TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 11, Novembe
r
2014, pp. 75
8
5
~ 759
4
DOI: 10.115
9
1
/telkomni
ka.
v
12i11.66
58
7585
Re
cei
v
ed Au
gust 10, 20
14
; Revi
sed Se
ptem
ber 24, 2014; Accept
ed Octo
ber 5,
2014
Impact of RDG Location on IDMT Overcurrent Relay
Operation and Coordination in MV Distribution System
Mohamed Ze
llagui*, Abde
laziz Chaghi
LSP-IE Lab
ora
t
or
y
,
De
partem
ent of Electrica
l
Engi
neer
in
g, F
a
cult
y
of T
e
chno
log
y
, U
n
ive
r
sit
y
of Batna,
Camp
us CUB, Street Med El Hadi B
oukh
l
o
u
fn Batna, Alg
e
ri
a
*Corres
p
o
ndi
n
g
author, zel
l
a
gui.mo
hame
d
@
univ-
batn
a
.d
z*, az_cha
gh
i
@
univ-
batn
a
.d
z
A
b
st
r
a
ct
In recent ye
ars there has
b
een
an i
n
tensi
v
e e
ffort to in
crease th
e par
ticipati
on of re
new
abl
e
sources of e
l
e
c
tricity in the fuel a
nd e
ner
g
y
bala
n
ce of
ma
ny cou
n
trie
s. In particular
,
this relates to th
e
power of wind farm
s
attached to
the
power system
at both the
dist
ribution
network. However, in t
h
e
prese
n
ce of
Ren
e
w
able
Di
sperse
d Gen
e
r
ation, (RDG
)
some pr
obl
e
m
s i
n
coor
di
n
a
tion
of prote
c
tion
devic
es w
ill
oc
cur, du
e to c
h
ang
es i
n
fa
ult
current l
e
ve
ls
at differe
nt p
o
i
n
ts. By insta
lli
ng R
D
G i
n
p
o
w
er
distrib
u
tion n
e
tw
orks, the fault current levels
are c
hang
ed
and
may
le
ad
to so
me
misc
o
o
rdi
natio
n
in
IDMT
Directional Over-Current Re
l
a
y (DOCR). In this pap
er, a n
o
vel a
ppr
oach
is prese
n
ted to
study the i
m
p
a
ct
of RDG locati
on (d
RDG
) on IDMT
character
i
stic curve of relay, fault curr
ent (I
F
), operation ti
me (T
) for
DOCR, a
nd c
oord
i
nati
o
n
ti
me i
n
terval
(CT
I
) betw
een
b
a
c
k
up
and
pr
ima
r
y relays
a
nd
short circ
uit l
e
vel
ind
e
x (ISC) in the presenc
e
there
phas
e fault on
med
i
u
m
volta
ge (MV
) distributio
n n
e
tw
ork. T
h
is n
e
w
appr
oach
has
bee
n i
m
pl
e
m
e
n
ted on th
e Alg
e
ria
n
10 kV
dis
t
ributio
n pow
er
system in C
o
n
s
tantine.
Ke
y
w
ords
: renew
abl
e disp
e
r
sed ge
nerati
o
n (RDG), direc
t
i
ona
l overcurr
ent relay, fault
current, opera
t
io
n
time, co
ordi
nati
on time, short circuit lev
e
l in
d
e
x.
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Due in
crea
se
d co
nsumpti
on dem
and
and hig
h
co
st of natural
gas
and oil,
usin
g of
Ren
e
wable
Dispe
r
sed
Gen
e
ration
(RDG
) resou
r
ces
a
s
alte
rn
ative
to feed
ele
c
trical l
oad
s
ha
s
been in
crea
sed in re
cent
years. RDG i
s
define
d
as
energy sou
r
ces (ran
ging i
n
size from few
kilo
watts to
mega
watts) conne
cted di
re
ctly to t
he distribution net
work
of a power sy
stem. Using
RDG i
s
an i
n
tere
sting
topi
c that h
a
s d
r
a
w
n
attentio
n
of ele
c
tri
c
al
e
ngine
ers in
re
cent ye
ars. T
h
e
pre
s
en
ce
of t
hese g
ene
rati
on u
n
its i
n
di
stribut
io
n
systems, alth
oug
h ha
s many
advantag
es a
nd
benefits, ha
s to be applie
d after pe
rfo
r
ming d
e
taile
d studie
s
an
d investigatio
ns du
e to their
compl
e
xities i
n
ope
ration,
control an
d p
r
otectio
n
of n
e
twork. On
e
of the major
effects of RDG is
their effect on
protectio
n
op
erat
ion of di
stribution n
e
tworks [1].
Therefore, i
n
tere
st in the i
n
tegratio
n of
RDG into di
st
ri
bution
sy
ste
m
s h
a
s
bee
n
rapi
dly
increa
sing.
RDG i
s
lo
osel
y defined
as small
-
sc
al
e
electri
c
ity ge
neratio
n fuel
ed by rene
wable
energy sou
r
ces,
su
ch
as
wind
an
d
sol
a
r, o
r
by l
o
w-emission
en
e
r
gy
sou
r
ce
s, su
ch as
fuel cell
s
and mi
cro-tu
rbine
s
. The
RDG
pre
s
e
n
ce
in po
we
r
system
s is on
e
of attra
c
tive phe
nome
n
a
in
power ind
u
st
ry [2]. With th
e pre
s
en
ce
o
f
RDG u
n
it
s i
n
dist
ri
but
ion
sy
st
em
s, its function
woul
d
gene
rally b
e
ch
ang
ed
a
nd it
woul
d
variou
sly be
affected
by
these u
n
its.
