Indonesian Journal of
Electrical
Engineer
ing and
Computer Science
V
o
l. 10
, No
. 3, Jun
e
20
18
, pp
. 89
0
~
89
6
ISSN: 2502-4752,
DOI: 10.
11591/ij
eecs.v10
.i3.pp890-896
8
90
Jo
urn
a
l
h
o
me
pa
ge
: http://iaescore.c
om/jo
urnals/index.php/ijeecs
Therm
al
Eff
ect
of Wind Gen
e
rati
on on Conventi
onal Generat
o
r
in a Microgrid
Az
mi Hashim
1
, Kw
ok
L L
o
2
1
Ele
c
tri
cal
Sec
t
i
on, Universi
ti
Kuala
Lum
pur B
M
I, Mala
ysi
a
2
Department of Electroni
c
and
E
l
ec
tric
al
, Unive
r
sit
y
of Str
a
thc
l
yde,
United
King
dom
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 10, 2018
R
e
vi
sed M
a
r
2,
2
0
1
8
Accepted
Mar 21, 2018
In order to reduce CO2 emissions, whic
h is one of the key
strateg
y
in
combatting glob
al warming, developm
ent of wind energ
y
technolog
y
as
s
ource of ren
e
w
a
ble
energ
y
h
a
s
becom
e
more important globally
.
However,
the vari
abil
it
y o
f
the wind speeds leads to the interm
itt
ent na
tu
re of wind
power gener
a
tio
n
. Th
e conv
entio
n
al g
e
nera
tors in
the
s
y
st
em
m
u
st be
able
to
com
p
ensate
this
fluctu
ation
to
m
a
intain s
y
stem
stabil
it
y
and m
eet
the
load
dem
a
nd in
the
grid.
This
in
turn m
a
y in
cre
a
se th
e t
e
m
p
er
ature
of th
e
conventional g
e
nerators bey
o
nd what
normally
o
ccurs without wind
genera
tion in
th
e grid.
The a
i
m
of the pap
e
r is to inestig
ate
th
e effe
ct of
thermal heating
of the gen
e
rators due to th
e variab
le outpu
t of wind
generation in d
i
fferent
time of the
y
ear
in a microgrid b
y
prop
osing proper
modelling in
the simulation. Th
e simula
tions ar
e
done in 24
hour
s period in
four different time of th
e
y
e
ars
corres
ponding
to
differ
e
nt season
s of the
y
e
ar.
K
eyw
ords
:
Heatin
g
Micr
o
g
r
i
d
W
i
nd
turb
in
e
Copyright ©
201
8 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Azm
i
Hashim
,
Electrical Section,
Un
i
v
ersiti Ku
ala Lu
m
p
u
r
BM
I,
Jal
a
n S
u
ngai
P
u
su
5
3
1
0
0
K
u
a
l
a Lum
pur,
M
a
l
a
y
s
i
a
.
Em
a
il: az
mi@u
n
i
k
l
.edu
.m
y
1.
INTRODUCTION
A
s
on
e
o
f
th
e alter
n
ativ
e
o
f
the r
e
n
e
w
a
b
l
e ener
g
y
tech
no
logy, w
i
nd tu
rb
ine is now
no
t on
l
y
th
e m
o
st
econ
o
m
i
c, but
al
so be
nefi
t
u
s
soci
al
l
y
and e
nvi
ro
nm
ent
a
l
l
y
. The
gl
o
b
al
g
e
nerat
i
o
n
of
w
i
nd e
n
er
gy
i
n
c
r
eased
up
t
o
43
5
G
W
i
n
2
0
1
7
,
w
h
i
c
h
i
s
nearl
y
10%
of
o
v
eral
l
wo
r
l
d p
o
w
er
ge
ner
a
t
i
on [
1
]
.
In
E
U
,
wi
n
d
e
n
er
g
y
has
produce
d
m
o
re capacity than coal
pow
er
an
d
accou
n
t
s fo
r
n
ear
ly on
e f
i
f
t
h
of
in
stalled
po
w
e
r
g
e
ner
a
tion
capaci
t
y
i
n
2
0
16
[
2
]
.
Th
e re
sul
t
o
f
gl
obal
com
m
uni
t
y
pushi
n
g
t
o
wa
rds
bet
t
e
r e
nvi
r
o
nm
ent
t
h
ro
ug
h
bet
t
e
r
way
s
o
f
p
r
o
d
u
ci
n
g
ene
r
gy
has p
r
od
uce
d
m
a
ny
t
echnol
ogi
cal
b
r
ea
kt
h
r
o
u
gh t
h
at
n
o
t
onl
y
i
n
c
r
ease
m
o
re
rene
wa
bl
e ene
r
gy
p
r
od
uct
i
o
n,
but
al
s
o
l
o
we
r
i
t
s
gene
rat
i
o
n c
o
st
.
Howev
e
r, th
ere are still ch
all
e
n
g
e
that n
eed to
b
e
m
e
t to
fu
lly u
tilised
win
d
en
erg
y
po
ten
tial. Ch
ief
a
m
ongst them
is the fact that
wind
e
n
ergy varies according to the spee
d
of the
wind.
