
t
erm
s
of
the
in
du
ct
io
n
in
t
he
aim
to
su
pp
ress
the
nonlinea
r
ef
fects
in
the
dynam
ic
resp
onse
of
the
sta
tor
cu
rr
e
nt
[14,
15]
.
H
oweve
r,
these
m
et
ho
ds
do
not
co
ns
ide
r
the
co
upli
ng
te
rm
s
of
the
powe
r
in
ver
te
r.
It
assum
ed
as
a
gain
d
uri
ng
the
desi
gn
proc
ess
a
nd
they
com
pen
sa
te
for
it
s
eff
ec
ts
durin
g
the
tur
ning
of
t
he
PI
par
am
et
ers.
Hence
the
res
earche
d
decou
plin
g
act
ion
betwee
n t
orq
ue
a
nd f
lu
x
is
not acc
urat
el
y ac
hieve
d pra
ct
ic
al
ly
[
13
]
.
In
order
to
i
m
pr
ov
e
dec
ou
pling
iss
ues,
t
his
p
a
per
has
pro
po
se
d
a
ne
w
dec
ouplin
g
m
et
ho
d
that
m
ai
nly
con
sist
s
of
ins
erti
ng
i
nto
t
he
sy
nchr
onous
c
urre
nt
con
t
ro
ll
er
both
eff
ect
s
of
c
oupling
te
rm
s
due
to
the
inducti
on
m
oto
r
an
d
m
ulti
-
l
evel
in
ver
te
r.
Th
us
,
t
he
m
oto
r
an
d
t
he
power
i
nverter
c
an
be
c
onsider
ed
a
first
order sy
ste
m
m
aking
t
he
c
ontr
oller d
e
sig
n ea
sie
r.
This
pa
per
is
orga
nized
into
fo
ur
sect
ion
s
.
In
the
first
sect
ion
,
the
in
duct
ion
m
achine
and
in
ver
t
e
r
m
od
el
s
are
recall
ed.
In
the
se
cond
sect
io
n,
the
dec
ouplin
g
m
et
ho
ds
are
presented
.
CB
-
S
VPW
M
stra
te
gy
for
m
ul
ti
-
le
vel inverte
r
is e
xpla
in
ed
in
the t
hir
d sec
ti
on
.
Finall
y, sim
ulatio
n r
esults t
hro
ugh
com
par
ison are
g
ive
n.
2.
MA
T
HEM
AT
ICA
L
MODE
L OF I
N
DUC
TION
MOT
O
R
FE
D
BY
P
WM VSI
I
NVE
RTER
UNDER
FO
C
C
O
NTR
OL
2
.1
.
St
ru
cture
of t
he
S
ys
te
m
Model
Fig
ure
1. Ba
sic
Bl
ock D
ia
gr
a
m
of
Fiel
d Or
i
ented
C
ontrol
Fig
ure
2.
P
ri
nc
iple o
f
Fiel
d O
riented
Co
ntr
ol
2
.2
.
M
athema
tical
Model
s
of
In
duct
i
on
M
otor
an
d
In
ve
rter
The
basic
bl
oc
k
diag
ram
of
FO
C
strat
egy
for
el
ect
ric
dr
ive
syst
e
m
s
is
sh
ow
n
in
Fi
gure
1.
The
basi
c
pr
i
nciple
of
F
OC
is
to
c
ontr
ol
the
s
pee
d
or
to
rque
of
a
n
inducti
on
m
a
chine
by
only
con
t
ro
ll
in
g
the
sta
to
r
current
of
t
he
inducti
on
m
a
chine
[16,1
7].
In
t
he
case
wh
e
re
on
ly
th
e
sp
ee
d
is
ne
eded
t
o
be
co
ntr
olled
(
Fig
ur
e
1),
t
he
ref
e
ren
ce
com
pone
nt
s
of
t
he
current
c
ontr
oller
*
sq
i
an
d
*
sq
i
are
r
especti
vely
obt
ai
ned
from
the
no
m
inal
flu
x
and
sp
ee
d
c
ontr
oller.
T
he
synch
ron
ous
c
urren
t
c
ontr
oller
com
par
es
t
hese
values
to
tho
se
m
easur
ed
f
r
om
the
t
hr
ee
-
phas
e
cu
r
re
nt
(
,,
a
b
c
i
i
i
)
a
nd
tra
ns
f
or
m
ed
to
sd
i
an
d
sq
i
.
It
gen
e
rates
t
he
r
efere
nce
values
of
volt
age
com
po
ne
nts
(
d
cm
v
and
q
cm
v
)
that
are
transfor
m
ed
to
the
m
od
ulati
ng
sign
al
s
(
v
and
v
)
of
the
P
W
M
m
od
ulator
.
The
or
i
ented
r
otor
fl
ux
r
is
local
iz
e
d
from
the
sta
t
or
by
the
an
gu
l
ar
da
(
Fig
ur
e
2)
.
da
is
est
im
a
te
d,
a
nd
use
d
with
the
c
oor
din
at
e
t
ran
s
f
or
m
at
ion
syst
e
m
s.
The
m
ul
ti
-
le
vel
inve
rter
is
c
ontr
olled
by the
P
W
M
m
odulato
r
a
nd s
upply t
o
i
nduct
ion
m
achine a
con
t
ro
ll
ed
volt
age a
nd freq
ue
ncy.