RDG,
whi
c
h is
sometim
e
s
re
ferre
d also a
s
emb
edd
ed
gene
ration,
mean
s pri
m
a
r
ily small
size
gene
ration u
n
its
con
n
e
c
ted to
the distrib
u
tion po
we
r sy
stem. Int
egra
t
ion of a RDG into an exi
s
ting di
strib
u
tion
system
ha
s
many impa
ct
s on th
e sy
stem, with
the power syste
m
pr
ote
c
tion being one of
the
major is
sues
[3].
For
RDG
lo
ca
tion in th
e
distribution
po
wer
syst
em
s, v
a
riou
s issue
s
,
su
ch
a
s
red
u
c
tion
of
system p
o
we
r loss in [4, 5], active power lo
ss
redu
ct
ion and volta
ge profile imp
r
oveme
n
t in [6],
power lo
ss
minimization
in distri
buti
on sy
stem
reco
nfiguratio
n in [7], maximization of
DG
cap
a
city in [8
], minimizatio
n
of inve
stment pl
an
ning
in [9], analyses
stability a
nd sen
s
itivity in
[10], minimization rea
c
tive
powe
r
losse
s
for di
ffere
nt load model
s in [11], minimization volt
age
colla
pse in [12], ameliorati
on po
wer fa
ctor in [13
], minimizatio
n
en
ergy co
st in [14], minimiza
tion
of syste
m
av
erag
e inte
rru
p
tion d
u
ratio
n
index
(SAI
DI) in [1
5], mini
mize
co
st a
n
d
maximi
ze t
o
tal
system
benef
it in [16], maximize total
DRG a
c
tive
p
o
we
r capa
cit
y
in [17], study of eco
n
o
m
ical
-
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
85 – 759
4
7586
techni
cal im
p
a
cts
RDG o
n
MV radi
al di
stributio
n
sy
stem in [18], impact
on mul
t
i-are
a
autom
atic
gene
ration
control f
o
r f
r
e
quen
cy
control in [1
9], a
nd maximi
sa
tion of di
stri
bution
netwo
rk
operators in a
dereg
ulated
environ
ment i
n
[20].
In this pape
r study impa
ct of RDG lo
cati
on for penet
ration level of RDG varied b
e
twee
n
0.5, 1.0, a
nd
1.5 M
W
in
sta
lled
at midlin
e
on
fault cu
rrent (
I
F
), sho
r
t
circuit
l
e
vel index (
ISC
) a
nd
perfo
rman
ce
of IDMT dire
ctional ove
r
current pr
ote
c
t
i
on: IDMT ch
ara
c
teri
stic
curve, ope
rati
on
time (
T
) a
nd
coo
r
din
a
tion t
i
me inte
rval (
CTI
)
between
prim
ary a
nd
backu
p ove
r
current relays
in
the presen
ce
of three p
h
a
s
e fa
ult on
reel
p
o
wer
sy
stem in
Alge
rian me
dium
voltage
(10 kV)
distrib
u
tion n
e
twork in
stall
ed in
Directio
n of Con
s
tant
ine.
2. Impact of
RDG on Po
w
e
r Sy
stem
Based
on
the
literatu
r
e, th
ere i
s
no
co
n
s
iste
nt definiti
on of
Di
stri
bu
ted Ge
neratio
n (DG
)
,
but ge
ne
rally they a
r
e
small-sc
ale
ge
neratio
n
unit
s
lo
cate
d
ne
ar
or at lo
ad
s. However,
the
definition ca
n be dive
rsif
ied ba
sed
o
n
voltage le
vel, unit con
nectio
n
, type of prime
-
m
o
ver,
generation not being dispat
ched, and maximum power
rating [21]. IEEE [22] defi
nes
DG as “t
he
gene
ration of
electri
c
ity by
facilities that are suffi
cientl
y
smaller tha
n
central gen
erating pl
ants so
as to allow interc
onnection at nearly any point in a powe
r sy
stem”, IEEE compared the si
ze of
the RDG
to t
hat of a
conv
entional
gen
e
r
ating
plan
t.
A more
p
r
e
c
i
s
e
definition
is p
r
ovide
d
by
the
Internation
a
l Cou
n
cil on
L
a
rge
El
ectri
c
System
s (CI
G
RE) and Th
e
Internatio
n
a
l
Co
nfere
n
ce
on
Electri
c
ity Distribution (CIRED), whi
c
h d
e
fines
RDG based on si
ze, location, a
nd type. CIGRE
define
s
distri
buted ge
nera
t
ion as “all g
e
neratio
n uni
ts with a maximum c
a
pac
i
ty of 50 MW to 100
MW, that are
usu
a
lly co
nne
cted to
the
di
stributio
n net
work a
nd that
are n
e
ithe
r centrally pla
n
n
ed
nor di
sp
atch
e
d
”. CI
RED d
e
f
ines
DG to b
e
“all g
ene
rat
i
on unit
s
with
a maximum
cap
a
city of 5
0
MW to 100 M
W
that are u
s
ually con
n
e
c
ted to the distribution net
wo
rk”.
The
use of
re
newable
ene
rgy so
urce
s
(RES)
or
re
ne
wabl
e di
sp
ersed
ge
neratio
n (RDG)
either a
s
di
stributed
gen
erators in
pu
blic A
C
n
e
tw
o
r
ks o
r
as isolat
ed g
ene
ratin
g
unit
s
sup
p
l
y
ing
is o
ne
of th
e ne
w t
r
en
d
s
in
po
we
r-electroni
c te
chn
o
logy.
RDG
equi
ppe
d with
ele
c
tronic
conve
r
ters
can be
attra
c
tive for several re
as
ons, such as environmental
be
nefits,
econo
mic
conve
n
ien
c
e,
and soci
al
developm
ent. The ma
in
environ
menta
l
benefit obt
ained by u
s
i
ng
rene
wa
ble so
urces in
stea
d
of traditional source
s,
is the redu
ction
in carbo
n
e
m
issi
on. Man
y
cou
n
trie
s hav
e adopte
d
po
licie
s to prom
ote ren
e
wa
bl
e sou
r
ce
s in orde
r to re
sp
ect the limits
on
carbon e
m
ission impo
sed
by internation
a
l agre
e
me
nts.
