Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 2, No. 1,
April 201
6, pp. 61 ~ 68
DOI: 10.115
9
1
/ijeecs.v2.i1.pp61
-68
61
Re
cei
v
ed
De
cem
ber 2
1
, 2015; Re
vi
sed
Febr
uary 21,
2016; Accept
ed March 1, 2
016
Optimal Selection of UPFC Parameters and Input
Controlling Signal for Damping Powe
r System
Oscillations
Moslem Salehi*
1
, Ali Akbar Motie Birj
andi
2
1
Engine
eri
ng F
a
cult
y, Loresta
n Univ
ersit
y
, K
horram
aba
d, Iran
2
Departme
n
t of Electrical En
gi
neer
ing,
Sh
ahi
d Raj
aee T
eac
her T
r
aining U
n
iversit
y
, T
ehran, Iran
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: saleh
i
.mo@ fe.lu.ac.ir
A
b
st
r
a
ct
Unifie
d
pow
er f
l
ow
contro
ller
(
U
PF
C), as o
n
e
of
the
most i
m
portant F
A
CT
S
devic
es, ca
n b
e
us
e
d
to increas
e the dam
p
i
ng of pow
er
system oscillati
on. The effect rate
of this controller on i
n
creas
i
ng
oscill
atio
n d
a
m
pin
g
d
e
p
ends
on th
e a
ppro
p
r
i
ate s
e
lecti
on
of in
put co
ntrol
ling
sig
n
a
l
, opt
imal s
e
lecti
o
n
of
UPFC controll
i
ng par
a
m
eters
,
and it
s prop
er positi
on in
pow
er system
.
In this paper,
the capab
ility
of
different
UPF
C
inp
u
ts is st
ud
ied
by
utili
z
i
ng
sing
ul
ar va
lu
e d
e
co
mp
ositi
on (SVD)
met
hod
an
d th
e b
e
st
UPF
C
in
put c
o
ntrolli
ng
sig
n
a
l
is sel
e
cted. S
u
ppl
e
m
entar
y
c
ontrol
par
a
m
et
ers ar
e a
l
so
op
tima
lly s
e
l
e
cte
d
by
PSO algorith
m
.
T
h
is meth
od'
s accuracy is si
mu
late
d on
a si
ngl
e-mach
ine s
ystem co
nnect
ed to infin
i
te bu
s.
Ke
y
w
ords
: PSO algorith
m
,
unifie
d
pow
er
flow
contro
lle
r (UPFC), low frequency os
cillati
ons, FACTS
devic
es
Copy
right
©
2016 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Power sy
stem oscillations are
the important subject that sh
ould
be considered i
n
power
system
s. Th
e
freq
uen
cy of
these o
s
cilla
tions i
s
between
0.2 a
nd
3 Hz; if th
ey
are
not
damp
i
ng,
their rang
e will grad
ually i
n
crea
se a
nd
may enda
nge
r the
system'
s
sta
b
ility [1, 2]. For da
mpi
ng
of power sy
stem oscillati
ons and
increasing the
sy
stem's
oscillation stabili
ty, it is both
economi
c
al and effective to in
stall power sy
stem st
abilizer (
PSS
) [3, 4]. Nevertheless, PSSs
have some li
mitations
and
are
not the
solution by
t
h
e
m
selv
e
s
.
Fle
x
ible A
C
t
r
an
smis
sio
n
sy
st
em
(FACTS
) d
e
vice
s
can
cau
s
e
a
sub
s
tant
ial in
cre
a
se
i
n
po
we
r tran
sfer lim
its during steady st
ate
throug
h the
modulatio
n o
f
bus voltag
e, phas
e shi
ft between b
u
se
s, and t
r
ansmi
ssion li
ne
rea
c
tan
c
e. F
A
CTS devi
c
e
s
a
r
e
amon
g
the tool
s
th
at have a
ve
ry impo
rtant
rule i
n
da
mpi
n
g
power sy
ste
m
oscill
ation
s
. Unified power flow
controller (UPF
C),
as one of the most impo
rtant
FACTS devi
c
e
s
, ca
n co
ntrol the p
o
w
er
syste
m
para
m
eters such as
te
rmi
nal
voltage, lin
e
impeda
nce, and pha
se a
n
g
l
e.