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Impr
oved Fi
el
d
-
or
ie
nte
d
C
ontrol for
PWM
Multi
-
le
vel
In
ve
rte
r
-
f
ed In
duct
ion …
(
D. L.
M
on Nzo
ngo
)
483
The
dy
nam
ic
s
of
in
duct
ion
m
oto
r
in
the
synch
ron
ou
sly
ro
ta
ti
ng
d
-
q
fra
m
e
is
giv
en,
su
ch
as
i
n
li
te
ratur
e [
1]:
.
dx
A
x
B
u
dt
=+
(
1
)
W
it
h
,
,
,
A
B
x
u
are
descr
i
bed as it
foll
ows:
1
1
1
2
1
3
1
4
1
2
1
1
1
4
1
3
3
1
3
3
3
4
3
1
3
4
3
3
0
0
a
a
a
a
a
a
a
a
A
a
a
a
a
a
a
1
1
0
0
00
00
b
b
B
e
sd
e
sq
e
rd
e
rq
i
i
x
2
11
12
13
14
,,
,,
sm
da
s
s
r
r
mm
r
s
r
r
s
r
RL
aa
L
L
L
LL
aa
L
L
L
L
w
s
s
t
w
s
t
s
=
-
-
=
=
-
=
-
31
33
34
2
12
1
,
,
,
1
,
1
.
m
sl
rr
m
ss
L
a
a
a
L
bb
LL
w
tt
ss
=
=
-
=
=
=
-
Unde
r
FO
C,
rq
is zero
at
the ste
ady stat
e, an
d
the r
ot
or
f
ie
ld
ori
ented
co
ntr
ol is achieved
wh
en
d
rd
r
l
l
=
r
is
const
ant [9]
. S
o,
from
eq
uatio
n
(
1
)
the
stat
or
vo
lt
age
co
m
ponen
ts
in
sy
nchr
onous
fr
am
e are d
e
r
ive
d
as:
s
d
m
r
d
s
d
s
s
d
s
d
a
s
s
q
r
d
i
L
d
v
R
i
L
L
i
d
t
L
d
t
l
s
w
s
=
+
+
-
(
2
)
sq
m
sq
s
sq
s
d
a
rd
d
a
s
sd
r
di
L
v
R
i
L
L
i
d
t
L
s
w
l
w
s
=
+
+
+
(
3
)
rd
m
sd
Li
(
4
)
2
m
e
m
s
d
r
e
f
s
q
r
L
p
T
i
i
L
(
5
)
Eq
uations
(
2)
t
o
(
5)
re
pr
ese
nt
the
m
at
he
m
a
tical
m
od
el
of
the
in
du
ct
i
on
m
achine
in
sy
nchr
onous
fr
am
e u
nder
F
OC.
Con
ce
rn
i
ng
t
he
power
in
v
e
rter,
w
hich
is
th
e
m
ulti
-
le
vel
i
nv
e
rter,
it
s
m
od
el
is
ob
ta
ine
d
in
this
pa
per
by
t
akin
g
int
o
acc
ount
al
l
the
ti
m
e
delay
existi
ng
t
o
m
anag
e
the
powe
r
fl
ow
betwee
n
th
e
sup
ply
and
t
he
in
du
ct
i
on
m
oto
r
.
The
se
tim
e
delay
s
are
due
to
the
dig
it
al
proces
sing
bo
a
r
d,
m
e
asur
i
ng
a
nd
fil
te
rin
g
dev
ic
es
m
e
s
T
T
meas
gate dri
ve
rs
a
nd
death
ti
m
e u
nits
d
r
i
ver
T
.
The
total
delay
tim
e d
ue t
o
m
ulti
-
le
vel i
nv
e
rter is:
/2
V
S
I
r
E
d
riv
e
r
m
e
a
s
T
T
T
T
T
(
6
)
Th
us
, dynam
ical
m
od
el
of m
ulti
-
le
vel inv
e
rter is:
(
)
cm
V
S
I
s
d
s
d
s
d
d
a
V
S
I
s
q
V
S
I
K
v
v
v
T
v
sT
w
=
-
+
(
7
)
(
)
.
cm
V
S
I
s
q
s
q
s
q
d
a
V
S
I
s
d
V
S
I
K
v
v
v
T
v
sT
w
=
-
-
(
8
)
Wh
e
re
,
c
m
c
m
s
d
s
q
vv
are
syn
chro
nous
d
-
q
vo
lt
age
s
delive
red
by
the
F
O
C.
VSI
K
represe
nts
the
gai
n
of
in
ve
rte
r
.
Accor
ding to
(
2), (
3),
(7),
(8)
the m
od
el
o
f
an
inducti
on m
oto
r
fe
d
by the
m
ul
ti
-
le
vel inverte
r
is represe
nted
in
Figure
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
481
–
492
484
Figure
3. Bl
oc
k
Diag
ram
of
a
n Ind
uction M
otor Fe
d
by
A
P
W
M
Inve
rter
Fr
om
Figure
3,
t
he
c
on
t
ro
ll
ed
vo
lt
age
is
app
li
ed
to
t
he
inducti
on
m
oto
r
t
hroug
h
th
e
powe
r
inv
e
rter.
O
bs
er
ving
this
F
ig
ure
3,
the
volt
ag
e
in
d
a
nd
q
a
xi
s
co
ntents
nonl
inearit
ie
s
w
hich
a
re
c
ouplin
g
te
rm
s
thr
ough
the
m
od
el
of
the
power
in
ver
te
r
an
d
inducti
on
m
a
chine.