The va
riability of the
gri
d
con
n
ect
e
d
wi
nd p
o
w
er
gene
rat
i
o
n can
be abso
rbe
d
by
t
h
e con
v
e
n
t
i
onal
po
we
r g
e
nerat
o
rs
, but
as t
h
e
penet
r
at
i
o
n
o
f
t
h
e wi
nd ca
pac
i
t
y
i
n
creased,
r
i
go
ro
us st
udi
es
an
d resea
r
c
h
m
u
st
be do
ne t
o
a
n
t
i
c
i
p
at
e an
d fi
nd
so
lu
tion
s
t
o
th
e prob
lem
th
at mig
h
t
o
c
cu
rs [3
].
The
fl
uct
u
at
i
o
n o
f
t
h
e
wi
nd
gen
e
rat
i
o
n c
oul
d i
n
c
r
ease
t
h
e t
e
m
p
erat
ur
e of t
h
e e
x
i
s
t
i
ng t
h
erm
a
l
gene
rat
o
rs bey
o
n
d
n
o
rm
al
op
erat
i
ng t
e
m
p
erat
ure [
4
]
.
As t
h
e wi
n
d
ge
ne
r
a
t
i
on va
ri
es t
h
r
o
u
g
h
o
u
t
t
h
e t
i
m
e, t
h
e
co
nv
en
tio
n
a
l
gen
e
rat
o
rs
n
eed to
act to
co
mp
ensate to
m
e
e
t
th
e en
erg
y
d
e
man
d
.
Th
is actio
n
will in
crease th
e
te
m
p
erature
of these m
achines. T
h
e
effect
increase
d
with the i
n
crea
se
d penet
r
at
i
on of wi
n
d
e
n
er
g
y
i
n
th
e grid.
In
th
is p
a
p
e
r, si
m
u
latio
n
stu
dy in
a
micro
g
rid
will
b
e
d
one co
v
e
ring
24
h
ours p
e
riod
wh
ich
is th
en
repeat
e
d
o
n
di
ffe
rent
set
o
f
wi
n
d
spee
d
da
t
a
. Fo
ur
di
ffe
r
e
nt
set
s
of
wi
n
d
spee
d acc
or
d
i
ng t
o
hi
st
o
r
i
cal
dat
a
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Th
erma
l
Effect o
f
Wi
n
d
Gen
e
ra
tio
n on
C
o
n
v
en
tio
na
l
Gen
e
rato
r in … (Azmi
Ha
sh
i
m
)
89
1
fr
om
four di
f
f
e
rent
t
i
m
e
s of t
h
e y
ear are
use
d
. Th
e resu
lts fro
m
th
e
si
m
u
lati
on are then analysed a
nd
d
i
scu
s
sed in
ord
e
r to inv
e
stig
ate th
e th
erm
a
l effect
o
f
the
w
i
nd
en
er
g
y
f
l
u
c
tu
a
tio
ns
to
th
e co
nv
en
tio
n
a
l
gene
rator.
A microgrid where
rene
wa
ble ene
r
gy is connected
are m
o
re vu
ln
erab
le to
t
h
e i
n
term
it
ten
t
n
a
tu
re
of
wind
g
e
n
e
ration
as th
e
bu
rd
en
o
f
co
m
p
en
satin
g
it
will b
e
larg
ely fall
u
p
o
n
th
e conv
en
t
i
o
n
a
l
g
e
n
e
rators
i
n
the system
.
2.
WIND E
N
ERGY
2.
1.
Wind S
p
eed
On
e m
a
j
o
r ch
aracteristics o
f
wind
in
an
y
p
a
rts o
f
t
h
e wo
rl
d
is th
e ch
ang
i
n
g
p
a
tterns of
its sp
eed
in
di
ffe
re
nt
t
i
m
e
of t
h
e y
ear,
o
r
m
ont
h, o
r
seas
on
o
r
day
[
5
]
.
The s
p
ee
d i
s
al
so
vari
es acc
or
di
n
g
t
o
di
f
f
ere
n
t
pa
rt
s
of t
h
e
wo
rl
d
g
e
og
ra
phi
cal
l
y
[6]
.
Al
t
h
o
u
g
h
seaso
n
al
vari
at
i
ons i
s
m
o
re predi
c
t
a
bl
e t
h
a
n
l
ong t
e
rm
, y
e
ar or
decade
s
va
riations
, the
r
is also va
riations
within a day or
di
urnal va
riations [7]. Shorter
variations in minutes
or eve
n
sec
o
n
d
s, t
u
rb
ul
ence
s, al
so
m
u
st
be consi
d
e
r
e
d
i
n
st
udy
i
n
g t
h
e
desi
gn a
nd
p
e
rf
orm
a
nce of
a wi
nd
farm
. Th
erefore in
o
r
d
e
r to
be ab
le to
p
r
ed
i
c
t o
r
esti
m
a
te
wind
en
erg
y
produ
ctio
n, it is
i
m
p
o
r
tan
t
th
at
th
is
phe
n
o
m
e
non b
e
anal
y
s
ed
an
d un
de
rst
o
od
.
As the wind s
p
eed cha
nge
s accordin
g to the
nature, the wi
nd ene
r
gy
ge
neration follows a
ccording to
the s
p
eed change, i
n
stead of
reacting
t
o
t
h
e
e
n
er
gy
dem
a
nd
as d
o
t
h
e c
o
nv
ent
i
onal
ge
ner
a
t
o
rs.