Perform
a
n
c
e
analysi
s
an
d control synth
e
si
s
of the UPFC req
u
ire its steady
-sta
te and
dynamic m
o
dels. A 2-so
urce UPF
C
steady-sta
te
model in
clu
d
ing so
urce i
m
peda
nces i
s
sug
g
e
s
ted i
n
[5]. Wa
ng
develop
ed t
w
o
model
s
of UPF
C
[6
-8] in 1
999,
whi
c
h
have
been
lineari
z
e
d
an
d inco
rp
orate
d
into the Phi
llips-He
ffron
model. Usin
g
input co
ntrol
ling sig
nal
s a
n
d
approp
riate p
a
ram
e
ters, it ca
n b
e
al
so
efficient
i
n
dampin
g
the
syste
m
o
sci
llations [9]. Th
e
authors of [10] employed the r
eal-co
d
e
d
genetic al
g
o
rithm to optimize the da
mping contro
ller
para
m
eters
o
f
the UPF
C
. In [11], bacte
rial fo
ragin
g
wa
s u
s
ed fo
r the UPF
C
l
ead-l
ag type
of
controlle
r parameter d
e
si
g
n
. The impe
rialist co
m
peti
t
ive algorithm
(ICA) ha
s b
een u
s
ed in
a
variety of research a
r
ea
s [12-1
6
].
One of th
e i
m
porta
nt issues, in
stu
d
y and d
e
si
gn
of UPF
C
P
O
D
cont
rolle
rs, is
an
adeq
uate inp
u
t sign
al for
controlle
r. In this pa
per,
si
ngula
r
value
decompo
sitio
n
(SVD) met
hod
for sele
ction
of most
suita
b
le
control in
put si
gnal
of UPF
C
to a
c
hieve effe
ctive dam
ping
o
f
electrome
c
h
a
n
ical mo
de of oscillatio
n
,
has
been
presented.
UPFC dyn
a
mical mo
de
l is
considered using
Heffron-Phillips m
odel to obtain
it
s
optimal cont
rolling
param
e
ters. For
signal
controlling selection
whi
c
h
has max
i
mum e
ffect on the damping
of el
ectromechani
cal
oscillation
s, sing
ular valu
e decomp
o
si
tion (
SVD)
method i
s
u
s
ed. Sup
p
le
mentary opti
m
al
controlling p
a
r
amete
r
s a
r
e
also
sele
cted
usin
g PSO optimization m
e
thod.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 61 – 68
62
2. Rese
arch
Metho
d
Figure 1
sh
o
w
s a
singl
e-machi
ne i
n
fin
i
te-bu
s
(SMIB) po
we
r
system e
quip
p
ed
with a
UPFC. Static
ex
c
i
tation
s
y
s
t
em (IEEE-STIA type)
and four-s
tory turb
ine with
appropriate
govern
o
r are con
s
ide
r
e
d
. System
para
m
eter
s and nomin
al
perfo
rma
n
ce
conditio
n
s
are
pre
s
ente
d
in
Appendix. A
s
sh
own in
the
figure,
UP
F
C
con
s
i
s
ts
of a p
a
rall
el tra
n
sformer (ET
)
, a
seri
es t
r
an
sfo
r
mer
(BT), two three
-
p
h
a
s
e volt
age sou
r
ce i
n
verte
r
s
based o
n
GT
O, and a
DC l
i
nk
cap
a
cito
r. V
o
ltage
so
urce inverte
r
s
gene
rate
vol
t
age with controlla
ble p
hase
a
ngle
and
amplitude. F
o
r UPF
C
, the
r
e are fou
r
m
(a
mplitude m
o
d
u
lation in
dex
for pa
rallel i
n
verter),
δ
(pha
se a
ngle
of parallel in
verter),
m
(amp
litude modul
a
t
ion index for seri
es inve
rter), an
d
δ
(pha
se an
gle of serie
s
inverter) controllin
g signal
s.