More
over, RDG can be e
c
on
omically convenie
n
t
in comp
ari
s
o
n
with tradition
al sou
r
ces;
if the econo
mic incentive
s
for grid co
nne
cted re
ne
wabl
e sou
r
ce
s are taken i
n
to account
or in
other pa
rticu
l
ar
situation
s
to
sup
p
ly
st
and
alo
n
e
load
s.
I
n
s
o
me
ca
se
s,
it
can
b
e
m
o
re
conve
n
ient to supply an
isolate
d
load
with r
ene
wa
ble local
sou
r
ce in
stea
d of extending the
publi
c
g
r
id to
the loa
d
o
r
to
su
pply it
with
die
s
el
elect
r
i
c
g
ene
rato
rs
[23]. In this
case, i
n
o
r
de
r
to
evaluate the
eco
nomi
c
be
nefits of
ren
e
w
abl
e ene
rgy
solution, it is nece
s
sa
ry to take in a
c
co
un
t
either the
co
st of the fuel
or
the
co
st of its tran
spo
r
t to the load th
at can
be lo
cated in remot
e
and ha
rdly reachabl
e are
a
s. In additi
on to the
e
c
on
omic
ben
efits, the use of distrib
u
ted
rene
wa
ble g
e
neratio
n u
n
its cont
ribute
s
t
o
de
cent
rali
ze the el
ectri
c
al ene
rgy p
r
o
ductio
n
, with
a
positive impa
ct on the development of
remote
are
a
s. The expl
oitation of local re
ne
wabl
e
sou
r
ces
su
p
ports l
o
cal e
c
on
omie
s an
d lighten
s th
e ene
rgy su
pply depe
nd
ency from fu
els
availability and prices flu
c
tuation
s
[24].
The inte
grati
on in th
e el
e
c
tri
c
g
r
id of
di
strib
u
ted p
o
we
r
g
ene
rat
i
on system
s,
located
clo
s
e to
the l
oad
s, re
du
ce
s the
ne
ed to
tran
sfer
en
ergy over l
ong
distan
ce
s th
rough
the el
ectric
grid.
In
this way
several benefits are achi
eved,
su
ch a
s
the
re
ductio
n
of b
o
ttle-ne
ck
po
ints
cre
a
ted
by o
v
erch
arged li
nes, the
in
crease of gl
ob
al efficien
cy
and the
limitation of the
r
mal
stre
ss o
n
g
r
i
d
cond
ucto
rs. Ren
e
wable
dist
ribut
ed
g
eneration
uni
ts, if prope
rly co
ntrolle
d a
n
d
desi
gne
d can
improve th
e
power flo
w
m
anag
ement o
n
the g
r
id a
n
d
red
u
ce the p
r
oba
bility of g
r
id
faults, so in
creasi
ng the p
o
we
r quality of the ener
gy supply. Larg
e
scale
integ
r
ation of RDG
at
either LV
or
MV is at the
pre
s
ent th
e trend fo
llo
we
d
in po
wer sy
stems to
cove
r the su
pply o
f
some lo
ad
s.
These
gen
erators are
of con
s
id
era
b
le smalle
r si
ze t
han the tra
d
itional ge
nerators [2].
Con
n
e
c
tion
of RDG i
s
i
n
tende
d to i
n
crea
se th
e
reliability of
power
su
ppl
y provide
d
t
o
the
cu
stome
r
s, u
s
ing lo
cal so
urces, an
d if possibl
e, re
duce the losse
s
of the transmi
ssion a
nd
distrib
u
tion
systems. Th
e
installation
of RDG ta
kes le
ss time
and payba
ck pe
riod. M
any
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
pact of RDG Location o
n
IDMT Overcurre
n
t Rela
y Operatio
n an
d… (Mo
ham
ed Zellagui
)
7587
cou
n
trie
s
are
su
bsi
d
izi
ng
the devel
op
ment of
re
ne
wabl
e e
nerg
y
proj
ect
s
th
roug
h
a p
o
rtf
o
lio
obligation
an
d green
po
wer
certificates. This in
ce
ntives inve
stme
nt in sm
all g
eneration pl
a
n
ts.
Some DG technolo
g
ies h
a
v
e low polluti
on and go
od
overall efficie
n
cie
s
like
co
mbined h
eat and
power (CHP) and micro
-
tu
rbine
s
. Besi
d
e
s, re
ne
w
abl
e energy ba
sed DG li
ke p
hotovoltaic a
n
d
wind tu
rbine
s
contri
bute to the red
u
cti
on of
gre
enh
ouse ga
se
s. Depe
ndin
g
on the net
work
config
uratio
n, the p
enet
rati
on level
an
d t
he n
a
ture
of t
he
RDG te
ch
nology, the
p
o
we
r inj
e
ctio
n
of
RDG may increa
se the po
wer lo
sse
s
in the distrib
u
tio
n
system.
3. Three Pha
se Fault
Cal
c
ulation in the Presen
ce
of RDG
To d
e
mon
s
trate the
effect of a
RD
G
unit on
the
fault current i
n
a
feede
r,
a ge
neri
c
feeder i
s
give
n as a
refe
re
nce
as
sho
w
n in Figu
re 1.
At distance
d
RDG
a
RDG
unit is conn
e
c
ted
and at the en
d of the feede
r, a three
-
pha
se fault (
F
) is
simulated.
