TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 15, No. 2, August 201
5, pp. 217 ~
228
DOI: 10.115
9
1
/telkomni
ka.
v
15i2.825
3
217
Re
cei
v
ed Ma
y 2, 2015; Re
vised June
2
7
, 2015; Acce
pted Jul
y
13,
2015
Power Control of High Penetration PV in Distribution
Network
Saman Hos
s
e
ini Hemati*,
Ashka
n
Mo
hammadi
Electrical E
ngi
neer
ing D
e
p
a
rtment, F
a
cult
y
of Engin
eer
ing,
Kermansh
ah
Branch, Islami
c Azad Univ
ers
i
t
y
,
Kermans
hah, Iran
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: saman.h@
liv
e.com
A
b
st
r
a
ct
Photovo
l
taic
e
nergy
is on
e o
f
the fastest grow
ing re
new
ab
le e
nergy s
our
ces in th
e w
o
rl
dan
d a
s
the iss
ue
of e
n
e
rgy s
e
curity
is
bec
o
m
in
g
mor
e
a
nd
more
i
m
portant
it co
uld
be
a
pro
m
is
in
g o
p
tion.
But a
s
photov
olta
ic e
n
e
rgy is
bec
o
m
i
ng w
i
des
pre
a
d
and
pe
netrati
on l
e
vel
of p
h
o
t
ovoltaic
pow
er
pla
n
ts incr
eas
e,
issues r
i
se
in
d
i
stributi
on
netw
o
rks.In this p
a
p
e
r a
pow
er co
n
t
rol sche
m
e for
a h
i
g
h
p
enetra
tion
photov
olta
i
c
pow
er pl
ant in
a radi
al
distri
butio
n netw
o
rk
w
ill be pr
ese
n
ted. This co
n
t
rol sche
m
e in
clud
es an
efficien
t
Maxim
u
m
P
o
wer Point Tracking (MPPT),
D
C
li
nk vo
ltag
e
control
by
ma
n
agi
ng pow
er b
a
la
nce betw
e
e
n
th
e
hysteresis c
ont
rolle
d i
n
verter
and
a
bo
ost co
nverter.
An
oth
e
r asp
e
ct of
Hi
gh P
enetrati
on
PV (HPPV) w
h
ich
is ov
ervolta
g
e
in
Poi
n
t of
Co
mmon
C
o
u
p
lin
g (P
CC)
i
s
als
o
i
n
vesti
gated
a
n
d
maxi
mu
m al
low
abl
e
Penetrati
on L
e
v
el (PL) w
ill be
deter
mi
ned. Si
mu
lati
ons hav
e
been d
o
n
e
in
Matlab/Si
muli
n
k
enviro
n
m
ent.
Ke
y
w
ords
: dis
t
ributio
n netw
o
rk, maxi
mu
m p
o
w
e
r point
trac
king, ph
otovo
l
taic, pow
er cont
rol
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Photovoltaic (PV) energy is
one of the fa
stest growi
n
g
rene
wabl
e energy source
s in the
worl
d.
Curre
n
tly there
are several init
iative proj
ect
s
whi
c
h
are
targeted
o
n
developin
g
a
nd
improvin
g th
e key te
chn
o
l
ogy of ena
bl
ing hig
h
re
ne
wabl
e en
ergy
penetration i
n
the ele
c
tri
c
a
l
grid
of future,
such
as the I
n
telligrid proj
ect of
the Electri
c
Power Resear
ch Institute (EPRI
)
, the
sma
r
t grid d
e
m
onst
r
ation p
r
oje
c
ts of the
U.S. D
epa
rtment of Energy (DOE
), the Galvin Perf
ect
Powe
r Initiative proje
c
t, and others [1, 2].
The a
nnu
al g
r
owth
rate of
photovoltai
c
ene
rgy i
s
2
5
-
35%
over th
e la
st ten ye
ars an
d
156% an
d 85
% annual
gro
w
th rate i
n
US only in 201
2 and 2
013
resp
ectively. The ma
rkets
for
sola
r PV
hav
e un
dergon
e
a d
r
amati
c
sh
ift in the la
st t
en yea
r
s.
Pri
o
r to
20
00 th
e p
r
imary
ma
rket
for PV wa
s in off-gri
d
appli
c
ation
s
, such a
s
rural el
ect
r
ification, wate
r pumpin
g
, and
telecom
m
uni
cation
s. Ho
wever, now m
o
st of the gl
ob
al market is for gri
d
-con
ne
cted ap
plications
whe
r
e th
e po
wer is fe
d int
o
the ele
c
tri
c
al network. F
u
rthe
rmo
r
e,
most of the
n
e
w PV
capa
city
has be
en i
n
stalled in
the
distrib
u
tion
g
r
id a
s
dist
rib
u
ted g
ene
rati
on. As the
u
s
e
of solar
PV
contin
ue
s to
expand,
con
c
ern a
bout its
potential im
p
a
ct on th
e sta
b
ility and op
e
r
ation of the
grid
gro
w
to
o. Uti
lities a
nd
po
wer
system
operator
s
are p
r
ep
arin
g f
o
r
ch
ang
es to integ
r
ate
a
nd
manag
e more of this rene
wabl
e ele
c
tricity source in their sy
stem
s.
The p
enetration level i
s
defined
as the ratio of n
a
meplate
PV power
ratin
g
to th
e
maximum loa
d
se
en o
n
the
distrib
u
tion f
eede
r. The v
o
ltage ri
se i
s
sue
ha
s be
en
repo
rted
as
one
of the co
nce
r
ns
und
er hi
gh pen
etratio
n
of ren
e
wa
ble Di
strib
u
te
d Gen
e
ratio
n
s
(DG
)
[3]. The
reverse
po
we
r flow
ca
used
by larg
e am
o
unts of
DG
m
a
y cau
s
e
voltage
rise to
which
dist
ributi
o
n
netwo
rk
ope
rators
co
ntrol
can
not effecti
v
ely resp
ond
sin
c
e the tra
d
i
tional gri
d
ha
s bee
n pla
n
n
e
d
to deliver po
wer to the loa
d
at satisfa
c
tory voltage ra
nge [4].
