Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 1, No. 3,
March 20
16, pp. 512 ~ 5
2
2
DOI: 10.115
9
1
/ijeecs.v1.i3.page
s
512
Re
cei
v
ed O
c
t
ober 2
4
, 201
5; Revi
se
d Ja
nuar
y 24, 20
1
6
; Acce
pted
February 10,
2016
Elucidation of Various PWM Techniques for a Modified
Multilevel Inverter
C.R. Balam
u
rugan*, S.P.
Nat
a
rajan, R.
Bensr
a
j
Aruna
i Engi
ne
erin
g Col
l
eg
e
T
i
ruvannama
l
a
i
, India
e-mail: crb
a
la
in
201
0@gm
ail.c
o
m
A
b
st
r
a
ct
T
h
is p
aper
foc
u
ses
on
hybr
i
d
H-
brid
ge c
a
scade
d MLI
u
s
ing
tw
o eq
ual
dc s
ources
i
n
ord
e
r to
prod
uce a fiv
e
-level
outp
u
t. T
he prop
ose
d
topol
ogy re
du
ces the nu
mb
er of dc sourc
e
s an
d sw
itching
ele
m
ents. T
h
is paper e
m
ph
a
s
is on vari
ous
inverte
d
sine c
a
rrier PW
M (ISCPW
M) techniq
ues w
i
th eq
ual
amplit
ude
a
n
d
un
eq
ual
a
m
pl
itude
carri
ers.
T
he i
n
ve
rte
d
s
i
ne
carri
er p
u
l
s
e w
i
dth
mod
u
l
atio
n (ISCPW
M)
techni
qu
e en
h
ances th
e fun
d
a
m
e
n
tal o
u
tp
ut voltag
e part
i
cular
l
y at low
e
r mo
du
latio
n
ind
e
x ran
ges
w
i
th
reducti
on
in tot
a
l h
a
r
m
o
n
ic
dis
t
ortion (T
HD)
a
nd sw
itchi
ng
lo
sses. Si
mul
a
tio
n
is
perfor
m
e
d
usin
g MAT
L
AB
-
Simuli
nk. F
r
om the si
mul
a
tio
n
it is observ
ed t
hat va
ri
abl
e a
m
p
litu
de i
n
vert
ed si
ne carr
ier
varia
b
le fre
q
u
e
ncy
(VAISCVF
) strategy prov
id
es
output w
i
th relativ
e
ly low
d
i
stortion fo
r a
l
l
strategies. It is also se
en t
hat
varia
b
le a
m
p
lit
ude inv
e
rted
s
i
ne
c
a
rrier ph
a
s
e
dis
pos
iti
on
(VAISCPD) is
found t
o
p
e
rfo
r
m b
e
tter for
all
strategies si
nc
e it provid
es rel
a
tively
h
i
gh
er fund
a
m
ent
al R
M
S output volt
age.
Ke
y
w
ords
: THD, CMLI, PWM
,
CF,
FF,
ISC
1. Introduc
tion
Multi-level in
verters have
become a
n
effect
ive an
d pra
c
tical solution for i
n
cre
a
si
ng
power
and
re
duci
ng h
a
rm
onics of A
C
waveforms.
By synthesi
z
i
ng the A
C
o
u
t
put voltage f
r
om
several levels of DC voltag
es, stai
rcase output
wavef
o
rm can be p
r
odu
ce
d. Rod
r
igue
z et al [1]
have introdu
ced a
su
rvey
of mu
ltilevel i
n
verters to
po
logie
s
, co
ntro
ls, an
d ap
plications. A
nov
el
PWM sche
m
e
to eliminate
commo
n mo
de voltage
s
in cascaded multi-leve
l inv
e
rters p
r
e
s
en
ted
by wan
g
et al
[2]. Aghdam
et al [3] ma
d
e
a a
nalysi
s
on vari
ou
s m
u
lti-ca
rri
er P
W
M m
e
thod
s for
asymmet
r
ic
multi-level inv
e
rter. So
ng et
al [4]
deal
s
with casca
d
e
d
multilevel in
verter e
m
ploy
ing
three
-
ph
ase tran
sform
e
rs
and si
ngle d
c
input. A sinu
soid
al PWM
method
with voltage bala
n
cing
cap
ability for diode
-cl
a
mp
ed five-level
conve
r
ters
p
r
ese
n
ted by
Pan et al [5]. Zhao et al
[6
]
prop
osed a
n
o
vel PWM
co
ntrol meth
od
for hybri
d
-c
la
mped m
u
ltile
vel inverters.