Figure 1. Fau
l
t Current Co
ntribution in P
r
esen
ce RDG
Therefore, a
distan
ce p
a
ra
meter to indi
cate the location of the RDG, whi
c
h is
relative to
the total feeder length, is d
e
fined a
s
:
R
DG
to
t
d
l
d
(1)
Whe
r
e,
d
RDG
is the dista
n
ce to the RDG
unit,
d
tot
is the total feed
er length, an
d
l
is the
relative RDG
locatio
n
. An electri
c
equival
ent of
the feeder sho
w
n in
Figure 1 is gi
ven in Figure 2.
In this
figure,
Z
L
is the tot
a
l line-i
m
pe
d
ance,
Z
RDG
is the RDG i
m
peda
nce an
d
Z
S
is the
so
urce
impeda
nce.
The voltag
es of the mai
n
sou
r
ce a
n
d
RDG u
n
it a
r
e d
enote
d
a
s
U
S
and
U
RD
G
r
e
spec
tively.
Figure 2. Net
w
ork Equival
ent Circuit
Definin
g
the mesh cu
rrent
s
I
1
and
I
2
an
d applying th
e Kirch
hoff’s
voltage law f
o
r
U
S
an
d
U
RDG
, we get:
1
2
1.
.
1.
1.
S
SL
L
LR
D
G
L
RDG
U
I
ZZ
l
Z
lZ
Z
l
Z
UI
(2)
Whe
r
e,
I
1
is the gri
d
co
ntri
bution of the
I
F-S
,
I
2
is the RDG co
ntrib
u
t
ion of the
I
F-R
DG
,
Z
S
is
the sou
r
ce impeda
nce,
Z
L
is the total line impeda
nce,
U
S
is v
o
ltage for so
urce and
U
RD
G
is
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
85 – 759
4
7588
voltage for RDG. To dete
r
mine expre
ssions for
I
F-S
and
I
F-RDG
, the
Thevenin e
q
u
i
valent circuit of
the above net
work is d
e
rive
d as sho
w
n in
Figure 3.
Figure 3. The
v
enin Equival
ent Circuit
From Fig
u
re
3, the Theven
in impeda
nce
is derived a
n
d
given as:
..
1.
.
SL
R
D
G
Th
L
SL
R
D
G
Zl
Z
Z
Z
lZ
Zl
Z
Z
(3)
The total thre
e-ph
ase fault curre
n
t can b
e
cal
c
ulate
d
by:
3
3.
Th
F
Th
U
I
Z
(4)
Substituting
Equation (3) i
n
to Equation
(4) yield
s
:
3
22
..
3.
Th
S
L
R
D
G
F
L
LS
L
UZ
l
Z
Z
I
AB
C
l
Z
Z
Z
l
Z
(5)
Whe
r
e, the coefficient
s
A
,
B
and
C
a
r
e d
e
fined a
s
:
LR
D
G
Z
ZA
(6)
SR
D
G
Z
ZB
(7)
SL
Z
ZC
(8)
For the g
r
id contributio
n ho
lds:
3
.
RD
G
FS
F
RD
G
L
S
Z
II
Zl
Z
Z
(9)
Substituting
Equation (5
) into Equation (9), gi
ves
the RDG co
ntribution of
the sho
r
t circuit
cur
r
e
n
t
:
22
.
3.
Th
RDG
FS
L
LS
L
UZ
I
A
BC
l
Z
Z
Z
l
Z
(10
)
The total
s
h
ort-c
i
rc
uits current,
I
F-3ph
,
whi
c
h i
s
give
n by Equatio
n (5
) i
s
a
no
n-line
a
r
c
u
rrent.
I
F-S
is al
so no
n-li
n
ear a
s
give
n
by Equation (9). In ca
se
of a we
ak g
r
id,
Z
S
can b
e
a
s
large a
s
Z
RDG
and due to
the contrib
u
t
ion of the generator
, the
grid co
ntrib
u
tion to the fault
curre
n
t de
cre
a
se
s. Sho
r
t
Circuit L
e
vel
Index (ISC
) is in
dex i
s
related
to th
e protectio
n
and
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
pact of RDG Location o
n
IDMT Overcurre
n
t Rela
y Operatio
n an
d… (Mo
ham
ed Zellagui
)
7589
sen
s
itivity issues
sin
c
e it evaluates the
sho
r
t circ
uit current or fault
cou
r
ant at e
a
ch b
u
s
with and
without RDG
[25].
F
Wi
t
hout
RDG
F
W
i
t
h
RD
G
F
W
i
t
hout
R
D
G
II
IS
C
I
(11
)
4. Coordina
tion of IDMT
Direc
t
ional Ouv
e
rcurren
t
Rela
y
Dire
ction
a
l O
v
er-Curre
nt Relay
s
(DO
C
R)
is
widel
y used to p
r
otect p
o
wer system
element
s such as po
we
r transfo
rme
r
s, t
r
an
smi
ssi
on
and di
stributi
on line
s
, etc. Whe
n
appli
e
d
for
prote
c
ting di
stribution fee
d
e
rs, th
ey are
usu
a
lly
asso
ciated with fu
ses a
nd
re
closers DOCR a
r
e
coo
r
din
a
ted t
o
p
r
ovide
ba
ckup
protecti
on to
a
neigh
bour ele
m
ent
, but mai
n
tai
n
ing th
e d
e
si
red
sele
ctivity. A
prima
r
y rel
a
y
may have m
o
re tha
n
on
e b
a
ckup
rel
a
y a
nd eve
r
y pai
r
of prima
r
y an
d
backu
p relay
s
sh
ould b
e
coordi
nated.
The u
s
e of the sam
e
inverse curve a
n
d
different time dial pa
ram
e
ters to
set the relay
s
guarantee
s that once
coo
r
dinatio
n for the maximum
fault curre
nt is achi
eved, ca
se
s with lo
wer
fault curre
n
t are al
so
co
ordinated. Th
e
dire
ctional
overcurrent
rela
ys employe
d
in this pa
pe
r
are
con
s
id
ere
d
a
s
num
eri
c
al
with sta
nda
rd
IDMT c
hara
c
teri
stics that
comply
with the
IEC
60255-3
stand
ard, an
d
have their tri
pping di
re
ctio
n away from t
he bu
s [26].