Two majo
r st
udie
s
[5, 6]
con
c
e
n
trated
on di
stribute
d
gene
rators interface
d
to utilities
throug
h inve
rt
ers,
an
d la
rg
er-scale
sy
stem imp
a
ct
s a
nd
rotating
di
stribute
d
gen
eration
(DG
)
,
but
still with
several
re
sult
s
on inve
rter-b
ase
d
DG. T
he first stu
d
y
[5] con
c
lu
ded th
at for DG
penetration l
e
vels of 40%
, such that the system
i
s
h
eavily depen
dent on
DG
s to satisfy loa
d
s,
voltage re
gul
ation ca
n be
come
a se
rio
u
s p
r
obl
em.
The sudd
en l
o
ss of DG
s,
particula
rly as a
result of fal
s
e trippi
ng
du
ring volta
ge
or fr
equ
en
cy events,
ca
n
lead
to u
n
a
ccepta
b
ly l
o
w
voltages in
p
o
rtion
s
of th
e sy
stem.
During
pe
rio
d
s of lo
w l
oad
but hig
h
g
e
n
e
ration
an
d
with
certai
n dist
ri
bution ci
rcuit configu
r
atio
ns, t
he reve
rse p
o
wer flow condition
could cau
s
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 217 –
228
218
malfunctio
n
s
of the seri
es
voltage regul
ators.
A
gain,
voltage regul
ation be
co
me
s a
problem.
A
voltage regul
ation fun
c
tion
, impleme
n
te
d thro
ugh
re
a
c
tive
po
we
r control, woul
d enabl
e
inve
rter-
based
DG
s to be
mu
ch
more
be
neficial to th
e g
r
i
d
than they
c
u
rrently are. But this func
tion
woul
d interfe
r
e with mo
st
anti-isl
andi
ng
scheme
s
a
s
they are p
r
e
s
ently imple
m
ented. Inve
rter-
based
DG
s d
o
not
contri
b
u
te sig
n
ifica
n
t
ly to faul
t cu
rre
nts, an
d th
us di
d n
o
t ad
versely im
pa
ct
coo
r
din
a
tion strategi
es
for
fuse
s and ci
rcuit brea
kers. The
stu
d
y
notes that th
e short
-
du
rati
on
fault current
contri
bution
of small di
stribute
d
inv
e
rter-ba
s
e
d
DG
s is
smal
ler than that
of
distrib
u
ted i
n
ductio
n
ma
ch
ines.
Ho
weve
r, it also p
o
in
ts out th
at thi
s
mig
h
t not
a
l
ways be
true
if
the DG i
s
connected
at a point
where the utility
series imped
ance i
s
unusually high. T
h
ese
con
c
lu
sio
n
s
may not re
main valid if
the voltage
reg
u
lation
control
s
sug
g
ested
above
are
impleme
n
ted.
Referen
c
e [4]
pro
p
o
s
e
s
a
method
of re
active po
we
r
injectio
n which is
not to
co
ntrol b
u
s
voltage but t
o
gu
ara
n
tee
that a
c
tive power
gen
eration d
oes n
o
t ca
use vol
t
age ri
se.
T
he
advantag
e is that the voltage
become
s
indep
end
e
n
t of the generatio
n and
the distribut
ion
netwo
rk op
erators
can
be
ke
pt to
thei
r tra
d
itional
task of volta
ge regul
ation
.
Ho
wever,
a
s
illustrate
d in
t
he p
ape
r, the
disadvanta
g
e
s
are
the
hi
gher O
n
-L
oa
d Ta
p
Cha
n
g
e
r
(OL
T
C)
stress
and fee
d
e
r
lo
ss. An
other d
r
awba
ck is th
at this
meth
o
d
re
quires i
n
formatio
n ab
o
u
t the up
stre
am
feeder im
pe
dan
ce re
sulti
ng in a co
mmuni
cating
need in ca
se of feede
r reco
nfigu
r
at
ion.
Referen
c
e [7
] also pre
s
e
n
t
s a method
of reactive p
o
we
r co
ntrol
whe
r
e invert
ers d
e
ci
de th
eir
output re
acti
ve power a
u
tonomo
u
sly a
t
first, and
continuo
usly modify
them with
exchan
g
i
ng
informatio
n b
e
twee
n ea
ch
inverter.
The
Gene
ral
Electri
c
(GE
)
20
08
re
port [8] com
pares th
e p
e
rfo
r
mance
with
different
penetration l
e
vels
whe
n
u
s
i
ng O
L
TC tra
n
s
form
er,
st
ep
voltage
reg
u
l
a
tor
(SVR) o
r
PV inverte
r
to
regul
ate th
e
distrib
u
ted
lo
ad voltag
e. T
he
key
co
nc
l
u
sio
n
from th
e repo
rt i
s
th
at co
ordinate
d
control
of uti
lity equipme
n
t and
DG
assets
can
be u
s
e
d
to
enha
nce the
pe
rform
a
n
c
e of
distrib
u
tion
systems. In
a
ddition, a
co
mmuni
ca
tion
link e
s
tabli
s
hed
between
se
rvice p
o
i
n
ts
(cu
s
tom
e
r me
ter con
n
e
c
tio
n
s) a
nd the u
t
ility equipment
is helpful. The rep
o
rt in
vestigate
s
on
th
e
rea
c
tive power suppo
rt fro
m
PV inverters. But as
poi
nted out in the repo
rt, at prese
n
t, the IEEE
1547
and
UL 174
1 only
allow PV
systems to o
perate at a unit
y
powe
r
fa
ctor. Howeve
r,
it
provide
s
a p
r
omisin
g meth
od if the stan
dard
can b
e
chang
ed in the
future.
In this pa
per,
a grid
co
nne
cted hi
gh pe
n
e
tration PV is simulate
d an
d voltage ri
se
issue
and po
we
r control
schem
e are di
scu
s
sed. Th
e org
anization of the re
st of this pap
er i
s
a
s
follows: in section
2 hig
h
pen
etratio
n
leve
ls of PV
energy
and
its co
nseque
nces wil
l
be
discu
s
sed. In
se
ction
3
e
quipme
n
t mo
dels u
s
ed
in
this
re
sea
r
ch are p
r
e
s
en
ted. The
co
n
t
rol
methods
will
be di
scussed in
section 4.
In sectio
n 5
the sim
u
lation result
s and discussions
are
pre
s
ente
d
an
d finally con
c
l
u
sio
n
s
clo
s
e the pap
er.