is
armature c
u
rrent,
is voltage of infinite
bus,
is voltage of parallel
transfo
rme
r
,
is voltage of seri
es tran
sfo
r
mer, a
nd
is parall
e
l
bran
ch cu
rre
nt.
SH
m
SE
m
SH
SE
B
V
Bt
V
E
V
Et
V
t
V
tE
X
E
X
BV
X
B
X
T
X
SE
i
TL
i
t
i
b
V
dc
V
Figure 1. Single-m
a
chine i
n
finite-bu
s
(S
MIB) powe
r
system with UPFC
By writing
th
e dynami
c
eq
uation
s
for UPFC
a
nd
system, we
can l
i
neari
z
e
the
obtaine
d
nonlin
ear eq
uation
s
u
s
in
g
Taylor's exp
ansi
on
ar
o
u
n
d
a sp
ecifi
c
operating poi
nt
and
have
the
following linear model:
∆
∆
(1)
∆
ω
∆
P
∆
P
D
∆
ω
/M
(2)
∆E
′
∆
E
X
X
′
∆i
∆
E
′
/T
′
(3)
∆E
K
∆V
∆
V
∆
u
∆
E
/T
(4)
∆
∆
∆
∆
∆
∆
∆
∆
(5)
In these equ
ations,
،
،
،
, and
are lineari
z
ation con
s
tan
t
s that
can be
writte
n in a param
etric form. Accordingly,
we
can sh
ow th
e powe
r
sy
stem in the state-
spa
c
e mo
del
as follo
ws:
X
AX
BU
(6)
Matrices A a
nd B a
r
e
stat
e an
d inp
u
t
matric
es,
re
spectively. State vector X a
nd in
put
vector
U are
defined a
s
fol
l
ows:
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Optim
a
l Selection of UPF
C
Param
e
ters and Inp
u
t Controllin
g Signal for DPSO
(Moslem
Salehi)
63
X
∆
∆
∆
′
∆
′
∆
(7)
∆
∆
∆
∆
∆
(8)
qu
K
pu
K
qd
K
vd
K
pd
K
vu
K
cu
K
4
K
7
K
8
K
ps
s
u
dc
V
fd
E
s
M
D
1
s
b
e
P
m
P
9
1
K
s
qd
sT
K
'
1
3
A
A
sT
K
1
2
1
1
1
sT
sT
4
3
1
1
sT
sT
W
W
sT
sT
K
1
Figure 2. Heffron
-Phillip
s lineari
z
e
d
mod
e
l of powe
r
system along
with UPF
C
su
ppleme
n
tary
c
ontroller
Linea
rized
dynamic mo
del
of t
he
state
–
sp
ace rep
r
e
s
entatio
n i
s
shown in
Figu
re 2,
in
whi
c
h the sta
b
ilize
r
input o
f
power
syste
m
(
U
) and o
n
ly one UPF
C
input control are sho
w
n. It
sho
u
ld be consi
dered that consta
nts
و
،
،
shown in
the figure are row
vectors that can be defin
ed
as follows:
K
K
K
δ
K
K
δ
(9)
K
K
K
δ
K
K
δ
(10
)
K
K
K
δ
K
K
δ
(11
)
K
K
K
δ
K
K
δ
(12
)
2.1. UPFC S
upplementar
y
Controller
For
effective
dampi
ng i
n
cre
a
se, sup
p
lementa
r
y
control fun
c
ti
on h
e
lp
s
UPFC via
improvin
g its UPFC
cont
rol function.