T
he
refo
re,
d
a
nd
q
-
a
xi
s
current
com
po
ne
nts
are
stron
gly
dep
en
de
nt
each
oth
e
r
[10,
12,
13
]
.
T
hus,
in
de
pende
ntly
con
tr
olli
ng
the
c
urren
t
in
d
an
d
q
axis
can
be
ac
hieve
d by ei
ther
u
si
ng f
e
d
-
f
orwar
d m
e
tho
ds
or
de
couplin
g
a
ppr
oa
ches.
3.
SYNC
HRON
OU
S
D
E
COU
PLING
CURRENT
CONT
ROLLE
R
The
plant
m
odel
of
a
n
IM
m
oto
r
a
nd
po
wer
inv
e
rter
unde
r
FO
C
has
bee
n
represe
nted
i
n
Figure
3.
It
sh
ows
the
nonl
inearit
y
of
th
e
ind
ucti
on
m
otor
that
introdu
ce
c
ouplin
g
between
t
he
synch
ron
ous
curren
t
com
po
ne
nts.
T
hu
s
,
any
c
ha
nge
of
one
of
the
se
com
po
ne
nts
m
ay
aff
ect
the
dynam
ic
of
th
e
entire
syst
em
[17
-
20
]
.
3.1.
C
onven
ti
onal dec
ou
pli
ng
c
ontr
oller
The
c
urre
nt com
po
nen
ts
of dy
nam
ic
eq
uatio
ns
t
hroug
h
the
inducti
on m
oto
r
are
sim
plifie
d
as
:
sd
s
s
s
d
d
a
s
s
q
s
d
di
L
R
i
L
i
v
dt
s
w
s
=
-
+
+
(
9
)
sq
s
s
sq
d
a
s
sd
sq
di
L
R
i
L
i
v
dt
sw
=
-
-
+
(
10
)
In
t
he
d
an
d
q
axis,
the
co
upli
ng
te
rm
s
betw
een
the
t
wo
ax
es
are
resp
ect
i
vely
def
i
ned
by
d
a
s
s
q
Li
ws
and
da
s
s
d
Li
w
;
wh
en
the
inv
e
rter m
od
el
is
not co
ns
ide
r
ed.
The
diag
ram
blo
c
k
of
t
he
conve
ntion
al
decou
pling
cu
rr
e
nt
co
ntr
oller
with
the
sy
nchr
onou
s
vo
lt
age
s
to
be
app
li
ed
t
o
the
i
nductio
n
m
oto
r
is
represe
nted
in
Fi
gure
4.
The
po
wer
i
nverter
is
assum
ed
to
be
ideal
so
it
s
m
od
el
does
not
a
pp
ea
r.
This
cu
rr
e
nt
co
ntr
oller
is
easi
er
to
be
i
m
ple
m
ented
us
in
g
a
nal
og
i
cal
or
dig
it
al
circuits
bu
t a
s it
h
as
b
e
en
m
entione
d
a
bove, t
he
e
xpe
ct
ed
dec
oupli
ng
featur
e
is
no
t
achieve
d.
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Impr
oved Fi
el
d
-
or
ie
nte
d
C
ontrol for
PWM
Multi
-
le
vel
In
ve
rte
r
-
f
ed In
duct
ion …
(
D. L.
M
on Nzo
ngo
)
485
Figure
4.
The
Bl
ock
Diag
ram
of
Co
nventio
na
l
Decou
plin
g
PI
C
on
t
ro
ll
er
.
Fr
om
Fig
ur
e
4, the
decou
plin
g
is acc
om
plished by c
hoosi
ng
vo
lt
age
co
m
m
and
s s
uc
h
as
:
**
i
s
s
d
p
s
d
s
d
d
a
s
q
K
v
K
i
i
L
i
s
(
11
)
**
i
s
q
p
s
q
s
q
d
a
s
s
d
K
v
K
i
i
L
i
s
(
12
)
wh
e
re
,
,0
pi
KK
is t
he
pro
portio
nal a
nd integ
ral g
ai
n
a
nd
,
s
L
are
res
pecti
ve
ly
the estim
ated
values
of
,
s
L
.
3.2.
Pr
oposed
sy
nc
hrono
us
decoupl
ing c
u
rrent c
ontroll
er
Pr
e
viously
the
decou
pling
wa
s
achieve
d
by
add
i
ng
t
o
the
P
I
co
ntr
oller
jus
t
the
coupling
t
erm
s
du
e
to
inducti
on
m
oto
r
.
H
ow
e
ve
r,
it
has
been
dem
on
strat
ed
t
hro
ugh
the
m
od
el
in
g
of
m
oto
r
an
d
in
ve
rter
that
,
couplin
g
te
rm
s
exist
du
e
to
th
e
ind
uctio
n
m
oto
r
an
d
powe
r
inv
e
rter
(
Fi
gur
e
3)
.
Fig
ure
5
sh
ows
the
pro
po
s
ed
decou
pling
c
ur
ren
t c
on
tr
oller.
Th
e b
a
sic
idea
o
f
the
pro
pose
d
dec
ouplin
g n
et
work
(DN)
is
to
al
so
consi
de
r
th
e
pr
ese
nce
of
th
e
nonlinea
rity
of
t
he
power
inv
e
rter
int
o
the
cu
rr
e
nt
co
ntr
oller.