Dixon et
al [7]
prop
osed
a a
s
ymmetri
c
al
multilevel inv
e
rter for tr
a
c
tion d
r
ives u
s
i
ng o
n
ly on
e
dc
su
pply. A
new
topology of cascad
ed mult
ilevel conve
r
t
e
rs
with
redu
ced n
u
mb
er o
f
compo
nent
s for high
-volta
ge
appli
c
ation
s
i
n
trodu
ce
d by
Ebrahimi et
al [8].
Abdalla et al [9] developed a m
u
ltilevel DC-li
n
k
inverter. Di
stributed contro
l of a fault-tolerant mo
dul
ar multilev
e
l
inv
e
rter fo
r d
i
rect
-driv
e
wi
nd
turbine
gri
d
i
n
terfaci
ng int
r
odu
ce
d by p
a
rker
et
al [1
0]. Youngho
o
n
Ch
o et al [
11] develo
p
e
d
a
carrie
r-ba
sed
neutral volt
age mo
dulati
on strat
egy for multilevel
casca
ded i
n
verters un
d
e
r
unbal
an
ced d
c
sou
r
ces. M
u
rali et
al
[1
2]
made
a
de
si
gn a
nd a
naly
s
is of voltage
so
urce i
n
vert
er
for rene
wabl
e ene
rgy a
p
p
licatio
ns.
Ja
maludin
et
al
[13] propo
sed a
multilevel voltage
so
urce
inverter
with
optimize
d
u
s
age of bidi
re
ctional switch
e
s
. Gab
r
iel et
al [14] introd
uce
d
a five-le
v
el
multiple-pole
pwm ac
–
a
c
conve
r
ters wi
th
re
duced co
mpone
nts co
unt.
Lim
et al
[15] su
gge
ste
d
a modula
r
-cel
l inverter em
ploying re
duced flying cap
a
citors with h
y
brid pha
se
-shifted. Rasilo
et
al [16] p
r
opo
sed an
effect
o
n
multilevel in
verter
sup
p
ly
on core lo
sse
s
in
magn
etic material
s
an
d
electri
c
al
ma
chin
e. Re
ddy
et al [17]
de
veloped
an
e
m
bedd
ed
co
n
t
rol for
a n
-L
evel DC –
DC –
AC Inverter.
The main
pu
rpo
s
e of this work is
to redu
ce
the co
mpone
nts
in hybrid H-b
r
id
ge
multilevel inverters which
have bee
n d
e
velope
d to
increa
se n
u
m
ber of outp
u
t voltage levels
usin
g le
ss nu
mber of
semi
con
d
u
c
tor
switche
s
.
Simul
a
tion results
are
presente
d
to validity t
he
prop
osed st
ra
tegies.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 512 – 522
513
2. Toplog
y
and Opera
t
io
n
Figure 1 illust
rates cascaded Hybrid
H-bridge
multilevel inverter.
As shown in
Figure 1,
the multilevel inverter con
s
ists of six DC volt
age sou
r
ce
s and fiftee
n
swit
che
s
. T
he co
nfiguration
and the prin
ciple of operat
ion of the propo
sed
inve
rter have bee
n pre
s
ente
d
. One swit
chi
ng
element
and
four diod
es
adde
d in
the
co
nventio
n
a
l
full-b
r
idg
e
in
verter
are
co
nne
cted to
the
cente
r-ta
p
of dc po
we
r su
p
p
ly.