Supplem
ent
a
r
y cont
rolle
r'
s blo
ck
diag
ram is
sho
w
n
in
Figure 3 [9].
In this bl
ock dia
g
ram,
is
wash-out time cons
tant,
and
are l
ead time
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 61 – 68
64
c
o
ns
tant,
T
and
are la
g
time co
nsta
n
t, and K is
controlle
r g
a
in
. Controlling
para
m
eters
sho
u
ld be
selecte
d
so optimally tha
t
hav
e maximum effect
on dam
ping
power
syst
em
oscillations. In this research
, these parameters are optimally
selected using PSO algorithm.
Figure 3. Block di
agram of
UPFC suppl
ementa
r
y con
t
roller.
2.2. Optimal Design o
f
UPFC
Con
t
roll
ing Parameters
For optimal
selection of stabiliz
ing parameters in order to
convert
the problem
into an
optimizatio
n
probl
em, a
criterio
n fun
c
ti
on i
s
sele
cte
d
ba
se
d on
spe
c
ific valu
es,
whi
c
h i
s
then
adju
s
ted
to
i
n
crea
se
dam
ping
fa
cto
r
or rate related
to specifi
c
el
ectro
m
e
c
ha
ni
cal value
s
. The
obje
c
tive function can b
e
d
e
fined a
s
follows:
j=min{
ξ
}
(13
)
|
|
Re
a
l
E
M
I
m
a
g
E
M
(14
)
Whe
r
e
ξ
is damping rate of the mode related to spe
c
ific ele
c
trom
ech
ani
cal value (EM).
It is cl
ea
r tha
t
the obj
ectiv
e
fun
c
tion i
d
e
n
tifies the
mi
nimum
dampi
ng
rate
of ele
c
trom
echani
cal
mode
s at
all
operation
poi
nts. Th
us,
we
ca
n in
cr
ea
se
dam
ping
rat
e
of el
ect
r
om
ech
ani
cal m
o
des
and, a
c
cordi
ngly, system
dampin
g
by
maximizi
n
g
the obje
c
tive
function. So
, we will
have an
optimizatio
n probl
em with
the followin
g
con
s
trai
nts:
(15
)
(16
)
(17
)
(18
)
(19
)
Optimal p
a
rameters
of
UPFC suppl
ementa
r
y co
ntrolle
r a
r
e
obtaine
d u
s
i
ng PSO
algorith
m
. Table (1
) sh
ows the numeral
values of opti
m
al paramete
r
s:
Table 1. Opti
mal cont
rolling parameters
k
0.4239
0.2468
0.298
0.584
97.7
3. In
v
estigating Controllabilit
y
Usi
ng Singular Value Decomposition (SVD)
Acco
rdi
ng to
Figure 2, it is
found that th
e co
ntrollin
g
stabili
zer
out
put ca
n be
a
pplied to
different inpu
ts, i.e.
δ
،
m
،
δ
and
of UPFC. For sele
cting the input with maximum
effect in the control of elect
r
ome
c
h
ani
cal
modes
in different op
erati
on con
d
ition
s
, singula
r
value
decompo
sitio
n
(SVD) met
hod ca
n be u
s
ed [17]. In
mathemati
c
al
terms, if G is an m×n co
m
p
le
x
matrix, there
are
W
an
d
V
matrice
s
with m×n a
n
d
n×n dim
e
n
s
ion
s
such t
hat the following
relation i
s
est
ablished:
K
T
1T
s
1
1
1
1
Δω
Δ
u
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Optim
a
l Selection of UPF
C
Param
e
ters and Inp
u
t Controllin
g Signal for DPSO
(Moslem
Salehi)
65
G=W
∑
(20)
Whe
r
e
∑
=
∑
0
00
;
this is m × n
matrix and
∑
is defined a
s
∑
0.
.0
0
..