Fi
g
u
r
e
1 s
h
o
w
s
th
e 10
year
s av
er
ag
e sp
eed
of
w
i
nd
in UK
f
r
o
m
2
0
02-
2011
[8
] .
In
th
is ex
am
p
l
e, th
e
w
i
n
d
sp
eed du
r
i
ng
th
e
summ
er is not
iceably slowe
r
than it
is duri
ng the c
o
ld wi
nter sea
s
on.
Although m
onthly pattern
ge
nerally
fol
l
o
ws t
h
e t
r
e
nd
of ene
r
gy
d
e
m
a
nd i
n
UK
whe
r
e hi
g
h
e
r
dem
a
nds of en
ergy
are i
n
t
h
e
wi
nt
er m
ont
hs, t
h
e
wi
n
d
s
p
ee
d
pat
t
e
rns
d
o
not
m
i
rr
or
t
h
e
dai
l
y
el
ect
ri
cal
dem
a
n
d
[9]
.
Fig
u
r
e
1
.
Ten
year
s av
er
ag
e
U
K
w
i
n
d
sp
eed
f
r
o
m
2
0
02-
20
11
and
2
016
Although year to year
variat
ions
a
r
e
har
d
t
o
p
r
e
d
i
c
t
an
d
not
wel
l
u
nde
r
s
t
o
o
d
, t
h
e seas
onal
y
earl
y
v
a
riation
can
b
e
p
r
esen
ted
i
n
term
s o
f
p
r
o
b
a
b
ility d
i
strib
u
tion
[10
]
.
W
i
nd
sp
eed ch
aracteristics
d
u
ring
a
p
e
ri
o
d
o
f
ti
m
e
is sh
own
to
b
e
fo
llowing
certain
p
r
ob
ab
ility
d
i
stribu
tio
n
cal
led
W
e
ibu
ll p
r
o
b
a
b
ility d
i
strib
u
tion
[1
1]
.
It
i
s
g
o
v
e
r
n
by
t
h
e f
o
l
l
o
wi
n
g
e
quat
i
o
n:
,
,
,
0
0,
0
(
1
)
whe
r
e v i
s
t
h
e
wi
n
d
spee
d,
k i
s
t
h
e sha
p
e par
a
m
e
t
e
r t
h
at
gi
ves fo
rm
of t
h
e di
st
ri
b
u
t
i
on;
us
ual
l
y
l
i
e
s bet
w
een 2
and 3,
an
d
λ
i
s
t
h
e scal
e par
a
m
e
t
e
r whi
c
h
i
ndi
cat
es t
h
e wi
dt
h a
nd
pea
k
l
o
cat
i
on
of t
h
e di
st
ri
b
u
t
i
o
n
.
R
a
t
h
er
th
an
o
b
s
erv
i
ng th
e ch
ang
e
s
o
f
th
e wind
sp
eed
b
y
its
m
ean
v
a
lu
e, t
h
e
W
e
i
b
u
ll d
i
stri
b
u
tion
let u
s
to
ex
amin
e its
wh
ol
e c
h
aract
e
r
i
s
t
i
c
s [5]
.
As
sho
w
n l
a
t
e
r i
n
t
a
bl
e 1,
t
h
e
val
u
es
of
k a
n
d
λ
vari
es t
h
r
o
ug
h
out
t
h
e y
ear,
ra
ngi
ng
fr
om
2.0
8
t
o
2
.
53
f
o
r
k
an
d
1
1
.
5
2
kn
ot
s t
o
16
.2
5
fo
r
λ
.
2.
2.
Wind Ener
gy
Generation
The p
o
we
r out
put
o
f
a gi
ve
n wi
n
d
t
u
r
b
i
n
e
c
a
n be
e
x
p
r
esse
d by
t
h
e f
o
l
l
o
w
i
ng
e
q
uat
i
o
n:
1
2
C
P
,
(
2
)
whe
r
e P
o
is th
e po
wer
h
a
rv
est
e
d
fro
m
th
e win
d
, C
p
is th
e po
wer co
efficien
t of th
e turb
i
n
e,
λ
w
is th
e tip
sp
eed
ratio
,
β
is the blade pitch angle, R
t
is
th
e win
d
tu
rb
in
e rad
i
us,V is th
e wind sp
eed
and
ρ
a
i
s
th
e air d
e
n
s
ity. The
0
2
4
6
8
10
12
Ja
n
F
eb
Mar
Apr
May
Jun
J
ul
Aug
S
ep
Oct
N
ov
Dec
Average
wind
speed
(knot
s
)
Average
wind
speed
10
ye
ar
mean
20
16
p
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
89
0 – 89
6
89
2
po
we
r coe
ffi
ci
ent
i
s
a fu
nct
i
on
of
λ
w
and
β
[1
2]
. C
p
i
s
t
h
e p
r
op
ort
i
o
n
of am
ou
nt
of
wi
n
d
ene
r
gy
can t
h
at
ex
tracted, wh
i
c
h
h
a
s
up
p
e
r limit o
f
5
9
%
t
h
eo
retically. Cu
rren
tly, m
o
d
e
rn wind
tu
rb
ines
h
a
v
e
v
a
lu
es b
e
tween
45
% t
o
5
0
% [
13]
.