M
P
TT
D
S
I
I
(12
)
And,
F
M
CT
I
I
K
(13
)
Whe
r
e,
T
is
relay operating time (
se
c
),
TDS
is time dial s
e
tting (
se
c
),
I
P
is pi
cku
p
cu
rrent
(
A
),
I
F
is the f
ault cu
rrent (
A
),
I
M
is the fault cu
rrent
measured by
the relay
(
A
),
and
K
CT
i
s
r
a
t
i
on
of current tra
n
sformer. Th
e con
s
tant
α
,
β
, and
γ
tha
t
depend
s of cha
r
a
c
teri
stic curve for IDMT
overcurrent relay.
Ho
wever, it can be
sho
w
n
that the pro
p
o
se
d
metho
d
can b
e
ea
sil
y
applied to a
system
with com
b
inat
ion of overcurrent rel
a
ys wi
th diffe
rent ch
ara
c
teri
stics
as
presented
in Figure 4.
Figure 4. Time-current of IDMT Ov
er
ccur
ent Relaying C
h
ar
ac
ter
i
stic
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
85 – 759
4
7590
Table 1 bel
o
w
sh
ows the con
s
tant
s values
co
rre
s
p
o
nding to ea
ch curve
cha
r
acteri
stic
made sta
nda
rd IEC 60255
-3 [27]:
Table 1. Diffe
rent Type of
C
h
ar
ac
te
r
i
s
t
ics
C
u
r
v
e
s
Type
β
γ
Normal Inverse (
N
I)
0.14
0.02
1.00
Ver
y
Inve
rse (VI)
13.5
1.00
1.00
Extremel
y Invers
e (EI)
80
2.00
1.00
Long Time Inver
s
e (LTI)
120
1.00
1.00
In any power system, a p
r
imary protecti
on
ha
s its o
w
n ba
ckup on
e for gu
ara
n
teeing
a
depe
ndabl
e power sy
ste
m
. The two protective
systems (prim
a
ry and ba
ck-u
p)
shoul
d
be
coo
r
din
a
ted togethe
r. Coo
r
dinatio
n Tim
e
Interval
(CTI) is the cri
t
eria to be consi
dered fo
r
coo
r
din
a
tion.
It’s a predefi
ned
coo
r
din
a
t
ion time inte
rval and
it d
epen
ds
on th
e type of rel
a
ys. For
electroma
gne
tic relay
s
, CT
I is of the o
r
d
e
r of 0.3 to
0.4 se
co
nd, wh
ile for nu
me
ri
cal relay, it is of
the order of
0.1 to
0.2
second [26,
27]
. To ensu
re
t
he reliability of
the protect
i
ve
system,
the
backu
p sch
e
m
e should
n
’t com
e
into
action
unle
s
s the p
r
ima
r
y (main
)
fail
s to ta
ke th
e
approp
riate
a
c
tion. O
n
ly
when
CTI i
s
e
x
ceed
ed, b
a
ckup
relay
sh
ould
co
me i
n
to actio
n
. Thi
s
c
a
s
e
is
e
x
pr
es
se
d
as
:
B
a
c
k
u
p
P
rim
a
ry
TT
C
T
I
(14)
Whe
r
e,
T
Backup
is op
eratin
g
time of the b
a
ckup
overcu
rre
nt relay, a
nd
T
Prim
ary
is operatin
g
time of the primary overcu
rrent rel
a
y.
5. Case Stud
y
:
Simulatio
n
Resul
t
s an
d Discus
s
io
n
The propo
se
d methodol
o
g
y is applie
d
to an actual
Algerian me
dium voltage
(10 kV
)
mesh
ed dist
ri
bution power
system
at
Consta
ntine
aliment by th
re
e sub
s
tation
s 60/10
kV
wh
ich
is
sho
w
n i
n
Fi
gure
5. Thi
s
system ha
s
7
bus,
6 di
strib
u
tion line
an
d
8 loa
d
p
o
ints. The all
RDG
’
s
study is in
stal
led between
buses 2 a
nd
3. The param
eters a
r
e in A
ppen
dix.
Figure 5. Rad
i
al Con
s
tant
in
e Distri
bution
Network
Figure 6
is
sho
w
s
ca
ract
eristi
c
cu
rve
for IDM
T
o
u
v
ercu
re
nt relays
No. 2
a
nd 6
on
absen
ce of
RD
G
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
pact of RDG Location o
n
IDMT Overcurre
n
t Rela
y Operatio
n an
d… (Mo
ham
ed Zellagui
)
7591
Figure 6. Cha
r
acte
ri
stic Cu
rve for Rel
a
ys no. 6 and 2
From Fig
u
re
6, the coo
r
di
nation bet
we
en two IDMT
dire
ctional ov
ercurrent rela
ys No. 6
(prim
a
ry) a
n
d
No. 2 (backup) is respe
c
ted. Fi
gure 7
is sho
w
s im
pact of RDG
location vari
ed
betwe
en b
u
ses
A
(0 km)
to
B
(81.26
km) on
ch
ra
ct
eristi
c
curve
and o
peratio
n time for IDMT
ouvercu
rent relays no.
6, whe
r
e
cu
rve
type is
No
rm
al Inverse
(NI) for th
ree
p
o
we
r inj
e
cte
d
by
RDG (0.5, 1.
0 and 1.5 M
W),
where the fault at bus
B
.