2. High Pene
tratio
n PV and ov
er
v
o
ltage issue
Voltage re
gul
ation is a
n
im
portant
subj
e
c
t in
ele
c
tri
c
al
distrib
u
tion e
ngine
erin
g, b
e
ca
use
it is the utility’s respon
si
bility to keep the
cu
sto
m
ers’ se
rvice volt
age (th
e
voltage at the
cu
stome
r
’s m
e
ter, or the lo
ad sid
e
of the point
of com
m
on co
uplin
g
(PCC))
withi
n
the accepta
b
le
range. ANSI C84.1
specifi
e
s a
gui
deline for this range, but t
he utilities have the freedom to
specify it differently based on t
heir specific circum
st
ances.
ANSI
C84.1 al
so
spec
ifies utilization
voltage, which refers to
th
e voltage
at t
he p
o
int of
u
s
e whe
r
e th
e o
u
tlet equi
pme
n
t is plug
ged
in.
Furthe
rmo
r
e,
two rang
es are define
d
, Rang
e A is re
comm
ende
d for n
o
rmal o
perating
con
d
ition
s
, while
Ran
ge B
co
rrespon
ds to u
n
u
s
ual
con
d
ition
s
, so the
o
c
currence h
a
s to
be
limited in tim
e
du
ration
a
nd fre
que
ncy
.
Re
comm
en
ded
se
rvice
and utili
zatio
n
voltage lim
its
according to ANSI C84.
1 are shown in Tabl
e
1. Utilities are gene
rally
concerned
with
maintainin
g the se
rvice v
o
ltage withi
n
acceptabl
e limits; the utilization voltag
e then follows
automatically, provided that
the house wi
ring is d
one a
c
cordi
ng to b
u
ilding
code
s.
Table 1. ANS
I
C84.1 voltage ran
g
e
Ser
v
ice Utilization
Min Max
Min
Max
Range A (n
ormal
)
-5%
+5%
-8.3%
+4.2%
Range B (e
merg
enc
y
)
-8.3%
+5.8%
-11.7%
+5.8%
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Co
ntro
l of High Pen
e
tration PV in Di
strib
u
tion
Network (Sa
m
an Hosseini
Hem
a
ti)
219
By conn
ectin
g
a hi
gh p
e
n
e
tration PV p
o
we
r pl
ant to
a di
stributio
n feede
r, the
voltage
regul
ation de
cre
a
ses a
nd con
s
e
que
ntly voltage rise
s
in the PCC. Irre
sp
ective of actual ado
pted
voltage limits (byANSI C8
4.1 or by in
d
i
vidual utilit
y), most utilities control th
e
s
ervi
ce volta
ge
indire
ctly, by controlling t
he voltage
on thep
ri
ma
ry circuit, the feeder. Se
rvice voltage
is
dire
ctlydepe
n
dent on
fee
der volta
ge;
whe
n
con
s
i
dere
d
o
n
th
e sa
mevolta
ge ba
se,
se
rvice
voltage is eq
ual to the feeder voltag
e
m
inus t
he vo
ltage dro
p
a
c
ross the
serv
ice tra
n
sfo
r
m
e
r
and
se
con
dary circuit co
nn
ection. Fig
u
re
1 sh
ows
an
example ofvo
ltage limits fo
r prim
ary
circuit,
servi
c
e entrance, andutilization
ba
sed
on one
utility’
s guidelines [
10]. It reflects theadjustm
ent
for a
s
sumpti
ons
abo
ut a
dditional volt
age d
r
op
int
he second
ary circuit an
d
allows fo
r the
necessa
ry m
a
rgin. Inthi
s
study, the prim
ary volt
age
a
nd
servi
c
e e
n
t
rance voltag
elimits
sho
w
n
in
Figure 1 we
re
used a
s
targ
et limits.
Figure 1. Voltage limits in d
i
stribut
io
n net
works acco
rdi
ng to [10]
The voltage
regulatio
n pra
c
tice
on di
stri
buti
on
syste
m
s i
s
ba
se
d
on radial
po
wer flow
from the
su
b
s
tation to th
e
load. Voltag
e drop o
n
th
e feede
r i
s
a
con
s
e
que
nce of current f
l
ow,
and imp
eda
n
c
e
(re
si
stan
ce and
rea
c
ta
nce
)
of the f
eede
r cond
u
c
tor, tra
n
sfo
r
mer a
nd lo
a
d
.
Load
s re
quire active and rea
c
tive power, and the re
lated cu
rren
t that supplie
s the active and
rea
c
tive power ca
uses th
e voltage dro
p
on feede
r con
d
u
c
tors. Feede
r cond
uctors a
r
e a given
(they a
r
e
sel
e
cted
first ba
sed
on
e
c
on
omic con
s
ide
r
at
ion
s
).
Wit
h
co
ndu
ct
o
r
si
ze
s kno
w
n
(t
heir
circuit
param
eters fixed),
there
a
r
e t
w
o
fundame
n
tal
ways to
cont
rol the volta
g
e
on th
e fe
ede
r,
by using O
L
T
C
tran
sforme
rs, or by in
stalling fix
ed or switched
ca
pacito
r
s to of
fset the rea
c
t
i
ve
power dem
a
nd from the load and thu
s
red
u
ce
the current flow through the
feeder and
the
related
voltag
e d
r
op.
OLT
C
, o
r
voltag
e
regul
ator,
i
s
an e
s
sential
part
of di
strib
u
tion n
e
two
r
ks. It
is typically
constructe
d a
s
aut
ot
ran
s
fo
rmers
with a
u
tomatically
adju
s
ting tap
s
. The
co
ntrols
measure the
voltage a
nd l
oad
cu
rrent,
estimate
t
he
voltage at th
e remote
(co
n
trolled
volta
ge)
point, and t
r
i
gger the tap
cha
nge
wh
e
n
the e
s
timat
ed voltage i
s
out of bo
un
ds. Multiple
tap
cha
nge
a
c
tio
n
s
may b
e
p
e
rform
e
d
unti
l
the voltag
e i
s
b
r
o
ught
wit
h
in b
oun
ds.