0
..
.
.
.
..
.
.
.
0
0
00
Whe
r
e
r=min
{m,n} and
σ
,
σ
,…,
σ
are sin
gular value
s
of G matrix
that are locat
ed in
∑
diago
nal matrix in a desce
nding o
r
d
e
r (
σ
σ
⋯
σ
). Matrix B can be written a
s
B= [
B
B
B
B
], where ea
ch
B
represents a colum
n
of matrix
B and is in propo
rtio
n to the i
th
input. The
minimum
sin
gular value
of the matrix [
λ
I-
A
B
] indicat
e
s the
capabi
lity of the ith input to
contro
l
the mode sso
c
iated with the eigenv
alue
k. Thus the minimum sin
gular value of
the matrix [
λ
I-
A
B
] corre
sp
ondi
ng to all four inputs p
a
ra
m
e
ters of UP
F
C
, i.e., me, mb, de, db can
be cal
c
ulate
d
and thu
s
the most effectiv
e input param
eter out
of all four input pa
rameters are identified
.
Figure 4
sho
w
s th
e variat
ions
of MSV, DCT
co
rrespondi
ng to a
ll four contro
l input
para
m
eters o
f
UPFC with
operati
ng poi
nts for a ra
ng
e of loading
con
d
ition
s
fro
m
0.3 to 1.6 pu
.
Acco
rdi
ng to
this figure,
δ
and
m
posse
ss the hi
ghe
st SVD. Thu
s
, they have maximum
controllability
to dampen the elect
r
ome
c
ha
nical mo
d
e
s of the po
wer
system.
Acco
rdi
ng to the
figure, the followin
g
point
s are defin
ed:
1. Controll
abil
i
ty of
δ
signal i
s
the high
est.
2. Controll
abil
i
ty of all
four controlling
sig
nals i
s
increa
sed
with load
increa
se.
Figure 4. Vari
ation of SVD with load for
UPFC
cont
rol
signal
4. Simulation Resul
t
s
To asse
ss the effectivene
ss of the p
r
o
pos
ed sta
b
ili
zers, the sy
stem eigenval
ues a
r
e
obtaine
d and
a disturb
a
n
c
e increa
se of
25% in
the
mech
ani
cal i
nput power i
s
co
nsi
dered
in
orde
r to obtai
n the dynamic re
spo
n
ses. The syst
e
m
eigenvalue
s wi
th and withou
t the controlle
rs
are given in
Table 2. It is clea
r
that the system witho
u
t the contro
ll
ers i
s
un
stabl
e. However, the
prop
osed co
n
t
rollers dra
m
atic
ally
st
abili
ze t
he sy
st
e
m
.
δ
as the best input control
ling sign
al
o
f
UPFC p
r
ovid
es
maximum
dam
ping
rati
o in th
e o
s
cil
l
ating mo
de.
System be
ha
vior du
e to
the
utilization
of t
he p
r
op
osed
controlle
rs was te
sted
by
applying
a
25
% step
incre
a
s
e i
n
me
ch
an
ical
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 61 – 68
66
input power
at t = 1 s.
The sy
ste
m
respon
se to
this distu
r
ba
nce for
spe
e
d
deviation, and
electri
c
al
po
wer deviatio
n
with fo
ur
co
ntrolle
rs
, as well
a
s
witho
u
t
co
ntrolle
rs,
are sh
own in
Figures 5
-
8.
Table 2. The
system'
s
eig
e
n
values
with and with
out UPFC co
ntrolle
rs
S
y
stem w
i
thout
UPFC
-0.079 ±1
1.49i
-3.66 ±12.
72i
-4.12 ± 9.1
0
i
-6.88 ±10.
89i
0.39 ± 5.17i
0.007
0.27
0.41
0.54
-0.076
(a)
(b)
Figure 5. System's dyna
mic re
spo
n
se wi
th controller
δ
: (a) Ge
ne
rato
r's o
u
tput acti
ve powe
r
(pu
)
, (b) G
e
n
e
rato
r's el
ov
ci
ty
v
a
riations (
pu)
.