Figure 7. Impact of
d
RDG
Variation o
n
Chara
c
te
risti
c
Curve
Followi
ng Fig
u
re 7, the p
r
e
s
en
ce of
RDG dire
ctly affected th
e value of fault cu
rre
nt an
d
thus the valu
e of operatin
g time will be affect
ed eith
er increa
se
d or de
crea
sed
depend
s on
the
locality of
RDG
on
MV d
i
stributio
n lin
e. Figu
re
8 i
s
sho
w
s im
p
a
ct of
RDG
l
o
catio
n
o
n
fa
ult
curre
n
t, and Figure 9 rep
r
ese
n
t impact
of fault cu
rre
n
t on operation time in the pre
s
en
ce t
h
ree
RDG inje
cted
different power and in
stall
ed in different
location.
Figure 8. Impact of
d
RDG
on Fault Current
Measu
r
e
d
by Relay
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
85 – 759
4
7592
From Figure
8, regardless of the RDG
locati
on, the fault current
value will always be
greate
r
cont
ri
bution by a
fault cu
rrent
v
a
lue without RD
G, wh
atever the
po
wer injecte
d
by t
he
RDG. In the
pre
s
en
ce
of
RDG,
the fa
u
l
t cu
rre
nt is t
he m
a
ximum
value if
RDG
locate
d at th
e
tip
of the distribu
tion line and f
ault curre
n
t is minimum value if RDG b
o
x
located in the middle.
Figure 9. Impact of fault Current on Op
eration Tim
e
From Fi
gure
9, whateve
r
the lo
cation a
nd po
we
r inje
cted by RDG
the fault cu
rrent will
be ch
ange
d and also the
operatio
n time of the circuit bre
a
ker.
Figure
s
10
and 11 is
sh
ows
impact
of lo
cation of
RDG
on
CTI
vale
u an
d ISC le
vel index
re
p
e
ctively in th
e p
r
e
s
en
ce
three
RD
G.
Figure 10. Impact of
d
RDG
on CTI.
The re
sult i
s
sho
w
n in Fi
g
u
re 1
0
and it
can b
e
seen
clea
rly that the
d
RDG
has a
n
impa
ct
on the
CTI v
a
lue
(in
c
rea
s
e an
d
de
scri
es
co
mpa
r
ed
in th
e
ca
se
without
RDG
)
i
s
p
o
rta
ged
in
three zone. E
x
isted three
critical zone
s value of
d
RDG
and CTI re
pre
s
ented in Tabl
e 2.
Table 2. Critical Zon
e
for
RDG Lo
catio
n
d
RDG
(k
m)
P
RDG
(MW)
0.5 1.0 1.5
Zone 1
[0 - 6.87]
[76.67 - 81
.26]
[0 - 10.35]
[74.35 - 81
.26]
[0 - 14.48]
[71.37 - 81
.26]
Zone 2
mi
n
6.88 10.36
14.49
ma
x
76.66
74.34
71.36
Zone 3
[6.89 - 76.
65]
[10.37 - 7
4
.33]
[14.40 - 7
1
.35]
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
pact of RDG Location o
n
IDMT Overcurre
n
t Rela
y Operatio
n an
d… (Mo
ham
ed Zellagui
)
7593
From thi
s
ta
ble, in the
first an
d third
zon
e
, the
CTI value in
the p
r
e
s
en
ce
RDG i
s
increa
se an
d decrea
s
e
co
mpared with
ca
se with
o
u
t RDG, probl
e
m
of
mis-coordination bet
ween
prima
r
y and b
a
ckup relay. In the second
zon
e
, the CTI value is con
s
tant in the case witho
u
t an
d
with RDG, this
location is
t
he bes
t.
Figure 11. Impact of
d
RDG
on ISC Level Index
From
Figu
re
11, the IS
C le
vel index i
s
m
a
ximum valu
e if RDG
lo
ca
lized
in th
e m
i
ddle
of
the line and
minimum val
ue box RDG l
o
cate
d
at the end of the M
V
distributio
n line.
6. Conclusio
n
This pa
pe
r fills a gap in
the unde
rsta
nding of the
particul
a
r p
r
oblem of pro
t
ection
blinding
thro
u
gh p
r
e
s
enting
a detaile
d st
udy of
the im
pact of lo
cati
on RDG
on I
D
MT di
re
ctio
nal
overcurrent p
r
otectio
n
usi
n
g a typical MV distri
butio
n netwo
rk in p
r
ese
n
ce three
pha
se fault.
The fa
ctors t
hat can i
n
flu
ence the
effe
ct of
RDG o
n
the fa
ult co
urant, o
p
e
r
ati
on time,
CTI value
an
d ISC level in
dex for di
re
ctional
ove
r
current protectio
n
sy
stem have
been ca
refull
y
con
s
id
ere
d
a
nd incorporated in the inv
e
stigatio
n. These facto
r
s
inclu
de RDG
capa
city level,
RDG location
and fault location. By installing RD
G in
MV powe
r
di
stribut
io
n net
works, the fault
curre
n
t levels are
cha
nge
d
and may le
ad to some
mis-co
ordi
nat
ion in di
re
ctional ove
r
current
prote
c
tion. T
he variatio
n in ope
rating ti
me for ci
rcuit
brea
ke
r ha
s been q
uantif
ied for
several
scena
rio
s
an
d it has been
demon
strate
d that thes
e increa
sed tim
e
s ca
use
sig
n
ificant probl
ems.
For
all pap
er study
impa
ct of
RDG
lo
cati
on
it
is
n
e
cessary
con
s
id
ering the imp
a
ct fault current
and protectio
n
coo
r
din
a
tio
n
limits.
For the conti
nuity of this work, an off-l
i
ne se
tting
s d
i
rectio
nal ove
r
cu
rrent rel
a
ys in the
pre
s
en
ce
RDG for diffe
rent
locality for m
e
sh
ed p
o
wer system
s
a
r
e prop
osed
a
p
p
lication artifici
al
neural net
wo
rk a
nd he
uri
s
tic alg
o
rithm
s
. It is also
recomme
nde
d to develop
an automati
o
n
system
ba
se
d on
the
ada
ptive relay
se
ttings u
s
in
g
o
p
timization
al
gorithm
s. T
h
i
s
system
can
be
adopte
d
for
determi
ning t
he optim
um
setting
s of p
r
otectio
n
d
e
vice
and
hen
ce im
prove
the
quality of its operatio
n rel
a
ys.