3. The Proposed Multilevel In
v
e
rter
In multilevel inverters, the
desi
r
ed
outpu
t volt
age is a
c
hieve
d
by suitable combi
nation of
multiple lo
w
dc voltag
e source
s u
s
ed
at the input
side. Th
e mo
st impo
rtant
part in multil
evel
inverters i
s
switches which defin
e the
reliability, ci
rcuit si
ze,
co
st, install
a
tion
area and control
compl
e
xity. To p
r
ovide
a
larg
e nu
mb
er of
output
levels
witho
u
t increa
sin
g
the nu
mbe
r
o
f
bridg
e
s, a ne
w modified cascad
ed hybrid H-b
r
idg
e
symmetrical m
u
ltilevel conv
erter i
s
pro
p
o
s
ed
in this
pape
r.
Table
1 di
sp
lays the va
rio
u
s p
o
ss
ibl
e
switchi
ng
states of th
e p
r
o
posed inve
rte
r
.
Table 2 sho
w
s the co
mpa
r
i
s
on b
e
twe
en
ca
scade
d ML
I and prop
ose
d
topology.
R LO
A
D
D
3
D
4
S
1
S
3
S
4
S
2
V
dc
V
dc
D
1
S
a
R LOA
D
D
3
D
4
D
2
S
1
S
3
S
4
S
2
V
dc
V
dc
D
1
S
a
R LO
A
D
D
3
D
4
D
2
S
1
S
3
S
4
S
2
V
dc
V
dc
D
1
S
a
D
2
Figure 1. Sch
e
matic of cho
s
en three ph
a
s
e,
five level modified cascaded hyb
r
id
H-b
r
id
ge
inverter
Table 1. Voltage ou
put an
d swit
chin
g st
ates
Vphase a
S
a
S
1
S
2
S
3
S
4
2V
dc
0 1
1 0 0
V
dc
1 0
0 0 0
0
0 0
0 0 1
-V
dc
1 0
1 0 0
-2V
dc
0 0
0 1 1
Table 2. Co
m
pari
s
on b
e
tween existin
g
system and p
r
opo
sed
syste
m
Ty
p
e
Conventional
CMLI
Chosen h
y
brid H
-
bridge cascaded
inver
t
er
No. of s
w
itches
24
15
No. of clamping diodes
24
15
No. of DC sour
ces
6
6
4. Modulatio
n Schemes
There a
r
e m
a
ny cont
rol te
chniqu
es
empl
oyed fo
r multi
l
evel inverte
r
s. Fo
r controll
ing the
output voltag
e, one of the method
s is Sinusoidal PWM method. In
this method, a fixed DC in
put
voltage is ap
plied to the inverter an
d ge
t a c
ontrolle
d AC output voltage
by adjusting the ON a
n
d
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Elucidatio
n of Variou
s PWM Tech
niqu
e
s
for a Modifi
ed Multilevel Inve
rter
(C.R.
Balam
u
ruga
n
)
514
OFF p
e
ri
od
s of the i
n
verter po
we
r se
mico
ndu
ctor devi
c
e
s
. The
sin
u
so
idal p
u
lse
width
modulatio
n i
s
ap
plied in
the pro
p
o
s
ed
inverter
sin
c
e it ha
s va
riou
s
adva
n
tage
s over
other
techni
que
s. T
h
is techniq
u
e
eliminate
s
lo
w order
harm
onics in o
r
de
r to red
u
ce the disto
r
tion
in
the output vol
t
age. In this p
aper
an invert
ed sin
e
wave
(ISCPWM
)
o
f
high switchi
ng freq
uen
cy is
taken a
s
a carri
er wave a
nd is co
mpa
r
ed with that of the referen
c
e si
ne wave
. The pulse
s
are
gene
rated
wheneve
r
the
amplitude
of
the
referen
c
e sin
e
wav
e
is
g
r
eate
r
than
that of the
inverted sine carrie
r
wave. The
nu
mbe
r
of
ca
rrie
r
s
re
quire
d to p
r
o
duce the m l
e
vel output is
m-1.
The inve
rted
sine P
W
M
has
a better spe
c
tral
quality and
a highe
r fun
damental vol
t
age
comp
ared to the triang
ular
based PWM. The in
verted
sine
carrie
r PWM (ISCP
W
M) method u
s
es
the sine
wav
e
as refere
nce sign
al whil
e the ca
rrie
r
sign
al is an i
n
verted (high
freque
ncy)
sine
carrie
r that helps to maxi
mize the outp
u
t voltage for a given modu
lation index.