The ta
ps typically
provide
a
ran
ge of
±10%
of tran
sform
e
r rated vo
ltag
e with
32
ste
p
s. Ea
ch
ste
p
of voltage
i
s
therefo
r
e 0.6
25% of rate
d
volt
age. Wh
en conn
ecte
d to dist
ributi
on sy
stem
s, cap
a
cito
r ba
nks
sup
p
ly rea
c
tive power to off
s
et that of the
load, and
co
nse
que
ntly re
duc
e the amo
unt that need
s
to com
e
from
the sub
s
tatio
n
and
the a
ssociate
d
volta
ge d
r
op. T
he
cap
a
cito
r b
a
n
ks
ca
n b
e
fixed
(pe
r
man
ently conn
ecte
d)
or switched (con
ne
cted
when ne
ede
d),
so that their
sup
p
lied rea
c
tive
power match
e
s th
e
need
of the l
oad. I
n
p
r
a
c
tical
in
stallation
s thi
s
m
a
tchi
ng i
s
sel
dom
pe
rfect,
becau
se th
e
load
and
its reactive
po
we
r d
e
man
d
va
ry contin
uou
sl
y while
the
capa
citor ban
ks
are
swit
che
d
in discrete in
cre
m
ent
s. Moreove
r
, the
rea
c
tive po
wer from
cap
a
c
itors varie
s
with
voltage squa
red an
d so d
r
ops
off at low voltages
wh
en it is
most
need
ed. Ove
r
comp
en
satio
n
of
the feeder (a
ssoci
a
ted wit
h
too much
cap
a
cita
nc
e)
lead
s to voltage ri
se on t
he feede
r an
d it
might requi
re
action of the voltage reg
u
lator in
the sub
s
tation –
it would lowe
r the voltage to
accomm
odat
e the rise du
e to overcom
pen
sation by
the cap
a
cito
rs. Cont
rol
s
u
s
ed fo
r switching
cap
a
cito
r b
a
n
k
s can
be b
a
s
ed
on: time
clo
c
k (lo
ad
i
s
co
rrelated
wi
th time of d
a
y
), temperatu
r
e
(heavy lo
ad
su
ch
as air-con
ditioning
i
s
correl
ated
with am
bient
tempe
r
ature
)
, voltage
(lo
w
feeder voltag
e is a
n
in
dica
tion of th
e h
e
a
vy load
), re
active p
o
wer
flow
(to b
a
lan
c
e th
e
rea
c
tive
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 217 –
228
220
power actu
all
y
dra
w
n
by t
he lo
ad),
or f
eede
r
cu
rre
nt (simila
r to
re
active p
o
wer
control
but le
ss
expen
sive to impleme
n
t) [11].
Since i
n
mo
st
of develo
p
in
g countri
es,
OLT
C
a
r
e u
s
ed only i
n
su
b tran
smi
s
sio
n
and
all
distrib
u
tion ta
p chan
ging transfo
rme
r
s a
r
e off-load
ta
p chan
ging transfo
rme
r
s a
nd even if O
L
TC
is used in distribution net
works, a
c
tion o
f
it has
few to several
se
co
nds if not min
u
tes del
ay, the
maximum all
o
wa
ble pen
et
ration level
to
prevent overvoltage iscru
c
ial.
3. PV and In
v
e
rter Model
3.1. PV Model
Figure (2)
sh
ows the
equi
valent
ci
rcuit
of a sola
r pa
nel. A solar
panel i
s
com
p
osed of
several p
hot
ovoltaic
cell
s that have
serie
s
o
r
para
llel or serie
s
-parall
e
l external
con
n
e
c
tions.
Equation (1)
sho
w
s V-I ch
ara
c
teri
stic of
a solar p
anel
[12].
Figure 2. Equivalent circuit of Solar Pane
l
-[
e
x
p
(
)
-
1
]
-
SS
pv
o
tp
VR
I
V
R
I
II
I
aV
R
(1)
Whe
r
e I
pv
is
the photovoltaic current, I
o
is saturate
d reverse cu
rre
nt, 'a' is the ideal dio
d
e
c
o
ns
tant,
S
t
NK
T
V
q
is t
he the
r
mal
voltage,
N
s
is
th
e
nu
mb
er
o
f
s
e
r
i
es
c
e
lls
,
q
is th
e e
l
ec
tr
o
n
cha
r
ge
, K is
the Boltzma
n
n
co
nsta
nt, T
is the te
mpe
r
ature
of p-n j
unctio
n
, R
S
a
nd R
p
are
series
and p
a
rall
el e
quivalent resi
stan
ce of th
e
sola
r p
anel
s.
I
pv
has a linear relation
wit
h
light intensi
t
y
and al
so vari
es with temp
eratu
r
e variat
ions. I
o
is de
pend
ent on tempe
r
ature variation
s
. Val
ues
of I
pv
and I
o
are cal
c
ulate
d
according to the followi
ng e
q
uation
s:
,
()
pv
p
v
n
I
n
G
II
K
T
G
(2)
,
,
exp(
)
/
1
sc
n
I
o
oc
n
V
t
IK
T
I
VK
T
a
V
(3)
In whic
h I
pv
,n
, I
sc,n
and V
oc,n
are p
hotovolt
a
ic
curre
n
t, short ci
rcuit cu
rre
nt and
ope
n
circuit
voltage in
st
anda
rd
co
ndi
tions
(T
n
= 2
5
C
an
d G
n
= 1000
W /
m ^ 2)
res
p
ec
tively. K
I
is the
coeffici
ent of
sho
r
t-circuit current to tem
peratu
r
e,
n
TT
T
is the tempe
r
atu
r
e deviatio
n
from
stand
ard tem
peratu
r
e, G i
s
the light in
tensity and
K
V
is the rati
o coeffi
cient
of open
circuit
voltage to temperature.
Open
ci
rcuit
voltage, sho
r
t circuit
cu
rre
n
t and
voltag
e –
current
correspon
ding
to the
maximum p
o
w
er a
r
e th
ree
impo
rtant p
o
ints of I-V
cha
r
acte
ri
stic of Solar
Pa
nel. These
p
o
ints are
cha
nge
d by variation
s
of atmosp
he
ric
co
ndition
s. Usi
n
g Equation (4
) and (5) whi
c
h are de
rived
from PV model equatio
ns, short circuit
current and
open ci
rcuit voltage can
be cal
c
ulate
d
in
different atmo
sph
e
ri
c co
ndi
tions.
,
()
sc
sc
n
I
n
G
II
K
T
G
(4)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Co
ntro
l of High Pen
e
tration PV in Di
strib
u
tion
Network (Sa
m
an Hosseini
Hem
a
ti)
221
,
oc
oc
n
V
VV
K
T
(5)
3.2. H
y
steresis Curre
nt
Con
t
rol (HCC) o
f
Po
w
e
r
Electronic
Unit
Hysteresi
s
co
ntrol p
r
e
s
ent
s an
alternative method fo
r
prod
uci
ng a
sinusoidal a
c
curre
n
t
waveform from a dc
voltage s
o
urc
e
. Wit
h
this
meth
od
, the controlle
r maintai
n
s
a
n
output
current
that stays within a given tole
ra
nce of the refe
ren
c
e
waveform
. T
he tolera
nce that the output
stays
within
i
s
calle
d the
“hystere
si
s b
a
nd”.