As t
h
e p
o
w
er
pr
od
uce
d
i
s
di
rect
l
y
pro
p
o
rt
i
o
nal
t
o
t
h
e
cube
of t
h
e
wi
nd s
p
ee
d, any
chan
ge
in
th
e
sp
eed
wi
ll g
r
eatly affect
ed
th
e power ou
tpu
t
of an
y
win
d
g
e
n
e
rato
r [14
]
.
3.
R
E
SEARC
H M
ETHOD
3.
1.
Thermal Effe
ct
Calcul
ation
In
an
y g
e
n
e
rato
rs,
h
eating
effect
m
u
st
always
be tak
e
n
in
t
o
co
nsid
eratio
n as it will n
o
t
on
l
y
d
e
term
in
e th
e
o
p
e
ration
o
f
t
h
e g
e
n
e
rat
o
rs but also
th
e lifespan
o
f
th
e m
ach
in
e.
The
heat
i
ng e
f
fect
of
a ge
ne
rat
o
r c
o
m
e
s fr
om
t
h
e
excitation c
u
rrent
If
and als
o
stator current
I.
Acco
r
d
i
n
g t
o
[
15]
[
1
6]
, t
h
e
t
h
erm
a
l
energy
W i
s
gi
ve
n
by
t
h
e
fol
l
o
wi
n
g
e
quat
i
o
ns:
W
T
B
T
N
E
T
N
I
X
2
T
N
N
EIX
co
s
π
2
δ
φ
3
wh
ere Tk
is the p
r
o
p
o
r
tion
a
li
ty co
n
s
tan
t
rel
a
tin
g
W
and
B
e
2
, Be is th
e resu
ltan
t
flux
den
s
ity, Is is th
e stato
r
current,
Na and Nf a
r
e num
b
er of
turns in the windings
, Xd is the sy
nc
hronous reacta
n
ce, E is the no-l
oad
vol
t
a
ge
,
δ
is the ro
to
r ang
l
e an
d
φ
is the
power factor.
The e
q
uat
i
o
n
c
a
n
be
re-a
rra
ng
ed t
o
gi
ve:
W
q
A
(4)
w
h
er
e
[
A
]T = [a1
a2 a3
],
[
q
]T = [q
1
q2
q
3
]
and
a
T
N
,a
T
N
,a
N
N
T
q
E
,q
I
X
,q
2
E
I
X
cos
π
2
δ
φ
As t
h
e
heat
pr
o
duce
d
by
t
h
e
gene
rat
o
r i
n
crease
i
t
s
t
e
m
p
erat
ure, i
t
i
s
di
ssi
pat
e
d
t
h
r
o
ug
h t
h
e
su
rroun
d
i
ng
. If
th
e rise o
f
tem
p
eratu
r
e b
e
tween
op
er
ating
co
nd
ition
T
an
d no lo
ad
tem
p
eratu
r
e Ts is T-Ts,
and
α
is th
e tran
sfer ind
e
x
fo
r te
m
p
erat
ure a
nd
heat
i
n
g, t
h
e
r
ef
ore t
h
e f
o
l
l
o
wi
n
g
eq
uat
i
o
n
can be
use
d
t
o
fi
n
d
the rate
of inc
r
easing tem
p
erature.
H
(
5
)
H is t
h
e th
erm
a
l in
ertia con
s
tan
t
. Th
e typ
i
cal
v
a
lu
e
of T
s
is
40°C. As
the te
m
p
erature (dy/dt)
does
not c
h
ange
in
stead
y-state co
nd
itio
n, t
h
en
whe
n
0
,
;
whe
n
∞
,
Sub
s
titu
tin
g T
0
and T
∞
in
t
o
(5
)
,
th
e
n
(6)
Th
e equ
a
tio
n is u
s
ed
i
n
th
e si
m
u
la
tio
n
to calcu
late th
e tem
p
eratu
r
e of t
h
e
mach
in
e wh
ere
α
= 1/
30
0
MW
/
°
C
,
H
/
α
= 60
0 s,
H
= 2
M
W
.s/°C, Xd
≈
Xad
= 1.
30
5 pu
, [A]
= [
9
.
1
α
, 33.
2
α
, 17.
4
α
] [
1
5
]
.
3.
2
Coo
ling Sy
stem Ca
lculatio
n
Al
l
convent
i
o
n
a
l
t
h
er
m
a
l
generat
o
rs need t
o
di
ssi
pat
e
t
h
e h
eat
generat
e
d by
it
s
m
achi
n
e core. Thi
s
i
s
t
h
e fu
nct
i
on o
f
i
t
s
cool
i
ng sy
st
em
. M
a
i
n
m
e
t
hods
of c
ool
i
ng are
o
n
ce t
h
rou
g
h
sy
st
em
s, wet
reci
rcul
at
i
ng o
r
cl
osed-l
oo
p sy
st
em
s and dry
cool
i
ng.
The si
m
p
lest
m
e
t
hod i
s
o
n
ce t
h
ro
ug
h sy
st
em
s where wat
e
r fr
om
nearby
sou
r
ces i
s
ci
rcul
at
ed i
n
t
h
e
conde
nsers t
o
absor
b
heat
an
d t
h
en
di
schar
g
ed l
o
cal
l
y
.