Referen
ces
[1]
Ackermann T
.
Wind Po
w
e
r
in Po
w
e
r
S
y
stems, 2
nd
Edition
,
Lon
don,
UK,
Publ
ishe
d b
y
J
ohn
Wile
y
&
Sons. 201
2.
[2]
Moham
ed Y, El-Saa
dan
y E
F
. Adaptive Decentra
lize
d
D
r
oop Co
ntrol
l
er
to Preserve Po
w
e
r Sh
arin
g
Stabil
i
t
y
of par
alle
le
d inverter
s in
Distribute
d
Generati
on
Microgri
d
s.
IEEE Transactions on Power
Electron
ics
. 20
08; 23(6): 2
806
-281
6.
[3]
Barker PP, De
Mello
RW. Determining the Impact of
Distri
buted Ge
ner
ati
on o
n
Po
w
e
r S
y
stems: Part 1
- Radi
al Distri
b
ution S
y
stems.
IEEE Transactions on Power Deliv
ery
. 200
0; 15(2): 486-
49
3.
[4]
Ochoa LF
, Har
r
ison GP. Min
i
mizing
Ener
g
y
Losses: Optim
a
l Accomm
oda
tion a
nd Sm
art Operatio
n o
f
Ren
e
w
a
ble D
i
s
t
ributed Gen
e
r
a
tion.
IEEE Transactions on P
o
wer System
s
.
2011;
2
6
(1): 1
98-2
05.
[5]
At
w
a
YM, El-S
aad
an
y EF
. Proba
bil
i
stic App
r
oach for Optimal Alloc
a
tio
n
of W
i
nd-base
d
Distribute
d
Generati
on i
n
Distributi
on S
ystems.
IET Renew
abl
e Pow
e
r Generatio
n
. 2
011; 5(1): 7
9
-8
8.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
85 – 759
4
7594
[6]
Khatod
DK, Pant V, Sharma
J. Evolution
a
r
y
Pro
g
rammi
n
g
Base
d Optimal Plac
ement
of Rene
w
a
b
l
e
Distribut
ed Ge
nerators.
IEEE Transactions on Power System
s
. 20
13; 28(
2
)
: 683-69
5.
[7]
Rao RS, Ravindra K, Satis
h
K, Narasimham SVL
. Po
w
e
r
Loss Min
i
miz
a
tion i
n
Distri
b
ution S
y
stem
usin
g Net
w
ork
Reconfi
gurati
on in the
Pre
s
ence of Distr
ibute
d
Gener
a
t
ion.
IEEE Transactions on
Power Systems
. 2013; 28(
1): 317-
132
5.
[8]
Kean
e A, O’Malle
y M. Optim
a
l All
o
catio
n
of
Embedd
ed G
ener
ation
on
Distributi
on N
e
t
w
orks.
IEEE
T
r
ansactio
n
s o
n
Pow
e
r Systems
. 20
05; 20(
3
)
: 1640-1
6
4
6
.
[9]
El-Khattam W
,
Bhattachar
ya
K, Hegaz
y Y, Salam
a
MMA.
Optimal Invest
ment Plan
nin
g
for Distribute
d
Generati
on in a
Com
petit
iv
e Electricit
y
Mar
k
et.
IEEE Transactions
on Power System
s
. 200
4;
19(
3)
:
167
4-16
84.
[10]
Al-Hajr
i
MF
, Al
-Rashi
di
MR,
El-Ha
w
a
r
y ME.
Improve
d
Se
q
uenti
a
l Qu
adr
a
t
ic Progr
ammi
ng A
ppro
a
ch
for Optimal Di
stributio
n Gen
e
ratio
n
Dep
l
o
y
m
ents via Sta
b
ilit
y a
nd Se
n
s
itivit
y
An
al
ys
es.
Electrical
Pow
e
r Co
mpo
nent Syste
m
. 2010; 38(
14): 15
95-1
614.
[11]
Sing
h D, Si
ng
h D, Verm
a K
S
. Multiob
j
ecti
ve
Optimizati
o
n
for DG Pl
an
nin
g
w
i
t
h
L
oad
Mode
ls.
IE
EE
T
r
ansactio
n
s o
n
Pow
e
r Systems
. 20
09; 24(
1
)
: 427-43
6.
[12]
Hed
a
y
ati H, N
abav
ini
a
ki SA,
Akbarim
ajd A
.
A
Method fo
r Placem
ent o
f
DG Units in
Distrib
ut
i
o
n
Net
w
orks. IEEE
T
r
ansactions
on Po
w
e
r D
e
li
ver
y
. 2
008; 2
3
(
3
): 1620-
16
28.
[13]
Jabr RA, Pa
l
BC. Ordina
l Optimisati
on Ap
proac
h
for Loc
ating
and S
i
zi
n
g
of
Distrib
ute
d
Gener
atio
n.
IET
Generation
,
T
r
ansmission
& Distr
ibuti
on. 200
9; 3(4):71
3
-
723.
[14]
Novo
a C, Jin T
.
Reliabi
lit
y
C
entere
d
Plan
ni
ng for Distribu
t
ed Generati
o
n
Consid
eri
ng
W
i
nd Po
w
e
r
Volati
lit
y
.
El
ectrical Pow
e
r Sy
stem Res
earc
h
. 2011; 81(
8): 1654-
166
1.
[15]
Zhu D, Br
oa
d
w
ater RP, T
a
m
KS,
Seg
u
in
R, Asgeirss
on H. Impact
of
DG
Placem
ent on Reli
ab
ilit
y an
d
Efficienc
y w
i
th
T
i
me-Var
y
i
n
g
L
oads.