Unli
ke th
e PWM
switching te
ch
niqu
e, the met
h
o
d
of
hystere
s
i
s
co
ntrol
depe
nd
s o
n
fee
dba
ck from the
o
u
t
put cu
rrent t
o
contro
l the
inverter sy
ste
m
.
The clo
s
e
d
-l
o
op co
ntrol me
thod ena
ble
s
the inverter
with hystere
s
is control to ad
apt instantly to
cha
nge
s in th
e output loadi
ng.
The co
ncept
of hysteresis cont
rol can
be appli
ed to a wid
e
rang
e of inverter
config
uratio
n
s
and to
polo
g
i
es. Both si
ng
le-ph
a
se
an
d three
-
ph
ase inverters
can
be co
ntroll
ed
by
the hystere
s
i
s
method a
s
well. A com
m
on topolo
g
y for single
-
ph
ase inve
rters is the H-b
r
id
ge
becau
se it offers
more con
t
rollability tha
n
the hal
f-bri
dge type. It allows the u
s
e
of three o
u
tp
ut
states inste
a
d
of two
and
requi
re
s h
a
lf
of the d
c
bu
s voltage to p
r
odu
ce the
sa
me pe
ak
out
pu
t
voltage [13].
Figu
re
3 ill
ustrate
s
the
fundame
n
ta
l con
c
e
p
t
of o
peratio
n
fo
r the
hyste
r
e
s
i
s
-
controlled inv
e
rter.
The refe
ren
c
e curre
n
t,
, repre
s
ent
s the desi
r
ed
wave
form for the o
u
tput load cu
rrent.
The top
an
d
bottom hy
stere
s
is limits
form the
hysteresi
s
ban
d, whi
c
h
corre
s
po
nd
s to th
e
toleran
c
e limi
t
of the inverter co
ntroll
er.
Figure 3. Con
c
ept of hyste
r
esi
s
ban
d an
d hystere
s
i
s
controlle
r
The two-level
inverter
cont
roller will appl
y t
he positive or negative dc
bus voltage to the
load in o
r
de
r to keep the
output cu
rre
n
t within
the
hystere
s
i
s
b
and. For
exa
m
ple, wh
en the
output current rises
above the t
op hysteresis limi
t, the inverter
controll
er
w
ill respond by
swit
chin
g the
tran
sisto
r
s to
apply the
ne
gative d
c
bu
s voltage to th
e loa
d
an
d ef
fectively red
u
c
e
the value of t
he outp
u
t cu
rrent to b
r
ing i
t
below
th
e top hyste
r
e
s
is limit. The in
verter
cont
rol
l
er
will kee
p
the negative dc b
u
s voltage a
c
ross the
load
until the output current re
a
c
he
s the bottom
hystere
s
i
s
lim
it. After the output curre
n
t drop
s bel
ow t
he bottom lim
it, the inverter cont
rolle
r wi
ll
sen
d
the app
rop
r
iate gatin
g sign
als to t
he tran
si
st
ors to switch the
m
to apply the positive d
c
bus
voltage a
c
ross the l
oad. T
h
is
will b
r
ing
the output
cu
rre
nt ba
ck up
above th
e b
o
ttom hyste
r
e
s
i
s
limit and withi
n
the allo
wab
l
e tolera
nce b
and a
r
ou
nd t
he refe
re
nce waveform. Th
e co
ntrolle
r will
contin
uou
sly repe
at this cy
cle to maintai
n
the
output load current within the hystere
s
is b
and.
Unli
ke othe
r
high-fid
e
lity inverter
cont
rol st
rate
gies, the
hysteresi
s
co
ntrolle
r will operate
at a variable
switching freque
ncy that
is sp
read
a
c
ro
ss the sp
ectru
m
. The
instantan
eo
us
swit
chin
g freq
uen
cy
at any point on the current wave
fo
rm ca
n be predicte
d
by [14]:
(
6
)
Whe
r
e
is the dc bu
s voltage,
is the inst
antane
ou
s voltage of
reference cu
rrent sign
al, L
is the
loa
d
in
ducta
nce, an
d h i
s
the
wi
dth of th
e hy
stere
s
i
s
band
. As
refle
c
ted
in Eq
uation
(6),
the hysteresi
s
inverte
r
wil
l
swit
ch fast
er at
poi
nts
in the cycl
e
whe
r
e the
re
feren
c
e
cu
rre
nt
rea
c
he
s its maximum and minimum values and switch much slo
w
er whe
n
is close to zero in
magnitud
e
. A
larger loa
d
i
ndu
ctan
ce
wi
ll allo
w th
e
i
n
verter to
switch at
a l
o
wer frequ
en
cy to
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 217 –
228
222
maintain the
curre
n
t within
the same hy
stere
s
i
s
ban
d
.
Since
will diverge to infini
ty if L is equal
to ze
ro, th
ere
mu
st be
som
e
ind
u
cta
n
ce
pre
s
ent i
n
the
load
for th
e
hystere
s
i
s
-co
n
trolled
inve
rter
to work. Th
e swit
chin
g fre
quen
cy is
al
so inversely p
r
opo
r
tion
al to
. The inverter will switch
at
highe
r rate
s o
v
erall to achi
eve a highe
r fidelity out
put curre
n
t within
a smalle
r hystere
s
i
s
ban
d
.
Figure 4
sho
w
s
a HCC for a sin
g
le
pha
se VSI. Assu
me the VSI te
rminal volta
g
e
V co
nne
cts
to a
sinu
soi
dal vol
t
age
sou
r
ce
e thro
ugh
an
equivalent i
n
ducta
n
ce L
a
n
d resi
stan
ce
R. If we
wan
t
to
control o
u
tpu
t
current i
to
track
a cert
ain refere
nce
cu
rre
nt i*, a
c
cordi
ng to
F
i
g. 4-a
we
h
a
ve
instanta
neo
u
s
value eq
uat
ion as:
(
7
)
Whe
n
the SO
FC outp
u
t cu
rre
nt is equ
al
to refere
nce curre
n
t i
*
, the corre
s
po
ndin
g
equatio
n wi
ll
be:
∗
∗
∗
(
8
)
Whe
r
e V* is t
he refe
ren
c
e
VSI terminal voltage co
rre
s
po
ndin
g
to i*. If we define
curre
n
t tracki
ng
error
∆
i
=
i
-
i*, it is clea
r that whe
n
R=0, we have:
∆
∗
(
9
)
Whe
r
e VSI terminal voltag
e V is:
1
0
(
1
0
)
Whe
r
e
E i
s
th
e VSI d
c
volt
age
and
s th
e solid
-state
swit
ch
statu
s
. Wh
en
∆
i is greater than
zero
and beyo
nd the tolera
nce, s is co
ntrolle
d to
be at lower level
s=0
and therefo
r
e (V-V
*
)<0 (n
ote
the dc volta
g
e
sh
ould
be b
i
g eno
ugh fo
r effe
ctive cu
rrent tra
cki
ng)
whi
c
h ma
ke
s
∆
i to reduc
e
.