Wet
reci
rcul
at
i
ng sy
st
em
s recy
cl
e t
h
e wat
e
r by
usi
n
g
cool
i
ng t
o
wers
t
o
cool
t
h
e w
a
r
m
wat
e
r and t
h
erefore
use
l
e
ss wat
e
r. Dr
y
cool
i
ng sy
st
em
s use ai
r i
n
st
ead of
water to cool the
m
achine. There is al
so hy
dro
g
en co
ol
i
n
g
,
where
hy
dro
g
e
n i
s
used to absorb
th
e h
eat. In
th
is
paper,
wat
e
r c
ool
i
ng sy
st
em
s are m
odel
l
e
d
t
o
be si
m
u
l
a
t
e
d as co
ol
i
ng s
y
st
em
of t
h
e g
e
nerat
o
rs,
whi
c
h ha
s
b
e
tter h
eat re
mo
v
a
l cap
ab
ility.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Th
erma
l
Effect o
f
Wi
n
d
Gen
e
ra
tio
n on
C
o
n
v
en
tio
na
l
Gen
e
rato
r in … (Azmi
Ha
sh
i
m
)
89
3
The heat
absor
b
ed by
t
h
e coo
l
i
ng wat
e
r fl
owi
ng t
h
r
o
u
gh t
h
e l
e
ngt
h dx
o
f
t
h
e generat
o
r
s
i
s
gi
ven by
th
e fo
llo
win
g
ex
p
r
ession
[4
]:
,
(7)
where S
1
is th
e p
e
ri
m
e
t
e
r o
f
tran
sv
ersal sectio
n
o
f
waterway, W
is th
e co
o
lin
g
water
m
a
ss rat
e
, C
w
is th
e
speci
fi
c heat
of
cool
i
n
g
wat
e
r
at
const
a
nt
pre
ssure an
d
dT
w
i
s
t
h
e di
ffe
rence
of
wat
e
r t
e
m
p
erat
ure o
f
l
e
ngt
h d
x
.
Also:
0
.023
.
.
(8)
whe
r
e
α
c
is t
h
e
convection
coefficient
of wat
e
r,
K
w
is t
h
ermal co
n
d
u
c
tiv
i
t
y o
f
water;
D
H
i
s
t
h
e e
q
ui
val
e
nt
hy
d
raul
i
c
di
am
et
er o
f
w
a
t
e
rway
;
R
e
i
s
R
e
y
nol
ds
n
u
m
b
er, P
r
i
s
Pra
ndt
l
num
ber. B
o
t
h
res
p
ect
i
v
el
y
are
gi
ve
n
by
:
,
(9)
At steady sta
t
e,
,
,
(10)
As bo
th
sid
e
s of th
e eq
u
a
tio
n in
teg
r
ated
ov
er
T
w
an
d
x, w
e
get:
(11)
When
x = L
c
, T
w
= T
out
, so:
(12)
In t
h
e sim
u
lation, dat
a
from
[4]
are used where
W
= 25.5
kg/
s, C
w
=
4
.
18
13
x1
0
3
kg.K/J
, K
w
= 0.6
W/
m
/
K
,
μ
= 8.
01
x 1
0
-4
Pa-s, T
in
= 45°C
,
L
c
=
12m
.
3.
2.
Simulati
on
The si
m
u
l
a
ti
on
was do
ne usi
n
g M
a
t
l
a
b and
Sim
u
l
i
nk so
ft
ware
. The m
i
cro
g
ri
d co
nsi
s
t
s
of a 15M
W
co
nv
en
tio
n
a
l
syn
c
hrono
us g
e
n
e
rator and 4
.
5
M
W wi
nd
farm
co
n
n
ect
ed
in
p
a
rallel to
a lo
ad
th
rou
gh
t
r
ansm
i
ssi
on l
i
n
e.
The
l
o
a
d
i
s
resi
dent
i
a
l
o
f
1
0
M
W
,
0.
95
pf
. T
h
e
gen
e
ra
t
o
r act
s
as t
h
e
base
ge
nerat
o
r
.
T
h
e
wind
farm
m
o
d
e
l is a si
m
p
lif
ied
m
o
d
e
l th
at
fo
llows lin
ear
relatio
n
s
h
i
p
wit
h
th
e wi
n
d
. It
will trip
fro
m
t
h
e grid
whe
n
t
h
e wi
nd
spee
d g
o
bey
o
n
d
m
a
xim
u
m
perm
i
ssi
bl
e w
i
nd
val
u
e
,
an
d
reco
n
n
ect
w
h
e
n
i
t
g
o
bel
o
w
i
t
.
The
di
ag
ram
of t
h
e
sy
st
em
i
s
sho
w
n i
n
Fi
g
u
r
e
2.
Fig
u
re
2
.