This
work u
s
es
six differe
nt modulatio
n st
rate
gie
s
that all well
known ca
rri
ers ba
sed
multilevel PWM strategi
es
as de
scrie
d
b
e
low:
A. In
v
e
rted Sine Carrier P
h
ase Dis
pos
ition (ISCPD)
To p
r
od
uce
a five-level
o
u
tput, this P
W
M
st
rate
gy
uses only
f
our ca
rri
ers, all
these
carrie
rs have
the same
am
plitude, fre
q
u
ency
and
p
h
a
s
e. Sin
c
e
all
carrie
rs a
r
e
selecte
d
with t
h
e
same
ph
ase.
The P
D
PWM
sign
al g
eneration fo
r modul
ation
index m
a
= 0.8
is sho
w
n
in
Figure 2.
Figure 2. Modulating a
nd
carrie
r wa
vef
o
rm
s for ISCPDPWM
strat
egy (m
a
= 0.8
and m
f
= 4
0
)
B. In
v
e
rted Sine Carrier
Alterna
t
e Pha
se Oppo
sitio
n
Dispositio
n (ISCAPO
D
)
The APODP
WM si
gnal
g
eneration for
m
a
= 0.8 is
shown in Figu
re 3. Here
we pre
s
e
n
t
four
i
n
verted
sine
carrie
rs with
o
ne sin
e
referen
c
e
for
a five level inver
t
er
.
In this
method carriers
are
seem
to
be inve
rting
their pha
se
in
turn
s f
r
om
p
r
eviou
s
one
and th
e
sam
e
p
r
o
c
ed
ure
is
repe
ated bel
ow the zero a
v
erage level
s
. All thes
e ca
rrie
r
s h
a
ve the same a
m
pli
t
ude, freque
n
c
y,
and ph
ase.
Figure 3. Modulating a
nd
carrie
r wave
f
o
rm
s for ISCAPODPWM
strategy (m
a
=
0.8 and m
f
= 40)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 512 – 522
515
C. In
v
e
rted Sine Carrier V
a
riable Frequenc
y
(ISCVF)
The n
u
mb
er
of switchi
n
g
s
for u
ppe
r
an
d lo
wer devi
c
es
of cho
s
en
MLI i
s
mu
ch
more
than that of intermedi
ate swit
che
s
. This me
th
od
is having
con
s
tant am
plitude con
s
tant
freque
ncy. It i
s
n
a
me
d a
s
v
a
riabl
e frequ
ency P
W
M. T
he VFP
W
M
signal
gen
erati
on fo
r m
a
=
0.8
is sh
own in Figure 4.
Figure 4. Modulating a
nd
carrie
r wa
vef
o
rm
s for ISCVFPWM strategy
(m
a
= 0.8 and
m
f
= 40 for lo
wer a
nd up
pe
r switche
s
an
d m
a
= 0.8 an
d m
f
=
80 for intermediate
swit
che
s
)
D. Variable Amplitude ISCPD (V
AISCPD)
In this meth
od is
same
as PD b
u
t varying am
plitude, so it is named a
s
Variabl
e
Amplitude. It provide
s
lo
wer total h
a
rmonic
disto
r
tion and
relati
vely higher f
undam
ental
RMS
voltage, whil
e comp
ari
n
g
to PDPWM techni
que. T
he ca
rri
er a
r
rangem
ent for this strate
gy is
s
h
ow
n
in
F
i
gu
r
e
5
.
Figure 5. Modulating a
nd
carrie
r wa
vef
o
rm
s for VAISCPDP
W
M strategy (m
a
=
0.8 and m
f
= 40)
E. Variable Amplitude ISCAPOD
(VAIS
CAPOD)
Carrier arrangement for V
AAPODP
WM s
t
rategy is
shown in Fi
gure 6. It s
eems
that four
carrie
rs
gen
e
r
ated fo
r a five level invert
er, is di
vid
e
d
into two g
r
o
ups
acco
rdin
g to the po
sit
i
ve
and neg
ative average lev
e
ls. This sch
e
me is si
mil
a
r to the VAPDPWM
strate
gy but the two
grou
ps a
r
e p
hase shifted
by 180 deg
re
e from its adj
ace
n
t one.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Elucidatio
n of Variou
s PWM Tech
niqu
e
s
for a Modifi
ed Multilevel Inve
rter
(C.R.