In
the sam
e
wa
y if
∆
i<0 a
n
d
beyond th
e
toleran
c
e,
s i
s
controll
ed t
o
be at hi
gh
er-l
evel s=1
and
therefo
r
e (V
-V
*
)>0 which make
s
∆
i t
o
incr
ea
se.
Th
e co
rre
sp
ond
i
ng hysteresi
s
cu
rr
ent co
n
t
rol
block dia
g
ra
m is sh
own in
Figure 4.
(a)
(b)
Figure 4. s
i
ngle phas
e
VSI and HCC
4. Contr
o
l and Coordina
ti
on Scheme
4.1. MPPT Algorithm
In [15] a
sim
p
le hyb
r
id
m
e
thod
ha
s b
een
pro
p
o
s
e
d
for MPPT
of sol
a
r arra
ys. Thi
s
algorith
m
con
s
ist
s
of two
st
age
s; the first one i
s
to e
s
timate the volt
age of m
a
ximum po
we
r poi
nt
(V
MP
P
) and th
e second i
s
to track the exact maximu
m
powe
r
point usin
g the cla
ssi
c Pertu
r
bat
ion
and O
b
servat
ion (P&O
) wit
h
a sm
all am
plitude a
nd fr
eque
ncy of p
e
rturbation
s. In the first
sta
ge,
V
MPP
is cal
c
ul
ated u
s
ing E
quation
(5
) which i
s
a
lin
e
a
r e
quation
i
n
term
s of te
mperature.
Using
that method, there i
s
no n
eed to disco
n
nect the
sola
r panel in o
r
d
e
r to mea
s
u
r
e the open
ci
rcuit
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Co
ntro
l of High Pen
e
tration PV in Di
strib
u
tion
Network (Sa
m
an Hosseini
Hem
a
ti)
223
voltage. Thi
s
method
ha
s lowe
r
power oscillati
on
s
and hi
ghe
r e
fficiency
also
better tracki
ng
perfo
rman
ce i
n
rapid
cha
n
g
e
s of light intensity and te
mperature.
In this
se
ctio
n, an im
prov
ed hyb
r
id m
e
thod for MPP
T
will
be
pro
posed. In thi
s
method
instea
d of
ca
lculatin
g V
MP
P
, the cu
rrent
of the m
a
ximum p
o
we
r
point (I
MP
P
) is cal
c
ulate
d
.
This
lead
s to an improve
d
efficiency an
d hig
her a
c
curacy
[16]. The overall algo
rithm
of the improv
ed
hybrid MPPT
method ha
s been sh
own
in Figure 5.
The relation
between o
u
tput current a
n
d
voltage of PV array ha
s be
en sho
w
n in
Equation
(1).
In this eq
uati
on, three
pa
rameters of ‘a’
,
R
S
and R
P
a
r
e
n
o
t given by t
he ma
nufa
c
ture
r. In data
s
he
et of a
given PV array
there
is
usu
a
lly
three pi
nts of
V-I cha
r
a
c
teristics given
b
y
the
manufa
c
ture
r whi
c
h are sho
r
t
ci
rcuit
curre
n
t,
open
circuit voltag
e and volta
g
e
and
cu
rre
n
t of maximum po
we
r p
o
int in sta
n
d
a
rd atm
o
sph
e
ric
con
d
ition of 1000 w/m
2
and
25
°
C. By substituting these three poi
nt
s in Equation (12) an
d solvi
ng
set of equatio
ns of (1
) thre
e para
m
eters of ‘a’, R
S
and R
P
will be determined.
,,
,,
,
,
,,
,,
,
,,
,,
,
,
exp
(
)
1
0e
x
p
(
)
1
,
,
ex
p(
)
1
SC
n
S
SC
n
S
SC
n
P
V
n
O
n
Tn
P
OC
n
O
C
n
P
Vn
O
n
S
P
Tn
P
MP
P
n
S
M
P
P
n
S
MP
P
n
P
V
n
O
n
Tn
P
IR
IR
II
I
aV
R
VV
II
a
R
R
aV
R
IR
IR
II
I
aV
R
(
1
1
)
To estimate the maximum
powe
r
point curre
n
t in each atmo
sph
e
r
ic conditio
n
we nee
d
the sho
r
t circuit current in
that atmosp
heri
c
co
nditio
n
. In previou
s
method
s, the mea
s
ure
m
en
t
wa
s d
one
by
disco
nne
ctin
g the l
oad
a
c
tually sh
ort
ci
rcuitin
g
the
t
e
rmin
als of t
he p
anel. In
this
proposed M
PPT method, the shor
t circuit current will be cal
c
ulated using mathemati
c
al
equatio
ns
an
d mea
s
u
r
em
ent of outp
u
t
voltage an
d
current of PV.
The in
stanta
n
eou
s value
s
o
f
voltage, current an
d temp
eratu
r
e
of the solar pa
nel
are
mea
s
u
r
e
d
and
I
PV
in
whi
c
h i
s
the
only
variable
de
p
ende
nt on li
ght inten
s
ity in an
d al
so
to tempe
r
at
ure
will
be
cal
c
ulate
d
u
s
ing
Equation
(1
2). In this
equ
a
t
ion, V
T
and
I
O
whi
c
h
are
tempe
r
ature d
epen
dent
are
upd
ated
usi
n
g
tS
VN
K
T
q
and Equatio
n (3).
e
xp(
)
1
SS
PV
O
TP
VI
R
V
I
R
II
I
aV
R
(
1
2
)
Knowin
g I
PV
,
the nonlin
ear Equation (12
)
will be
solv
ed iteratively to calculate I
SC
. This
iterative equa
tion will be re
peated m ti
mes an
d in each iteration, I
SC
of the previous iteration
will
be sub
s
tituted (Equ
ation
(13
)). After
m iteration
I
SC
no long
er varie
s
which is in
dicative of
conve
r
ge
nce
of the short
circuit curr
e
n
t. ‘m' is a small integer
becau
se I
PV
,
whi
c
h is the
first
estimation of I
SC
, is very cl
ose to it. In o
t
her
words i
n
a few ite
r
ati
ons I
SC
will
b
e
found
with
a
n
accepta
b
le a
pproxim
ation.