Soli
d line:
δ
controlle
r, dash line: wit
hout
c
ontroller
(a)
(b)
Figure 6. System's dyna
mic re
spo
n
se wi
th controller
m
: (a) Ge
ne
rato
r's o
u
tput acti
ve powe
r
(pu
)
, (b) G
e
n
e
rato
r's el
ov
ci
ty
v
a
riations (
pu)
.
Soli
d line: controller
m
,
dash line: wit
hout
c
ontroller
1
2
3
4
5
6
7
-0
.
4
-0
.
2
0
0.2
0.4
0.6
Ti
m
e
(
p
u
)
P
o
wer
d
eviati
o
n
(p
u
)
1
2
3
4
5
6
7
8
-0.
0
15
-0.
0
1
-0.
0
05
0
0.
00
5
0.
0
1
0.
01
5
Ti
m
e
(
s
)
S
p
e
e
d
de
v
i
a
t
i
o
n (
pu)
2
4
6
8
-0.
4
-0.
2
0
0.
2
0.
4
0.
6
Ti
m
e
(
s
)
P
o
w
e
r
de
v
i
a
t
i
on (
pu)
1
2
3
4
5
6
7
8
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
Ti
m
e
(
s
)
S
p
ee
d de
v
i
a
t
i
o
n
(
pu)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Optim
a
l Selection of UPF
C
Param
e
ters and Inp
u
t Controllin
g Signal for DPSO
(Moslem
Salehi)
67
(a)
(b)
Figure 7. System's dyna
mic re
spo
n
se wi
th controller
m
: (a) Ge
ne
rato
r's o
u
tput acti
ve powe
r
(pu
)
, (b) G
e
n
e
rato
r's el
ov
ci
ty
v
a
riations (
pu)
.
Soli
d line: controller
m
,
dash line: wit
hout
c
ontroller
(a)
(b)
Figure 8. System's dyna
mic re
spo
n
se wi
th controller
δ
: (a) Ge
ne
rato
r's o
u
tput acti
ve powe
r
(pu
)
, (b) G
e
n
e
rato
r's el
ov
ci
ty
v
a
riations (
pu)
.
Solid line: controller
δ
, d
a
s
h
line: without
c
ontroller
It can be
se
en that the p
r
opo
se
d obj
e
c
tive
functio
n
-
ba
sed optim
ized UPFC controlle
r
has go
od
performan
ce
in
dampin
g
lo
w-freque
ncy
os
cillation
s
and
stabili
ze
s th
e sy
stem
qui
ckly.
Furthe
rmo
r
e,
from the ab
o
v
e cond
ucte
d
test, it can b
e
con
c
lu
ded t
hat the
δ
- ba
sed dam
ping
controlle
r is
superi
o
r to th
e
other
dampi
ng controll
er,
whi
c
h
confi
r
ms the
re
sult
s of the
sing
ular
value de
com
positio
n analy
s
is
carrie
d ou
t for the UPFC input si
gnal
s in Figu
re 4.
5. Conclusio
n
In this pape
r, perform
an
ce
improveme
n
t of
dynamic stability was in
vestigated by
UPFC
controlle
r. Using PSO opti
m
ization m
e
thod, UPF
C
d
a
mping
co
ntrol paramete
r
s were
optim
ally
selected. F
o
r studying th
e controll
abil
i
ty of four controllin
g si
gnals i
n
UP
F
C
, single val
u
e
decompo
sitio
n
(SVD) m
e
thod was u
s
e
d
. Acco
rd
in
g
to SVD analysis, it was
found that the
controlling si
gnal
δ
had maximum co
ntrollability for the
dampin
g
of the power
system
's
electrome
c
h
a
n
ical o
scill
ations. Analysi
s
of
eigen
values an
d simulatio
n
re
sults of sin
g
l
e-
machi
ne
syst
em conn
ecte
d to infinite
b
u
s
usin
g MAT
L
AB software
pro
perly
sh
o
w
ed t
he effe
ct of
this
pro
p
sed method.