Balam
u
ruga
n
)
516
Figure 6. Modulating a
nd
carrie
r wavef
o
rm
s for VAISCAPODP
WM strategy
(m
a
= 0.8 an
d
m
f
= 40)
F. Variable Amplitude ISCVF (VAISCV
F
)
In this strate
gy is same
as VF, but am
plitude
so
mewh
at different. All carriers a
r
e
selected in
same phase. It gene
rate five level output. The VAVFPWM si
gnal generation for
m
a
=
0.8 is sh
own in Figure 7.
Figure 7. Modulating a
nd
carrie
r wa
vef
o
rm
s for VAISCVFPWM
strategy (m
a
=
0.8 and m
f
= 40)
5. Simulation Resul
t
s
Simulation st
udie
s
are p
e
rformed by u
s
ing
MATLAB-SIMULINK to
verify the propo
sed
PWM strate
gi
es
fo
r ch
ose
n
three
p
h
a
s
e Hyb
r
id
H- bri
dge
type
ca
scade
five
level invert
er for
var
i
ous
values
of m
a
ran
g
i
ng from 0.6
– 1 and
co
rresp
ondi
ng %THD val
u
e
s
of output voltage
are m
e
a
s
u
r
e
d
usi
ng F
F
T
block
and t
hey are
sho
w
n in
Tabl
e
3. Table
4
shows the
V
RM
S
of
fundame
n
tal
of inverte
r
o
u
t
put for th
e
same m
odul
ation in
dices.
Table
s
5,
6
and
7
sho
w
t
he
Form Fa
cto
r
(FF), Crest
Factor (CF
)
and Di
sto
r
ti
on Facto
r
(DF). Figu
re
s 8-19 sho
w
th
e
simulate
d o
u
tput voltage
o
f
cho
s
e
n
hyb
r
id casc
a
ded
inverter and
the
corre
s
po
n
d
ing F
FT pl
ots
with diffe
rent
strategi
es b
u
t only fo
r
one
sampl
e
val
u
e
of m
a
=0.8 an
d
m
f
=40. Figu
re 8 sho
w
s
th
e
five level output voltage g
enerated by
PDPWM
stra
t
egy and its F
FT plot is sh
own in Fi
gure 9
.
From Fi
gure
9, it is obser
ved that the PDPWM
stra
tegy
prod
uce
s
si
gnificant 9
th
, 30
th
, 31
st
and
40
th
ha
rmo
n
ic ene
rgy. Figu
re 1
0
sho
w
s
the five
level
output voltag
e ge
nerated
by APODPWM
strategy a
n
d
its FFT plot
is s
hown in
Figure 11.
From Fi
gure
11,
it is ob
serve
d
that the
APODPWM
strategy p
r
odu
ce
s
significan
t
3
rd
, 5
th
, 35
th
, 37
th
an
d 3
9
th
harmoni
c e
n
e
rgy. Fig
u
re
12
sho
w
s the
five level
output
voltage
gen
e
r
ated
by
VFP
W
M
strate
gy
and it
s FF
T p
l
ot is
sh
own i
n
Figure 1
3
. F
r
om Fig
u
re 1
3
,
it is
ob
se
rve
d
t
hat th
e VF
PWM
strate
g
y
pro
d
u
c
e
s
si
gnifica
nt 38
th
a
nd
40
th
harmoni
c energy. Figure
14
sh
ows the five lev
e
l output
volt
age generated by VAPDPWM
strategy a
nd i
t
s FFT plot i
s
sho
w
n in
Fig
u
re 1
5
.