Micro
g
rid syte
m
in
th
e sim
u
latio
n
W
i
n
d
spee
d da
t
a
from
four
di
ffe
rent
day
s
o
f
t
h
e y
ear corre
spo
n
d
i
n
g t
o
di
ffe
rent
seas
ons
of t
h
e y
ear
i
n
U
K
a
r
e u
s
ed
as sh
o
w
n i
n
Fi
gu
re
3 [
1
7]
. T
h
e val
u
e
for t
h
e
sha
p
e pa
ram
e
ter,
k a
nd t
h
e sc
ale param
e
ter
λ
are
di
ffe
re
nt
for
di
ffe
rent
seaso
n
s
of t
h
e y
ear as sho
w
n i
n
Ta
b
l
e 1 [18]
. Th
es
e val
u
es are us
ed t
o
gene
rat
e
wi
n
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
89
0 – 89
6
89
4
spee
d at 10 seconds inte
rval accordi
ng
to
W
e
ibull
distribution function. T
h
e sim
u
la
tions were run
co
n
tinuo
usly f
o
r
tw
en
ty f
our
ho
ur
s w
ith
co
nstan
t
lo
ad. Th
e po
w
e
r
g
e
n
e
r
a
ted
b
y
th
e w
i
nd
f
a
r
m
an
d
con
v
e
n
t
i
onal
s
y
nch
r
o
n
ous
ge
nerat
o
r we
re o
b
ser
v
e
d
an
d t
h
e t
e
m
p
erat
ure of t
h
e m
achi
n
e and i
t
s
wat
e
r cool
i
n
g
were
calculated.
Fig
u
r
e
3
.
24
hou
r
s
hou
r
l
y
w
i
nd
sp
eed
d
a
ta for
Plym
o
u
t
h
Tabl
e 1. Val
u
e
s
o
f
k AN
D
λ
f
o
r
di
f
f
ere
n
t
sea
s
on
s at
Pl
y
m
out
h
W
eat
her
St
a
t
i
o
n
Season k
λ
W
i
nter
(
D
JF)
2.
1
16.
25
Spr
i
ng (
M
AM
)
2.
4
13.
83
Su
m
m
er
(
JJA)
2.
53
11.
52
Autu
m
n
(
S
ON)
2.
08
13.
73
4.
R
E
SU
LTS AN
D ANA
LY
SIS
As the wi
nd
power
gene
ration varies accordi
ng to th
e
varia
b
ility of the wind spee
d, the synchronous
gene
rat
o
r a
d
j
u
st
i
t
s
po
wer
o
u
t
put
t
o
m
eet
t
h
e dem
a
nd. T
h
e
gra
p
h i
n
Fi
g
u
r
e 4
sh
o
w
s
bot
h ge
ne
rat
o
rs
o
u
t
p
ut
d
u
r
i
ng
t
h
e f
i
r
s
t tw
o hou
r
s
of
t
h
e sim
u
latio
n
d
u
r
i
ng
t
h
e
w
i
n
t
er
d
a
y.
Fi
gu
re
4.
W
i
nd
ge
nerat
i
o
n
o
u
t
put
a
n
d c
o
n
v
e
n
t
i
onal
ge
ne
rat
o
r
out
put
at
0
0
:
0
0 t
o
0
2
:
0
0
The
results
of t
h
e m
achine tem
p
erat
ure rise
and its coolant
are s
h
ow
n
i
n
Fi
gu
re 5.
T
h
e gra
p
h
s
h
o
w
s
th
e flu
c
tu
ation o
f
th
e tem
p
er
ature of the machine
i
n
t
h
e
p
e
ri
o
d
of
24
ho
urs at
di
f
f
ere
n
t
t
i
m
e
s of t
h
e y
ear. As
t
h
e wi
n
d
spee
d
and wi
n
d
ge
n
e
rat
i
on i
n
t
h
e s
y
st
em
fl
uc
t
u
at
e, t
h
e sy
nchr
o
n
o
u
s ge
ne
rator need to com
p
ensate
th
e to
tal g
e
n
e
ratio
n
to
m
eet
t
h
e d
e
m
a
n
d
.
Th
e m
ach
in
e
tem
p
erature increased (a
nd dec
r
eased) as a re
sult of
th
is.
Th
is
resu
lts are th
en
co
m
p
ared
t
o
th
e m
a
c
h
in
e
t
e
m
p
erat
ure whe
n
t
h
ere
i
s
no wi
nd
g
e
nerat
i
o
n i
n
co
nn
ection
.
Alth
ou
gh
th
e
g
e
n
e
rat
o
r
h
a
s to
m
eet al
l th
e
d
e
m
a
n
d
b
y
itself, h
e
n
ce work
s clo
s
er to
its fu
ll
0
10
20
30
40
50
0:
00
4:
00
8:
00
12
:0
0
1
6
:
0
0
20
:0
0
wind
speed
(km/h)
25
‐
Ja
n
‐
16
07
‐
Apr
‐
16
13
‐
Jul
‐
16
15
‐
Oc
t
‐
16
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Th
erma
l
Effect o
f
Wi
n
d
Gen
e
ra
tio
n on
C
o
n
v
en
tio
na
l
Gen
e
rato
r in … (Azmi
Ha
sh
i
m
)
89
5
capacity, there
is no significa
nt te
m
p
erature
rise in the
core of the m
achine in com
p
ariso
n
with
all th
e
o
t
h
e
r,
w
h
ich
r
e
m
a
in
s stab
le at arou
nd
5
0
°C thr
ough
ou
t th
e sim
u
l
a
tio
n
.
Fi
gu
re
5.