,1
,,
,1
,1
e
xp(
)
1
1
,
2
,
...
,
SC
P
V
SC
m
S
S
C
m
S
SC
m
P
V
O
TP
SC
S
C
m
II
IR
I
R
II
I
aV
R
mm
I
I
(
1
3
)
In the pro
p
o
s
ed metho
d
, the fine tunin
g
loop is
used
to corre
c
t the
cal
c
ulation
o
f
the I
SC
to compe
n
sate the effect of the measu
r
e
m
ent er
ror a
n
d
possibl
e model mismatch of solar p
a
n
e
l.
In this meth
o
d
, In ca
se
of small va
riatio
ns of tem
perature
and I
PV
, the fine tunin
g
loop
re
gulat
es
output p
o
we
r.
Since
I
PV
varies
with
radia
t
ion inten
s
ity, it can
be
infe
rre
d that the
fine tunin
g
lo
o
p
will be run
when atmo
sp
h
e
ric
co
ndition
s are ap
prox
i
m
ately con
s
t
ant. Con
s
eq
u
ently beca
u
se in
rapid
cha
nge
s of atmosp
h
e
ric
con
d
ition
s
the fi
ne tuning loop i
s
not run, the amplitude of
the
perturbations of the P&O
algorithm
does not need
to be great
whi
c
h will in
turn will resul
t
i
n
small vari
atio
ns of po
wer i
n
steady stat
e con
d
ition
s
arou
nd the o
p
timal value.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 217 –
228
224
Figure 5. The
flowch
art of the pro
p
o
s
ed
MPPT metho
d
4.2. DC Link
Voltage Con
t
rol
The ove
r
all al
gorithm
of the DC lin
k voltage
c
ontrol st
rategy ha
s b
een
sho
w
n in
fig (6).
This alg
o
rith
m con
s
ist
s
o
f
two main mode
s. One
mode is when the PV gene
r
ate
s
po
wer
(P
PV
>P
min
).This p
o
wer
will
be
delivere
d
to the
ne
t
w
ork th
ro
ugh
the
Hystere
s
is Controll
e
d
Inverter. The
other m
ode i
s
whe
n
the po
wer
gen
erate
d
by the PV is le
ss th
an th
e thre
shol
d P
min
.
In both mod
e
s
, V
DC
must
be greate
r
th
an V
min
in order to h
a
ve
a sati
sfacto
ry
operation of
th
e
inverter.
In the first m
ode, the ge
n
e
rated
po
wer of the PV is delivere
d
to the DC lin
k throug
h a
boo
st co
nvert
e
r. When V
DC
is le
ss th
an t
he thre
sh
old
(V
DC-min
), accordin
g to the
control
strate
gy
the po
wer
of the PV is fed
to the DC lin
k to mainta
i
n
in acce
ptabl
e ran
g
e. In th
is situ
ation, the
power
delivered to P
g
is
ze
ro, in oth
e
r
word
s the
po
wer of the
PV is solely d
edicated to
cha
r
g
e
the capa
citor
of the
DC lin
k. In a
situatio
n whe
r
e V
DC
is
gr
ea
te
r
than
V
DC-min
a po
rtion
of the P
PV
is used to
charge the
capacitor
and the rest will
be de
livered to
the grid through the invert
er.
Whe
n
V
DC
reach
e
s maxim
u
m allowable
voltage V
DC-m
a
x
, the power of the PV is a
ll fed to the grid.
Whe
n
V
DC
is
betwe
en V
DC-min
and V
DC-ma
x
there is a li
near
rel
a
tion
ship bet
wee
n
the po
we
r u
s
e
d
to charge the
cap
a
cito
r and
the V
DC-ma
x
-V
DC
.
Figure 6. The
overal algo
rit
h
m
of the DC link voltage control
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Co
ntro
l of High Pen
e
tration PV in Di
strib
u
tion
Network (Sa
m
an Hosseini
Hem
a
ti)
225
4.3. Safe Op
eration Zo
ne
(SOZ)
In this pa
pe
r, we a
s
sume
that the no
minal
voltage
of the di
stri
bution n
e
two
r
k i
s
the
voltage which
is me
asure
d
in ze
ro
pen
e
t
ration level.
Any highe
r voltage i
s
ove
r
voltage an
d a
n
y
lowe
r voltage
is und
ervolt
age. The mi
crog
rid in
this research
co
mpri
se
s of a
PV power
plant
with b
o
o
s
t co
nverter an
d h
y
stere
s
iscu
rrent controll
ed
inverte
r
a
nd
a DC li
nk an
d
also a
con
s
tant
load. This mi
cro
g
ri
d is con
necte
d to the grid
via an O
n
-loa
d Tap
Changi
ng tran
sformer
(OL
T
C).
The traditio
n
a
l distri
bution
system h
a
s
been
d
e
si
gn
ed as
a unid
i
rectio
nal p
o
w
er flo
w
netwo
rk. A
s
more
and
m
o
re
distri
bute
d
re
ne
wable
sou
r
ce
s a
r
e
con
n
e
c
ted t
o
the g
r
id, t
he
origin
al unidi
rection
a
l network
will be
chang
ed towa
rd the bi
dire
ctional network in the future.
This chan
ge
bring
s
utility operation issues
su
ch
as the voltage rise p
r
obl
em
cau
s
ed by the
reverse power flow from the di
stributed renewable energy generat
ion. Figure 7 illu
stratesthe one
line dia
g
ram
of the
simplifi
ed di
strib
u
tio
n
net
wo
rk. Th
ere i
s
a di
stri
buted
gene
ra
tor conn
ecte
d
to
the load si
de.