Fro
m
Figure 15, it is ob
se
rved th
at the strate
g
y
prod
uces sig
n
ificant
3
rd
, 5
th
and 4
0
th
h
a
rmo
n
ic
ene
rgy. Figure
1
6
sho
w
s the f
i
ve level out
put
voltage generated by VAAPODPWM
strategy and it
s FFT plot is shown in Figure 17. From
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 512 – 522
517
Figure 17, it i
s
o
b
se
rved t
hat the VAA
PO
DPWM st
rategy produ
ces
signifi
cant
3
rd
, 5
th
, 7
th
, 35
th
and 3
9
th
ha
rmonic en
erg
y
. Figure
18
sh
ows the
five level o
u
tput voltage
gene
rate
d
by
VAVFPWM strategy and it
s FFT pl
ot is
shown in
Figu
re 19. From
Figure
19, it is observed t
hat
the VAVFPWM s
t
rategy produc
e
s
s
i
gnific
ant 3
rd
, 5
th
, 38
th
and 40
th
h
a
rmo
n
ic e
nergy.
A. Simulation of ISCPDP
WM Tec
hniq
u
e
Figure 8. Simulated outp
u
t voltage gen
erat
ed by ISCPDPWM te
chni
que for R-lo
a
d
Figure 9. FFT
spe
c
trum fo
r ISCPDPWM t
e
ch
niqu
e
B. Simulation of ISCAPO
D
PWM T
ech
nique
Figure 10.
Simulated outp
u
t voltage ge
nerate
d
by ISCAPODP
WM
techniq
ue for R-loa
d
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Elucidatio
n of Variou
s PWM Tech
niqu
e
s
for a Modifi
ed Multilevel Inve
rter
(C.R.
Balam
u
ruga
n
)
518
Figure 11. FF
T spe
c
tru
m
for ISCAPODP
WM techniqu
e
C. Simulation of ISCVFPWM Tec
hniq
u
e
Figure 12.
Simulated outp
u
t voltage ge
nerate
d
by ISCVFPWM te
chniqu
e for R-l
oad
Figure 13. FFT s
p
ec
trum for ISCVFPWM tec
hnique
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 512 – 522
519
D. Simulation of VAISCP
DPWM T
ech
nique
Figure 14.
Simulated outp
u
t voltage ge
nerate
d
by
VAISCPDPWM techniq
ue for R-loa
d
Figure 15. FF
T spe
c
tru
m
for VAISCPDPWM techniqu
e
E. Simu
lation of VAISCAPODPWM te
chnique
Figure 16.
Simulated outp
u
t voltage ge
nerate
d
by VAISCAPODP
WM techniqu
e for R-l
oad
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Elucidatio
n of Variou
s PWM Tech
niqu
e
s
for a Modifi
ed Multilevel Inve
rter
(C.R.
Balam
u
ruga
n
)
520
Figure 17. FF
T spe
c
tru
m
for VAISCAPODPWM te
chni
que
Figure 18.
Simulated outp
u
t voltage ge
nerate
d
by
VAISCVFPWM
techniq
ue for R-loa
d
Figure 19. FF
T spe
c
tru
m
for VAISCVFPWM techniqu
e
Table 3. % THD of outp
u
t voltage (R-p
h
a
se
) of ch
o
o
sen hybrid
H-b
r
idge M
L
I for variou
s value
s
of m
a
with s
i
ne referenc
e
%T
H
D
m
a
1.0 0.9 0.8
0.7 0.6
ISCPD
33.62
42.57
41.33
42.83
51.18
VAISCPD
30.95
35.25
37.17
38.84
40.41
ISCAPOD
40.18
47.70
45.09
43.59
49.43
VAISCAPOD
35.17
42.79
41.95
45.38
48.24
ISCVF
36.33
42.40
41.74
42.53
51.10
VAISCVF
30.69
35.05
37.33
38.90
39.81
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 512 – 522
521
Table 4. V
RM
S
(funda