M
ach
i
n
e an
d c
o
ol
i
n
g
wat
e
r t
e
m
p
erature at
differe
n
t tim
e
of t
h
e y
ear
Accord
ing
to t
h
e calcu
latio
n
,
th
e m
ean
g
e
nerato
r te
m
p
erat
ure
f
o
r
t
h
e
day
i
n
wi
nt
e
r
,
sp
ri
ng
, s
u
m
m
er
and a
u
t
u
m
n
i
s
80.
5°C
,
74
.1
°
C
, 60.
7°C
an
d
73.
4°C
.
T
h
e hi
g
h
er t
e
m
p
erat
ure i
n
t
h
e w
i
nt
er i
s
due t
o
m
o
re
chan
ges
an
d
fl
uct
u
at
i
o
n
of
wi
nd
s
p
eed
d
u
ri
n
g
t
h
e
wi
nt
er
da
y. It ca
n
be
se
en
from
the graph that t
h
e increase
of the m
achine te
m
p
erature c
a
n increas
e even
th
oug
h
it is g
e
n
e
rating
less p
o
wer th
an
u
s
u
a
l. For ex
am
p
l
e, th
e
avera
g
e t
e
m
p
erat
ure
of t
h
e c
o
n
v
e
n
t
i
onal
ge
nerat
o
r d
u
ri
n
g
wi
nt
er day
i
s
m
o
re t
h
an du
ri
ng t
h
e s
u
m
m
e
r day
,
al
t
hou
g
h
m
o
re po
we
r
ca
n be g
e
nerat
e
d by
t
h
e
wi
n
d
farm
du
r
i
ng wi
nt
e
r
.
5.
CO
NCL
USI
O
N
The
pa
per
di
sc
uss t
h
e e
ffect
o
f
wi
n
d
po
wer
f
l
uct
u
at
i
o
n t
o
t
h
e heat
i
n
g
of
co
nve
nt
i
o
nal
g
e
n
e
rat
o
r
i
n
a
microgri
d
. T
h
e
te
m
p
erature increase in
the machine a
nd the
cooling water can
be a
n
alysed after sim
u
lation
of
t
h
e m
i
crogri
d
i
s
car
ri
ed
o
u
t
us
i
ng t
h
e m
e
t
hod
di
sc
usse
d.
Th
e resu
lt of th
e sim
u
latio
n
sh
ows th
at th
ere will b
e
in
crease in
th
e m
ach
i
n
e tem
p
eratu
r
e as th
e wind
gene
ration
fluc
tuate according t
o
the
na
ture
of the
wind s
p
eed. T
h
e
rate
of tem
p
erature
increa
se als
o
diffe
rs
according
t
o
differe
nt values
of k
a
n
d
λ
of
the
wind s
p
ee
d,
which di
ffe
rs according to
diffe
re
nt tim
e
of the
year in
four se
ason weather.
Furt
her st
u
d
i
e
s
need t
o
be d
o
n
e i
n
a bi
gge
r gri
d
sy
st
em
t
o
i
nvest
i
g
at
e t
h
i
s
effect
at
di
ffer
e
nt
l
e
vel
of
wi
n
d
ene
r
gy
penet
r
at
i
o
n
.
A
l
so, a
v
a
riab
le lo
ad
co
rrespo
nd
ing
to
v
a
riable energy
dem
a
nd can a
l
so be
incorporate
d
i
n
t
h
e fut
u
re
s
i
m
u
lation to
a
n
alyse th
e
com
b
ine effect
of the
cha
n
ge
s of t
h
e
wind powe
r
gene
rat
i
o
n a
n
d
t
h
e l
o
a
d
dem
a
nd
.
REFERE
NC
ES
[1]
GWEC, “Global Wind Repor
t 20
16,” p
.
76
, 2017
.
[2]
Wind Euro, “Wind in power
201
6 European Statistics,”
EW
EA Eropean
Sta
t
.
, no
.
Februar
y
, pp. 1–
12, 2016
.
[3]
Y.
Zhang,
H.
Zhang,
D.
Yao,
an
d Q. Li, “Resear
c
h on the Wind
Power Pene
trat
i
on Lim
it in Power S
y
stem
,
”
vol
.
11, no
. 8
,
2013
.
[4]
P. Shi, “Th
e
rm
al
Effect
of In
term
itten
t
Gen
e
ration
on Conven
tional Gener
a
tor
,
”
Sys
t
em
, no
. 1
,
2009
.
[5]
P. E. Bett, H.
E. Thornton
,
and
R. T. C
l
ark
,
“Eu
r
opean wind
var
i
ability
over 140
y
r
,”
Ad
v.
Sci
.
R
e
s.
, vol. 10, no
.
12th EMS Annu
al Meeting
and
9
t
h Europ
ean
Con
f
erence
on
Applied Climatolog
y
(
E
CAC) 2012, pp
. 51–58
, 2013
.
[6]
K. Sindh, S. F. Khahro, A. M.
Soomro, K. Tabbassum, and
L. Dong, “Assessment of
wind power potential at
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
89
0 – 89
6
89
6
Hawksbay
,
”
TELKOMNIKA Indonesian Journal
of Electrical En
gineering
, 2013; 11 (7): .