T
her
e
fore,
t
he
dec
oupli
ng
current is
the
n ac
com
plished
by cho
os
in
g v
ol
ta
ge
com
m
and
s su
c
h
as:
*
cm
i
s
sd
p
sd
sd
d
a
sq
d
a
V
S
I
sq
K
v
K
i
i
L
i
T
v
s
(
13
)
*
cm
m
i
s
rd
s
q
p
s
q
s
q
d
a
d
a
s
d
d
a
V
S
I
s
d
r
K
L
v
K
i
i
L
i
T
v
s
L
(
14
)
Wh
e
re t
he dec
ouplin
g
te
rm
s ar
e e
qu
al
t
o
,
m
rd
s
sd
c
o
m
p
d
a
sq
d
a
V
S
I
sq
r
Ld
v
L
i
T
v
dt
L
(
15
)
,
m
s
rd
sd
c
o
m
p
d
a
d
a
sd
d
a
V
S
I
sd
r
L
v
L
i
T
v
L
(
16
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
481
–
492
486
Figure
5. The
Bl
ock
Diag
ram
of
P
rop
os
e
d
D
ecoupli
ng
P
I
C
on
t
ro
ll
er
.
Fr
om
the
ab
ov
e
analy
sis,
the
m
od
el
of
the
i
nductio
n
m
oto
r
and
powe
r
in
ve
rter
are
not
re
pr
ese
nted
in
Figure
5
for
t
he
reas
ons
of
cl
arit
y.
The
ne
w
dec
ouplin
g
ne
twork
(
DN)
is
highli
gh
te
d
by
the
da
sh
e
d
s
qu
are
in
Figure
5.
The
Figure
6
a
nd
F
igure
7
are
sim
ulati
on
res
ults
of
FO
C
us
i
ng
t
he
d
-
q
represe
ntati
on
of
the
inv
e
rter
and
in
du
ct
io
n
m
oto
r.
The
in
ve
rter
total
delay
tim
e
is
1
VSI
T
m
s
and
the
gain
is
1
VSI
K
.
8
.
6
pi
k
an
d
530
ii
k
are
res
pecti
vely
the
pr
op
or
ti
onal
and
inte
gr
a
l
gain
of
sync
hro
nous
cu
rr
e
nt
con
tr
oller.
T
he
m
oto
r
par
a
m
et
ers
are s
how
n
Ta
bl
e I.
Al
so, it
h
a
s b
ee
n
i
niti
al
ized
as
foll
ows:
0
17.4
sd
IA
,
0
1
.
2
4
5
sq
I
k
A
,
0
1
2
4
.
5
/
mech
r
a
d
s
.
Table
1.
M
otor
Sp
eci
ficat
ion
s
an
d
Pa
ram
et
ers
Sq
u
irr
el Cag
e
Ind
u
ctio
n
m
o
to
r
(
5
0
Hz
)
Rated
Power
125
0
hp
Rated
vo
ltag
e
4160
V
Pair
o
f
po
les
2
Stato
r
resistan
ce
0
.21
Ω
Ro
to
r
resistan
ce
0
.14
6
Ω
Stato
r
leak
ag
e ind
u
ctan
ce
5
.2
Ro
to
r
Leakag
e ind
u
ctan
ce
5
.2
mH
Magn
etizin
g
ind
u
c
tan
ce
155
mH
Figure
6.
Nu
m
erical
Sim
ulati
on
of
D
-
Q
M
odel
of
FO
C
base
d
C
onve
ntio
nal
D
ec
ouplin
g
P
I
C
ontrolle
r
.
(a)
Ele
ct
ro
m
agn
et
ic
To
rque
. (b)
D
-
A
xis
C
urr
ent
. (c)
Q
-
Ax
is
Cu
rr
e
nt
. (d)
R
otor
Fl
ux
Figure
7.
Nu
m
erical
Sim
ulati
on
of F
OC
bas
ed
P
r
opos
e
d
Decou
pling
P
I
Con
tr
oller
.
(a)
Ele
ct
ro
m
agn
et
ic
To
rque
.
(b)
D
-
Ax
is
Cu
r
ren
t
.
(
c
)
Q
-
Ax
i
s
Curre
nt
. (d
)
Rotor
Flu
x
.
Sp
ace
Vecto
r C
arr
ie
r
base
d
Modula
ti
on for M
ulti
le
vel
Vo
lt
age
S
ourc
e I
nv
e
rter
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Impr
oved Fi
el
d
-
or
ie
nte
d
C
ontrol for
PWM
Multi
-
le
vel
In
ve
rte
r
-
f
ed In
duct
ion …
(
D. L.
M
on Nzo
ngo
)
487
The
resu
lt
s
s
ho
wn
i
n
Fi
gure
6
and
Fig
ur
e
7
ar
e
the
dy
nam
ic
respo
ns
es o
f
fl
ux,
sync
hro
no
us
c
urren
t
com
po
ne
nts
a
nd
t
orq
ue
ob
ta
ined
durin
g
a
ste
p
cha
nge
in
the
loa
d
to
rque
at
0.1
s
f
rom
0
em
T
to
0
/2
em
T
.
In
Figure
6,
the
r
esults
wer
e
obt
ai
ned
w
he
n
co
ns
ide
rin
g
the
conve
ntion
al
ap
proac
h
represe
nted
in
Fig
ure
4.