mental
) of output voltage (R-p
ha
se)
of ch
oosen
hybrid H-bri
d
ge MLI for
var
i
ous
values
of m
a
with s
i
ne referenc
e
V
RM
S
m
a
1.0 0.9 0.8
0.7 0.6
ISCPD
137.7
124.0
112.3
99.33
85.2
VAISCPD
148.8
139.3
131.2
123.3
115.3
ISCAPOD
130.0
114.7
103.6
93.71
84.24
VAISCAPOD
139.8
127.6
118.5
111.8
104.10
ISCVF
137.4
124.2
112.0
99.38
85.23
VAISCVF
148.6
138.9
131.1
123.6
115.7
Table 5. FF o
f
output voltage (R-p
ha
se)
of choo
se
n h
y
brid H-bri
d
g
e
MLI for vari
ous valu
es of
m
a
with s
i
ne referenc
e
FF
m
a
1.0
0.9 0.8 0.7
0.6
ISCPD 20.737
13.762
11.808
9.92
7.738
VAISCPD
25.52
19.347
16.607
14.437
13.102
ISCAPOD
265.30
157.12
280.0
3123.6
240.68
VAISCAPOD
998.57
425.33
INF
399.28
281.35
ISCVF
19.76
14.210
11.839
10.140
7.76
VAISCVF
26.488
19.26
16.265
14.74
13.22
Table 6. CF
(fundam
ental
) of output voltage (R-
pha
se
) of cho
o
se
n hybrid H-b
r
id
ge MLI for
var
i
ous
values
of m
a
with s
i
ne referenc
e
CF
m
a
1.0
0.9 0.8 0.7
0.6
ISCPD
1.4139
1.4137
1.4140
1.4144
1.4143
VAISCPD
1.4139
1.4134
1.4138
1.4144
1.4145
ISCAPOD
1.4138
1.4141
1.4140
1.4139
1.4138
VAISCAPOD
1.4141
1.4145
1.4143
1.4141
1.4140
ISCVF
1.4148
1.4138
1.4151
1.4147
1.4138
VAISCVF
1.4138
1.4139
1.4141
1.4134
1.4148
Table 7. DF o
f
output voltage (R-p
ha
se)
of choo
se
n h
y
brid H-bri
d
g
e
MLI for vari
ous valu
es of
m
a
with s
i
ne referenc
e
DF
m
a
1.0
0.9 0.8 0.7
0.6
ISCPD 0.5586
0.17
0.3654
0.2782
0.6866
VAISCPD
1.5764
1.7236
1.7305
1.6713
1.633
ISCAPOD
0.4727
0.7454
1.0762
1.109
1.2722
VAISCAPOD
1.2565
1.6692
1.8779
2.0131
2.1278
ISCVF
0.6234
0.2139
0.4059
0.2876
0.6143
VAISCVF 1.5663
1.688
1.7167
1.6622
1.6375
6. Conclusio
n
From
the
sim
u
lation
re
sult
s,
several fea
t
ures of th
e
p
r
opo
se
d m
o
d
u
lation
strate
gy from
the a
s
pe
ct o
f
pha
se volt
age
have
be
en id
entifi
ed.
The
line
vo
ltage yield
s
better
sp
ectral
perfo
rman
ce
for ISCPWM
comp
ared to the conve
n
tio
nal PWM. Th
is metho
d
re
sults h
a
rm
oni
cs
decrea
s
e
s
a
s
the numbe
r of levels increase, less
nu
mber of switches a
nd
cost
of the conve
r
ter.
Among the d
i
fferent ca
rri
e
r-b
ased meth
ods th
e mea
s
ures %T
HD, V
RM
S
, CF, F
F
and
DF ha
ve
been
studie
d
from converte
r pe
rform
a
n
c
es. By em
plo
y
ing this ne
w
techni
que it h
a
s b
een p
r
ov
ed
that the fund
amental volta
ge is i
m
prove
d
. In additi
on
to this, switch
ing lo
sses
an
d THD a
r
e
al
so
lowe
r compa
r
ed to the
convention
a
l PWM tech
ni
que. By increasi
ng the n
u
mbe
r
of ste
p
s,
w
a
ve
fo
rm app
r
o
ac
he
s th
e d
e
s
i
re
d
s
i
nus
o
i
da
l
s
h
a
p
e
and
T
H
D is re
du
ced.
Th
e conventio
n
a
l
Evaluation Warning : The document was created with Spire.PDF for Python.