[7]
N. Earl
, S. Dorl
ing, R. Hewsto
n
,
and R. Von Gl
asow, “
2010-1980 Variabil
it
y
i
n
U.K. surface
wind clim
at
e,”
J.
Clim.
, vol. 26
, n
o
. 4
,
pp
. 1172–1
191, 2013
.
[8]
UK Department
of Energ
y
and C
limat
e Ch
ange, “
A
verage wind
speed
and dev
i
at
io
ns from
the long
term
m
ean (
E
T
7.2),”
En
ergy Tr
ends Sect. 7 W
e
a
t
her
, no
. June, p
.
2017, 2017.
[9]
G. Sinden, “Characteristics of th
e UK wind resource:
Long-term
patterns a
nd relationship to
electricity
demand
,”
Energy Poli
cy
, v
o
l. 35
, no
. 1
,
pp
.
112–127, 2007
.
[10]
T. Bur
t
on, D. Sh
arpe, N. Jenkins, and
E. A. Bossan
y
i, “Wind En
er
g
y
Handbook.pd
f.” 2001
.
[11]
Y. Zhou and S.
J. Smith, “Spa
tial and
temporal
patterns of glob
al onshore wind
speed distributio
n,”
En
viron. Res
.
Lett.
, vol.
8, no.
3, p
.
34029
, 201
3.
[12]
A. Kalmikov
an
d K. D
y
kes,
Win
d
Power
Funda
mentals
.
Elsevier Inc., 2010.
[
1
3
]
J.
Sh
i
a
n
d E.
E
r
de
m,
Estimation o
f
Wind
En
ergy Poten
tia
l and
Pre
d
iction
of
Wind
Power
. Elsevier Inc.,
2017.
[14]
H. M. El_ Zogh
b
y
and S. M. Sh
ar
af, “D
y
n
amic
Response of a Grid Connect
ed
Wind Farm
with Different Ty
p
e
s of
Generators
,”
In
ternational Journ
a
l of Power
El
ectronics and Drive
System (
I
JPED
S)
, 2011; 2(1): 8
5
-98.
[15]
S. S. Choi and X
.
M. Jia, “Under
excitation limiter and its ro
le in p
r
eventing ex
cessive s
y
n
c
hronous
generator stator
end-core
he
ating
,
”
I
E
EE Trans. Power Syst.
, vo
l.
15, no
. 1
,
pp
. 95
–101, 2000
.
[16]
W
.
R. L
achs
and
D. Sutan
t
o, “
R
o
t
or he
ating
as an
indic
a
tor
of s
y
s
t
em
voltag
e
inst
a
b
ilit
y,
”
IE
EE
Trans.
Powe
r Sy
st.
,
vol. 10
, no
. 1
,
pp
. 175–181
, 1995
.
[17]
“Ply
mouth
,
United
Kingdom |
We
athe
r Und
e
rground.” [
O
nline]
. Available:
https://www.wunderground.com
/
weath
e
r/gb/p
l
ymout
h/50.36999
893,-4.1399998
7. [Accessed: 18
-Aug-2017]
.
[18]
S. E. George, “United Kingdo
m Windspeed -
Measurem
ent, Climatolog
y
,
Pr
edicta
bility
and
Link to Tropical
Atlantic Var
i
ab
ility
,
” Univ
ersity
College London
, 2006.
BIOGRAP
HI
ES
OF AUTH
ORS
Azm
i
Hashim
–
Ele
c
tri
cal
Sec
tio
n, Universi
t
y
Ku
ala
Lum
pur – B
M
I, Mala
ysi
a
A. Has
h
im
recei
ved his
Bache
l
or
of Elec
tric
al En
gineer
ing from
the Univers
i
t
y
of
S
h
effield
,
UK
and his M.Sc in Elec
tric
al from
Universiti T
e
kn
ologi Mala
ysia
,
Mala
y
s
ia
. He is now doing hi
s
res
earch s
t
ud
y
a
t
Univers
i
t
y
of
S
t
rathcl
yd
e. His
res
earch
int
e
res
t
include pow
er s
y
s
t
em
an
al
ys
is
and distr
i
buted
p
o
wer s
y
stem.
Kwok L. Lo
-
Department of
El
e
c
troni
c &
E
l
ectr
i
ca
l
Engine
e
r
ing, Univ
ers
i
t
y
of S
t
ra
thcl
yd
e,
Glasgow,
UK
Kwok L. Lo
re
c
e
ived
the
M.Sc.
and Ph.D. d
e
gre
e
s from
the Univ
ersit
y
of
Manch
e
ster Institu
te
of
Science and Technolog
y
,
U.K. C
u
rrently
he
is Research Profe
sso
r of Power Sy
stems and Head
of the Power S
y
stems Research Group at the Univ
ersi
ty
of Strath
cly
d
e, U.K. His special fields of
inter
e
s
t
includ
e
power s
y
s
t
em
s
anal
y
s
is
, plann
i
n
g
, operation, mo
nitoring
, and co
ntrol, in
cluding
energ
y
m
a
rk
et li
beral
i
za
tion is
s
u
es
.P
rof Lo is
a Fellow of IET an
d a F
e
llow of the Ro
y
a
l S
o
cie
t
y
of Edinburgh
.
Evaluation Warning : The document was created with Spire.PDF for Python.