Th
e
tor
qu
e
dist
urba
nce
a
ppeare
d
a
t
0.1s
has
di
rec
tl
y
influ
enc
ed
the
tra
ns
ie
nt
sta
te
s
of
r
otor
flu
x
(
c
r
d
r
d
fl
)
and
the
two
sync
hrono
us
c
urre
nt
com
pone
nts
(
,
cc
s
d
s
q
ii
)
and
al
so
t
he
em
it
t
ed
to
r
qu
e
c
em
T
.
This
be
ha
vio
r
s
hows
how
al
l
the
par
am
et
ers
are
influ
e
nce
d
by
the
disturb
ance
of
load
t
orq
ue
ap
pear
e
d
in
q
-
axis
.
As
con
cl
ud
e
d,
th
e
axes
are stil
l co
up
le
d.
In
Fig
ur
e
7,
t
he
sugg
est
e
d
a
ppr
oac
h
was
co
ns
ide
red.
T
he
sam
e
distur
bance
occ
urred
at
0.1s
do
es
no
t
c
ha
ng
e
the
be
hav
i
or
of
th
e
ro
t
or
flu
x
(
p
r
d
r
d
fl
)
and
the
c
urre
nt
locat
ed
i
n
d
-
a
xis
(
c
sd
i
)
as
pr
e
viously
.
Bu
t
in
the
sam
e
tim
e,
the
dynam
ic
beh
a
vior
of
the
cu
rr
e
nt
in
the
q
-
axis
(
p
sq
i
)
and
the
em
it
te
d
(
p
em
T
)
tor
qu
e
a
r
e
obviously
aff
e
ct
ed
an
d
ha
ve
kep
t
the
sam
e
beh
a
vior
as
in
Figure
6.
Th
us,
the
dec
oupli
ng
is
ac
hieve
d.
The
tor
qu
e
is the
n
c
on
t
ro
ll
ed
whil
e the
flu
x
is
kept
at the init
ia
l v
al
ue.
4.
MU
LT
I
-
LE
V
EL
IN
VE
RTE
RS
F
OR HI
G
H PO
WER E
LE
CTRIC
D
RIV
E
S
YS
TE
MS
Figure
8
re
pr
es
ents
syst
em
a
ti
c
topolo
gies
of
m
ul
ti
-
le
vel
inve
rter
avail
a
ble
in
industry.
Figure
8a
is
a
diag
ram
of
three
-
le
vel
neu
t
ral
point
cl
am
ped
(
NP
C)
supp
ly
in
g
a
high
-
pow
er
in
duct
ion
m
oto
r
.
T
he
NP
C
inv
e
rter
is
it
sel
f
supp
li
ed
t
hroug
h
a
twel
ve
-
pulse
unc
on
t
r
olled
recti
fier
associat
ed
to
a
sh
ifte
d
t
hr
ee
-
ph
a
se
trans
form
er.
Each
le
g
of
N
P
C
inv
erte
r
is
c
on
sti
tute
d
of
f
our
isolat
e
d
ga
te
base
tra
ns
ist
or
s
(IGBTs
)
a
nd
t
w
o
cl
a
m
pin
g dio
de
s [21
-
23
]
.
Figure
8.b
is
a
nin
e
-
le
vel
casc
aded
H
-
bri
dge.
It
is
const
it
uted
of
f
our
m
odul
es
of
H
-
br
i
dg
e
inv
e
rter
connecte
d
in
s
eries.
Eac
h
m
od
ule
is
s
upplie
d
by
a
t
hr
ee
-
phase
recti
fier.
The
recti
fiers
of
eac
h
H
-
bri
dge
are
separ
at
el
y
sup
plied
to
t
he
el
ect
ric
gr
i
d
thr
ough
a
s
hifted
m
ul
ti
-
wind
i
ng
trans
form
er.
The
s
witc
hing
s
ta
te
s
of
the
H
-
br
i
dg
e
c
el
l
can
be
fou
nd
in
[1
]
,
[
21
-
23
]
.
A
fu
ll
H
-
br
i
dg
e
cel
l
of
each
le
g
pro
vi
des
three
le
vels
of
vo
lt
age
(e.
g.
-
1,
0,
1
)
as
th
ree
three
-
le
vel
N
P
C.
Nine
-
le
vel
vo
lt
age
is
obta
ined
by
co
ns
ec
utively
co
nn
ec
ti
ng
in
serial
the
par
ti
al
H
-
br
i
dg
e
cel
ls of each
leg.
The
vo
lt
age
po
sit
ion
is
obta
in
ed
f
ro
m
the
vo
lt
ages
V
an
d
V
(see
Figure
1).
I
n
gen
e
ral,
the
t
otal
ou
t
pu
t
volt
age
po
sit
io
n
that
can
be
ge
ne
rated
by
a
m
ulti
-
le
vel
inv
erte
r
is
ob
ta
ine
d
by
3
()
s
p
l
eve
l
Vn
.
W
he
re
l
e
v
e
l
n
is
the
inv
erte
r
nu
m
ber
of
the
le
vel.
If
l
e
v
e
l
n
is
respec
ti
vely
three
-
le
vel
an
d
nin
e
-
le
vel,
the
possi
ble
ou
t
pu
t
vo
lt
age
po
sit
io
ns
a
re
res
pecti
vely
27
a
nd
729.
The
volt
age
posit
ion
can
be
re
pr
ese
nted
i
n
fr
am
e.