The gene
rat
o
r voltage V
G
can b
e
app
ro
ximately expressed in:
(
1
4
)
Whe
r
e V
2
i
s
the su
bstatio
n
se
co
nda
ry
bus volta
ge,
X is the fe
ed
er lin
e re
act
ance an
d R
is
feeder line
re
sista
n
ce. P
G
a
nd Q
G
are th
e re
al a
nd
re
active p
o
wer provid
ed
by the g
ene
rat
o
r,
r
e
spec
tively. P
L
and Q
L
are
the real and
rea
c
tive power co
nsume
d
by the load.
Figure 7. One
line diagram
of
a typical grid con
n
e
c
ted
DG
Equation (14
)
sho
w
s th
at the gen
erator
voltage
may
be high
er tha
n
the upp
er-li
m
it if th
e
netwo
rk X/R
ratio is
relatively low and t
here i
s
a
si
gn
ificant reve
rse power flo
w
. One solution
is
that the g
e
n
e
rato
rs can
absorb
a
rel
a
tively la
rge
rea
c
tiv
e
po
w
e
r to
co
mpe
n
sate
the
re
v
e
rse
power flo
w
.
The alte
rn
ative solutio
n
is th
at th
e su
bstatio
n
se
con
d
a
r
y voltage can
be
corre
s
p
ondin
g
ly controll
ed
or the real p
o
we
r inje
ction
to the grid ca
n be de
cre
a
sed.
Currently,
standards such as
IEEE 1547 and
UL1741 state that t
he PV invert
er “shall
not actively regulate the voltage
at the PCC.” Th
erefor
e, PV syste
m
s are desi
g
ned to ope
rat
e
at
unity powe
r
factor
(i.e., provide only active pow
er) b
e
ca
use this condition
will produ
ce the m
o
st
real p
o
wer a
n
d
ene
rgy. Thi
s
limitation i
s
a matte
r of a
g
ree
m
ent in
st
ead of a te
ch
nical o
ne; ma
ny
inverters h
a
ve the capa
bil
i
ty of
providing re
active p
o
we
r to the
grid in
additi
on to the a
c
t
i
ve
power ge
nera
t
ed by their PV cells. The a
m
ount of rea
c
tive powe
r
(
Q
) availabl
e from the inverter
depe
nd
s o
n
it
s
rating
s
(
S
)
and th
e a
c
tive po
we
r
(
Ppv
)
sup
p
lied
by
the PV a
rray.
Co
nsequ
ently,
the inverter
can use its ent
ire ratin
g
to supply
Q
if
Ppv
equ
als
ze
ro
(there i
s
no
sun
)
, and at the
other extre
m
e, it has no
Q
capability if
Ppv
eq
ual
s
S
. Some
Q
capability can
al
ways be retai
ned
by over-sizin
g the inverter. In addition to the c
ontinu
ous rea
c
tive power supp
o
r
t, inverters
can
operate very fast (millise
c
on
ds to micro
s
e
c
o
n
d
s
with high switchi
ng freq
uen
cy inverters)
comp
ared to cap
a
cito
rs, which
can
cau
s
e swit
chin
g transi
ents.
In this pa
per,
a safe
ope
ration zone
(SOZ)
will be
determi
ned
according to
the load,
impeda
nce of
grid
a
nd tran
sform
e
rs. SO
Z is the
zo
ne
in
whi
c
h
accordin
g to
no
minal i
rra
dian
ce
and temp
erature
con
d
ition
s
of a
certai
n
geog
rap
h
ic
site, load level
and g
r
id
cha
r
acte
ri
stics, the
devise
d
pen
e
t
ration level would not cau
s
e ov
er voltag
es ab
ove the ANSI standa
rds.
5. Simulation and Discu
ssions
5.1. Sy
stem
Des
c
ription
The mo
del of
PV array ha
s be
en p
r
e
s
e
n
ted in
se
ctio
n 3. The
PV array is
con
n
e
cted to
th
e
in
ve
r
t
er
via
a
bo
os
t c
onve
r
te
r
.
A
c
a
pa
c
i
to
r is
co
nn
ected to
the
output
of the
boo
st co
nvert
e
r
to provid
e tra
n
sie
n
t ene
rgy
storage
ca
p
ability. A hy
stere
s
is control
l
ed inve
rter
conne
cts
DC li
nk
to the PCC via a RL filter. Distrib
u
tion netwo
rk
lin
es are simul
a
te
d as RL imp
edan
ce
s whi
c
h
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 217 –
228
226
con
n
e
c
t grid
voltage sou
r
ce to the OLTC. A schem
at
ic of the overall powe
r
sy
stems is
sho
w
n
in
Figure 8.
Figure 8. The
block diag
ra
m of the grid co
n
n
e
c
ted ph
otovoltaic po
wer pl
ant with
high
penetration le
vel
5.2. Simulati
on Results
Different
leve
ls of
pen
etrati
on fo
r the
gri
d
-conn
ecte
d power plant h
a
ve
be
en sim
u
lated.
Figure 9 sho
w
s g
r
id, PV and load po
we
r in kilo watts for 100kw no
minal load. In Figure 9(a) the
PV Penetration Level (PL
)
is 10.2% and
PV generate
s
10.5
kw. Th
e voltage of p
o
int of comm
on
cou
p
ling is 3
85.3 in whi
c
h
has 1.3% overvoltage.
In Figure 9(b
)
the penetration
level of PV has
been in
crea
sed to 21%. The voltage
of PCC is 3
91.3 volts which i
s
2.9% higher tha
n
th
e
nominal
voltage
of 38
0v but it i
s
i
n
the pe
rmitted
ra
nge
a
c
cording to
g
r
id
stand
ard
s
. T
h
e
penetration le
vel in Figure
9(c) i
s
42% a
nd voltage
of
PCC i
s
40
3
volts. The ov
ervoltage i
n
this
PL is 6%
whi
c
h i
s
un
acce
ptable. As
ca
n be
see
n
, in
highe
r pe
net
r
ation level
s
,
the amou
nt of
load is al
so h
i
gher
sin
c
e the effective voltage on load
terminals i
s
highe
r
. Figure 10 sho
w
s the
same
simul
a
tion for 70
kw loadin
g
. As ca
n be seen,
in
lowe
r loadi
ng
s, (he
r
e 7
0
kw) the maximu
m
allowable pe
n
e
tration level
increa
se
s. Fi
gure 1
1
sh
ows this in g
r
eat
er detail
s
.
Figure 9. Grid
, load and PV powe
r
s fo
r di
fferent penet
ration levels a
nd their corre
s
po
ndin
g
voltages of PCC
with nomi
nal loadin
g
of
100kw
Evaluation Warning : The document was created with Spire.PDF for Python.