IEEE Transactions on P
o
wer System
s
.
2006; 2
1
(1): 4
19-4
27.
[16]
Porkar S, Po
u
r
e P, Abb
a
sp
o
u
r T
ehrani A,
S
aad
ate S. O
p
timal A
lloc
a
ti
on of
Distrib
uted Ge
nerati
o
n
usin
g a T
w
o
-
Stage M
u
lti-Obj
e
ctive Mi
xe
d Integer
Non
l
i
near
Programm
i
ng.
Eu
ro
pe
an
Tran
sa
cti
o
n
s
o
n
Electric Power
. 2010; 2
1
(1): 1
072-
108
7.
[17]
Dent CJ, Ocho
a LF
, Harris
on
GP. Net
w
o
r
k D
i
stri
bute
d
Gen
e
ratio
n
Ca
pac
ity A
nal
ys
is usi
n
g OPF
w
i
t
h
Voltag
e Step
Constra
i
nts. IEEE
T
r
ansactions on Po
w
e
r
S
y
stems. De
nt C.J., Ochoa L.F., Harriso
n
G.P. Net
w
o
r
k
Distribut
ed Ge
nerati
on
Ca
pa
cit
y
A
n
a
l
ysis
u
s
ing OPF
w
i
t
h
Volta
ge St
ep
Constr
aints.
IEEE Transactions on Power
System
s
. 20
10
; 25(1): 296-3
0
4
.
[18]
Ngu
y
e
n
T
D
T
,
Ngu
y
e
n
QN,
L
e
NG,
T
an D, Hu L.
Stud
y of
Econom
ical-T
echnic
a
l Impact
s
of Distribute
d
Generati
on
on
Medium-V
olta
ge Grid.
T
E
LK
OMNIKA Indo
nesi
an Jo
urn
a
l
of Electrical
Engi
neer
in
g
.
201
4; 12(2): 11
77-1
187.
[19]
Bhon
ga
de S,
T
y
ag
i B, Gu
p
t
a HO. Multi-
Area A
u
tomati
c Gener
ation
Contro
l Sch
e
me inc
l
u
d
in
g
Ren
e
w
a
ble
En
erg
y
S
ources.
T
E
LKOMNIKA Indon
esi
an J
o
u
r
nal
of El
ectric
al E
ngi
ne
erin
g
. 20
14;
12(7
)
:
505
2-50
70.
[20]
Sorou
d
i A, Eh
san M, Ca
ire
R, Had
j
sai
d
N
.
H
y
brid Immu
ne-Gen
e
tic Al
gorithm M
e
tho
d
for Be
nef
i
t
Maximisati
on
o
f
Distributi
o
n
N
e
t
w
o
r
k Op
erat
ors a
nd
Distrib
uted Ge
ner
atio
n O
w
n
e
rs i
n
a
Dere
gul
ate
d
Enviro
nment.
IET
Generation,
T
r
ansmiss
io
n & Distributi
o
n
. 201
1; 5(9); 961
-972.
[21]
Shahr
iari
SAA, Varj
ani
AY,
Ha
g
h
ifam M.R
.
Cost R
educti
on
of Dis
tri
but
ion
Net
w
o
r
k P
r
otection
i
n
Presenc
e
of D
i
stribute
d
Ge
n
e
ratio
n
us
in
g
Op
timized Fault Current
Limiter Al
location.
Internatio
na
l
Journ
a
l of Elec
trical Pow
e
r & Energy Syste
m
s
. 2012; 43(
1): 145
3-14
59.
[22]
Hussain B, Sharkh SM, Hussain S.
Imp
a
ct Studies of Dist
r
ibute
d
Gener
a
t
ion on Pow
e
r
Quality an
d
Protection set
up of an Exi
s
ting Distri
buti
on Netw
ork
. Proceedings
of t
he IEEE International
S
y
mposium on Pow
e
r Electronics Electrical Drives
Automation and Motion
(SPEEDAM), Pisa – Italy
.
201
0.
[23]
Ackerman
n
T
,
Anderss
on G,
Sder
L.
Distri
buted
Gener
ati
on: A D
e
finiti
o
n
.
Electric P
o
w
e
r Systems
Research
. 20
1
1
; 57(3): 19
5-2
04.
[24]
IEEE Standard, No.1547-2003.
Intercon
nect
i
ng
Distrib
uted
Reso
urces
w
i
th El
ectric Pow
e
r Syste
m
s
.
Publ
ishe
d b
y
IEEE, USA. 2003.
[25]
Boll
en MHJ, H
a
ssan F
.
Integr
at
ion
of Distrib
uted Gen
e
rati
o
n
in th
e Po
w
e
r
S
y
stem. Ne
w
Jerse
y
,
USA,
pub
lish
ed b
y
I
EEE Press, Series on Po
w
e
r
Engi
neer
in
g. 2011.
[26]
Ochoa
LF
, F
e
ltrin AP, H
a
rriso
n GP. Eval
uati
ng D
i
st
rib
u
ted
Generati
on Im
pacts
w
i
t
h
a
Multi-o
b
jecti
v
e
Inde
x.
IEEE Tr
ansactions on Power Deliv
ery
. 2006; 21(
3): 1452-
145
8.
[27]
Z
e
lla
gui M, Benab
id R, Cha
g
h
i A, Boudo
ur
M.
Impact of GCSC on IDMT
Directiona
l
Overcurrent
Rela
y
in the P
r
esenc
e of Ph
ase to Earth
F
ault.
Serbia
n
Journa
l of El
ectrical En
gin
e
e
rin
g
(SJEE)
,
201
3; 10(3): 38
1-39
8.
Evaluation Warning : The document was created with Spire.PDF for Python.