It
is
us
e
d
to
deter
m
ine
the
switc
hing
instan
ce
of
m
ulti
-
le
vel
inv
erte
r,
as
well
as
the
co
rr
es
pondin
g
s
witc
hing
dev
ic
es
t
o
tu
rn
‘on’
or
‘
off’.
The
s
patia
l
ve
ct
or
of
th
ree
a
nd
nin
e
-
le
vel
i
nv
e
rters
a
re
s
how
n
in
Fig
ur
e
9a
an
d
Figure
9b. Fr
om
these figur
es
, it can
be
c
onc
lud
e
d
that t
he nine
-
le
vel in
ve
rter is m
or
e c
om
plex
to contr
ol tha
n
the th
ree
-
le
vel.
(a)
(b)
Figure
8. Mult
i
-
le
vel
I
nverter
Top
ologies
: (a
)
N
eutral
Po
i
nt
Cl
a
m
ped
(NP
C), (b
)
Se
ries
-
c
onnected
H
-
br
i
dg
e
(
C
H
B)
IM
G
r
i
d
2
V
dc
2
V
dc
1
S
a
2
S
a
3
S
a
4
S
a
1
S
b
2
S
b
3
S
b
4
S
b
1
S
c
2
S
c
3
S
c
4
S
c
30
o
Y
Y
IM
C
e
ll
xa
C
e
l
l
yb
C
e
l
l
zc
v
xa
v
yb
v
zc
1
,
2
,
3
,
4
x
1
,
2
,
3,
4
y
1
,
2
,
3
,
4
z
a
b
c
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
481
–
492
488
Figure
9. S
pac
e
Vecto
r
Re
pr
e
sentat
ion
of
O
utput
V
oltage
of
Mult
i
-
le
vel
Inver
te
r
.
(a)
T
hr
ee
-
le
vel,
(b)
Nine
-
le
vel.
T
he
m
ini
m
u
m
DC
-
li
nk
vo
lt
ag
e re
qu
iri
ng b
y
m
ul
ti
-
le
vel inverte
r
is
obta
ine
d from
the d
esi
red o
utput l
ine
to
li
ne
volt
age
(
l
l
r
m
s
V
).
It can be calc
ul
at
ed
as:
1
2
1
n
d
c
l
l
r
m
s
l
e
v
e
l
VV
n
(
17
)
wh
e
re
n
dc
V
is
DC
-
li
nk
volt
age,
l
l
r
m
s
V
is
li
ne
to
li
ne
vol
ta
ge
of
in
du
ct
i
on
m
oto
r
w
hich
re
pr
e
sents
t
he
m
axi
m
al
vo
lt
age
that
ca
n
be
ge
ner
at
e
d
by
t
he
m
ulti
-
le
vel
in
ver
te
r.
I
n
t
he
case
of
t
hr
ee
an
d
ni
ne
-
l
evel
in
ver
te
rs
sh
ow
n
in
Fig
ure
6
an
d
Fi
gure
7
a
nd
co
ns
ide
rin
g
th
e
inducti
on
m
oto
r
li
ne
to
li
ne
vo
lt
age
eq
ual
t
o
4.
16
l
l
r
m
s
V
k
V
the
m
ini
m
u
m
dc
-
li
nk
vo
lt
age
is
r
especti
vely
3
5883
L
N
P
C
dc
VV
an
d
3
1470
L
N
P
C
dc
VV
.
Thus,
the
DC
-
li
nk
volt
ag
e
of the m
ulti
-
le
vel in
ver
te
r de
creases
w
hen the
nu
m
ber
of level
inc
reases.
4
.
1
.
Pr
inci
ple
of carrier
ba
s
ed sp
ace
vecto
r pulse wi
de
mod
ul
at
i
on
f
or
multi
-
le
vel inver
ter
Figure
10. B
as
ic
Bl
ock
Diag
r
a
m
of
CB
-
SVP
WM
Mo
dula
ti
on Strate
gy
A
car
rier
base
d
s
pace
vector
pulse
-
width
-
m
od
ulati
on
(CB
-
SVP
W
M
)
re
pr
ese
nted
in
Fi
gure
10
i
s
an
eq
uiv
al
e
nc
y
of
sp
ace
ve
ct
or
pulse
-
widt
h
m
od
ulati
on
(S
VPWM
)
[1,23].
The
pr
in
ci
ple
of
CB
-
S
VPWM
consi
sts
to
gen
erate
1
l
e
v
e
l
N
carrier
wav
e
s
and
to
com
par
e
them
at
each
tim
e
to
a
se
t
of
three
-
phase
m
od
ulati
ng
volt
age
*
*
*
,,
a
b
c
m
m
m
.
These
c
arr
ie
rs
are
ve
r
ti
cal
ly
ph
ase
s
hifted
,
a
nd
ar
e
dispose
d
i
n
con
ti
nues
bands
ar
ound
the
ref
e
re
nce
zero.
The
res
ults
of
the
com
par
iso
n
are
then
decode
d
an
d
optim
iz
ed
in
order
t
o
gen
e
rate
the
c
orrect
gate
si
gnal
s
(CBP
WM
pr
i
nciple)
.
W
i
th
the
in
duct
io
n
m
o
tor,
wh
e
r
e
the
ne
utral
point
is
floati
ng,
a
zer
o
-
seq
ue
nce
com
pone
nt
z
V
can
be
cal
culat
ed
fro
m
the
m
od
ulati
ng
th
ree
-
phase
sign
al
s
an
d
a
dded
to
the
sam
e
s
ign
al
to
def
i
ne
the
m
od
ifie
d
re
fer
e
nce
*
*
*
*
*
*
,,
a
b
c
m
m
m
.