1
2
3
4
5
6
7
-0.
4
-0.
2
0
0.
2
0.
4
0.
6
Ti
m
e
(
s
)
P
o
w
e
r
d
eviatio
n
(
p
u)
1
2
3
4
5
6
7
-4
-2
0
2
4
x 10
-3
Ti
m
e
(
s
)
S
p
ee
d
d
e
vi
at
i
o
n
(
p
u
)
2
4
6
8
-0.
4
-0.
2
0
0.
2
0.
4
0.
6
Ti
m
e
(
s
)
P
o
w
e
r
dev
i
at
i
o
n (
p
u)
1
2
3
4
5
6
7
8
-0.
015
-0.
0
1
-0.
005
0
0.
005
0.
01
0.
015
Ti
m
e
(
s
)
S
p
ee
d de
viat
i
o
n (
pu)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 61 – 68
68
Referen
ces
[1]
Anders
on PM, F
ouad AA. Po
w
e
r S
y
stem C
o
ntrol an
d Stabi
l
i
t
y
.
Wiley
-
IEEE
Press
. 2002.
[2]
Gibbar
d MJ. Co-ordi
nate
d
de
sign of mu
ltima
c
hi
n
e
po
w
e
r s
ystem stabilis
er
s based
on d
a
m
pin
g
torqu
e
concepts.
IEE
Proc Pt C
. 1988; 135(4): 2
76-
284.
[3]
Lefebvr
e
S. T
u
nin
g
of Stabi
liz
er
s in Multimachine Po
w
e
r S
y
stems.
IEEE Trans. Pow
e
r Appar
atus
&
System
s
.1
983;
PAS-102(2): 2
90-2
99.
[4]
A
w
e
d
–Ba
d
e
e
b
OM. Damp
in
g of El
ectrome
c
han
ic
al
Mod
e
s
Usin
g P
o
w
e
r
S
y
stems
Stab
ilizers
(PSS
)
Case: Electrical Yemeni Net
w
ork.
Journa
l of Electrical
Engi
neer
ing
. 2
006;
57(5): 29
1-2
9
5
.
[5]
Nab
a
vi –
Niak
i
A, Iravani M
R
. Stead
y-stat
e an
d
d
y
n
a
mi
c mode
ls of u
n
ifed
po
w
e
r fl
o
w
co
ntroll
e
r
(UPFC) for pow
er s
y
stem studies.
IEEE Transactions on P
o
wer System
s
.
1996; 1
1
(4): 1
937-
194
3.
[6] W
ang
HF
.
Da
mp
in
g F
unctio
n
of Unifi
ed
Pow
e
r F
l
ow
Control
l
er
. IEE Procee
din
g
s -
Generati
o
n
T
r
ansmission
Distributi
on. 19
99; 146(
1): 81-
87.
[7]
W
ang HF. A unifie
d
mode
l for the anal
ys
is of FA
C
T
S devices in dam
pin
g
po
w
e
r s
y
ste
m
oscillati
o
n
s
part III: unifed po
w
e
r flo
w
controller.
IEEE Tr
ans. Power Deliv
. 2000; 1
5
(3)
:
978-98
3.
[8] W
ang
HF
.
Application of modeli
ng UPFC into m
u
lti - m
a
chine power system
s
. IEE Procee
din
g
s –
Generati
on T
r
ansmissio
n
Distr
ibut
i
on. 19
99; 146(
3): 306-
31
2.
[9]
T
a
mbey
N, Kothari ML.
Da
mpin
g of Pow
e
r Oscillatio
n
s With unifie
d
pow
er flow
controll
er (UPFC)
.