Ther
e
fore
the
ne
w
com
par
iso
n
res
ul
t
gen
e
rates
the
correct
gate
sign
al
s
c
onform
to
CB
-
SV
P
W
M
m
od
ulati
on.
The
m
od
ulati
on
in
de
x
M
and
the
fr
e
qu
e
ncy
in
de
x
f
M
are
de
fine
d
by
eq
uations
(
18
)
a
nd
(
19
)
.
T
he
zer
o
-
seq
ue
nc
e
com
po
ne
nt
is
def
ine
d
by
the
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Impr
oved Fi
el
d
-
or
ie
nte
d
C
ontrol for
PWM
Multi
-
le
vel
In
ve
rte
r
-
f
ed In
duct
ion …
(
D. L.
M
on Nzo
ngo
)
489
equ
at
io
n
(
20
)
.
c
A
,
c
f
are
res
pecti
vely
the
am
pli
tud
e
a
nd
f
re
quency
of
the
ca
rr
ie
r
volt
age
of
the
ref
e
re
nc
e
vo
lt
age
co
m
ing
from
the F
O
C si
de (Fig
ur
e
1).
The
wav
e
form
s
of
CB
-
SVP
WM
ge
ner
at
e
d
us
in
g
Sim
ulink
com
m
on
bloc
ks
a
nd
Ma
tl
ab
e
m
bed
de
d
functi
on
blo
c
ks are
show
n i
n Fi
gure
11.
*
m
c
A
M
A
(
18
)
c
f
cm
f
M
f
(
19
)
*
*
*
*
*
*
m
a
x
(
)
m
in(
)
2
a
b
c
a
b
c
z
m
m
m
m
m
m
V
(
20
)
*
*
*
*
*
*
*
*
*
,,
a
a
z
b
b
z
c
c
z
m
m
v
m
m
v
m
m
v
(
21
)
The
wav
e
form
s
of
CB
-
SVP
WM
ge
ner
at
e
d
us
in
g
Sim
ulink
com
m
on
bloc
ks
a
nd
Ma
tl
ab
e
m
bed
de
d
functi
on
bl
oc
ks
are
s
how
n
i
n
Figure
11.
Fig
ure
11a
a
nd
Fig
ure
11
b
are
m
ult
i
-
carrier
an
d
re
fer
e
nces
wavef
or
m
s
gen
e
rated
f
or
t
hr
ee a
nd
nin
e
-
le
vel in
ver
te
r
. T
hey are
outp
ut
vo
lt
age
of th
re
e an
d
ni
ne
-
le
ve
l i
nv
erte
r
to
polog
ie
s
config
ur
e
d
a
s
i
n
Fi
gure
8.
T
he
res
ults
obta
ine
d
in
Fig
ure
11a
an
d
Fi
g11c
ar
e
eq
uiv
al
e
nt
to
those
o
btaine
d
with
SV
P
WM
in
t
he
li
te
ratur
e.
W
hile
tho
se
obta
ined
in
Fig
ur
e
11b
a
nd
Fig
ure
11d
a
re
kn
own
as
CB
P
WM.
The
inv
e
rter
with
ni
ne
-
le
vel
ge
ne
r
at
es
ou
tp
ut
volt
age
wav
e
f
or
m
s
cl
os
e
to
the
sine
ref
e
ren
c
e.
So
,
le
ss
ha
rm
on
ic
s
are
pro
pag
at
e
d
in
the
winding
s
of
the
i
nduction
m
oto
r.
It
con
si
der
a
bl
y
red
uces
power
los
ses
ins
ide
the
inducti
on m
oto
r
a
nd cables a
s
well
as the
to
rque
rip
ples.
Figure
11. Ge
ner
at
io
n of
Wa
vefor
m
s
of CB
-
SVP
W
M
. (
a
)
-
(b): car
rier a
nd
r
efe
re
nce sign
al
o
f
thr
ee
a
nd
nin
e
-
le
vel inverte
r
. (c)
-
(
d)
:
ph
a
se a
volt
age
o
f
th
re
e an
d nine
-
le
ve
l i
nv
e
rter
5.
SIMULATI
O
N RESULTS
To
ve
rify the prop
os
ed deco
upli
ng
c
urre
nt co
nt
ro
l sch
em
e,
Si
m
Po
werSy
stem
s too
lbox has been
use
d
to
im
ple
m
ent
a
4.16
kV
in
duct
ion
m
oto
r
su
ppli
ed
by
a
nin
e
-
le
vel
C
HB
in
ver
te
r
.
The
decou
pled
current
con
t
ro
ll
ers
pr
e
viously
desig
ne
d
an
d
sim
ulated
ha
ve
bee
n
use
d
to
this
sim
ulati
on
.
T
he
C
B
-
SVP
W
M
ha
s
been
i
m
ple
m
ented
as p
r
ese
nte
d
ab
ov
e
. T
he
w
hole
d
ri
ve
has bee
n
co
nfi
gure
d
a
s shown in
Fig
ur
e
1.
T
he par
a
m
et
ers
of the m
oto
r a
r
e k
e
pt as sh
own
in
Ta
ble I
.
As
it
has
been
m
entioned,
th
e
m
ai
n
ob
j
ect
i
ve
of
this
si
m
ulati
on
is
to
com
par
e
the
two
dec
oupli
ng
current
co
ntr
ol
ap
proac
hes
duri
ng
a
ste
p
c
hange
i
n
t
he
l
oad
to
rque
at
0.1s
from
to
.
And
t
he
com
par
ison
is
then
achieve
d
by
obser
ving
the
transie
nt
of
the
ro
to
r
flux
com
pone
nt
(
rd
c
,
p
rd
)
an
d
el
ect
ro
m
agn
et
ic
torq
ue
(
em
c
T
,
p
em
T
)
as
sh
ow
n
in
Fi
g
ur
e
12.
0
em
T
0
/2
em
T
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
481
–
492
490
Figure
12. Si
m
ula
ti
on
c
om
par
iso
n of co
nv
entional
(
.
c
)
and
pro
pose
d
(
.
p
)
decou
pled
current c
ontr
oller
for
F
OC
of in
duct
ion m
oto
r
s
upplied
by
m
ulti
-
le
vel
inv
e
rter. (a)
Ro
tor flu
x
(
c
rd
,
p
rd
)
, (
b)
el
ect
ro
m
agn
et
ic
tor
qu
e
(
c
T
e
m
,
p
T
e
m
)
,
(c) r
otati
ng
sp
ee
d
(
c
r
n
,
p
r
n
)
,
(
d)
()
r
T
e
m
f
n
.
Figure
13. S
im
ulati
on
c
om
pari
so
n o
f
c
onve
nt
ion
al
(
)
an
d pro
po
se
d
(
)
dec
oupled
current c
ontr
oller
for
F
OC. (a
) d
-
axis stat
or c
urr
ent
(
c
sd
i
,
p
sd
i
),
(
b)
q
-
ax
is
sta
tor
c
urren
t
(
c
sq
i
,
p
qd
i
)
, (
a
) d
-
a
xis st
at
or
volt
age
(
c
sd
V
,
p
sd
V
)
, (b
) q
-
a
xis sta
tor
c
urre
nt
(
,
)
Be
cause
of
the
co
ntr
ol
pr
inci
ple,
sta
to
r
c
urr
ent
c
om
po
ne
nts
in
sync
hrono
us
fr
am
e
(
Fig
ure
13
a
a
nd
Figure
13b)
ha
s
bee
n
m
easure
d
for
eac
h
cas
e,
a
nd
are
note
d
(
c
sd
i
,
c
sq
i
)
f
or
the
co
nv
e
ntio
nal
a
ppro
ac
h
a
nd
(
p
sd
i
,
p
sq
i
)
f
or
the
pr
opose
d
a
ppr
oach.
In
the
s
am
e
m
ann
e
r
t
he
vo
lt
a
ge
c
om
po
ne
nts
in
sy
nchr
onou
s
f
ram
e
(
c
sd
v
,
c
sq
v
)
and (
p
sd
v
,
p
sq
v
)
ha
ve b
een als
o
m
easur
ed
and a
re
represente
d
in
Fig
ur
e
13c a
nd
Fi
gure
13
d.
The
co
rr
es
pondin
g
three
-
pha
se
and
cu
rr
e
nt
of
sync
hrono
us
cu
rr
e
nt
an
d
vo
lt
age
are
m
easur
ed
thr
ough
the
w
ind
in
gs
of
a
4.1
6kV
in
duct
ion
m
oto
r
a
nd
are
re
pr
ese
nte
d
res
pecti
vely
in
Figure
14a
-
b
a
nd
Figure
15a
-
b.
Finall
y,
dyna
m
ic
value
of
current
pc
i
a
s
a
s
a
ii
and
vo
l
ta
ge
pc
v
a
s
s
a
s
a
vv
com
pen
s
at
ion
ha
s
resp
ect
ively
be
en
rec
orde
d
as
show
n
in
Figure
14c
a
nd
Fig
ur
e
15c.
Ob
se
r
ving
th
ese
fig
ur
es
,
f
ol
lowing
con
cl
us
io
ns
c
an
be
m
ade:
(1)
the
propo
sed
a
ppr
oach
eff
ect
ively
de
couples
t
he
flux
to
t
he
t
orqu
e
by
m
ai
ntaining
t
he
curre
nt
p
sd
i
inv
a
riant du
rin
g
th
e
var
ia
ti
on
of
t
he
load to
rque.
This
ca
n
be
se
en
t
hroug
h
Fi
gure
12a an
d
Figure
13b;
(
2) w
he
n
t
he
dec
ouplin
g
is
ac
hieved, only
the
d
-
a
xis
cu
rr
e
nt
and
fl
ux
are
di
ff
e
ren
t
to
the
value
obta
ine
d
us
ing
the
c
onven
ti
onal
ap
proach.
This
m
e
ans
the
tor
qu
e
em
itted,
ro
ta
ti
ng
sp
e
ed
are
the
sa
m
e
fo
r
both
m
et
ho
d
(
Fig
ure
12
an
d
Fig
ur
e
13);
(3)
in
a
-
b
-
c
pc
i
a
s
a
s
a
ii
in
Fig
ure
14
c
and
pc
v
a
s
s
a
s
a
vv
prov
e
the
co
ntributi
on
i
n
te
rm
of
cu
rrent
a
nd
volt
ag
e
of
t
he
su
ggest
e
d
a
ppr
oach.
.
c
.
p
c
sq
i
p
qd
i
Evaluation Warning : The document was created with Spire.PDF for Python.