IEE Proceedi
n
g
s - Generatio
n T
r
ansmission
Distr
ibuti
on. 2
003; 15
0(2): 12
9-14
0.
[10]
Bali
arsin
gh A
K
, Panda S, M
oha
nt
y
AK, Ar
dil C.
UPF
C
s
upp
leme
ntar
y
control
l
er d
e
si
gn us
ing r
eal-
code
d g
enetic
alg
o
rithm for
damp
i
ng
lo
w freque
nc
y os
cillati
ons
in p
o
w
e
r s
y
stems.
Internatio
na
l
Journ
a
l of Elec
trical Pow
e
r an
d Energy Syste
m
s En
gin
eeri
n
g
. 2010; 3(): 16
5-17
5.
[11]
T
r
ipath
y
M, M
i
shra S, V
e
n
a
y
agam
oorth
y G
K
. Bact
eria
for
agi
ng:
a n
e
w
t
ool
for sim
u
lta
neo
us r
obus
t
desi
gn of UPF
C
control
l
ers.
Internati
o
n
a
l Joi
n
t Confere
n
ce
on Ne
ural N
e
tw
orks
. 2006: 2274-
228
0.
[12]
Atashpaz E,
Hash
emzad
e
h
F
,
Rajabio
u
n
R, Lucas C. Colo
nia
l
com
petitive a
l
g
o
rithm: a nov
e
l
appr
oach for
PID controll
er
desig
n i
n
MIMO distillati
on
column
proc
e
ss.
Internation
a
l Jour
na
l o
f
Intelli
gent C
o
mputin
g an
d Cyb
e
rnetics
. 20
08;
1(3): 337-3
55.
[13]
Jaha
ni R. Opt
i
mal p
l
ac
emen
t of unifie
d
po
w
e
r flo
w
c
ontr
o
ller
in p
o
w
e
r
s
y
stem us
ing
imperi
a
lis
t
competitiv
e alg
o
rithm.
Midd
le-
E
ast Journa
l of
Scientific Res
earch
. 20
11; 8(
6): 999-1
0
0
7
.
[14]
Cha
h
kan
d
i
Ne
j
ad H, J
a
h
ani
R. A n
e
w
appr
oach
to
ec
on
o
m
ic lo
ad
dis
p
a
t
ch of p
o
w
e
r
s
y
stem
usi
n
g
imperi
a
list
com
petitive
al
gor
ith
m
.
Australi
an J
ourn
a
l
of Bas
i
c
an
d A
ppl
ied
S
c
ienc
es
. 2
011;
5(9):
83
5-
843.
[15]
Bijami
E, Aska
ri Marn
an
i J, H
o
ssei
nni
a S. P
o
w
e
r s
y
st
em st
abil
i
zati
on
usi
n
g mo
del
pre
d
ic
tive co
ntro
l
base
d
o
n
im
pe
rialist c
o
mpetiti
v
e al
gorit
hm.
Internati
o
n
a
l Jo
urna
l o
n
T
e
ch
n
i
cal
and
Physic
a
l Pro
b
le
ms
of Engin
eer
ing
.
2011; 3(4): 4
5
-
51.
[16]
Etesami MH,
F
a
rokhn
i
a N,
F
a
thi SH.
A method bas
ed o
n
i
m
p
e
ria
list
c
o
mpetitiv
e al
g
o
rith
m (ICA),
ai
min
g
to
miti
gate har
mo
nic
s
in multil
eve
l
inv
e
rters
. 2n
d Po
w
e
r E
l
ect
r
onics, Dr
ive
S
y
stems
an
d
T
e
chnolog
ies
Confer
ence. 2
011: 32-
37.
[17]
Pand
e
y
RK, Singh NK.
Mini
mum Si
ng
ular V
a
lu
e Based Id
entif
icati
on of UPF
C
Control
Para
mete
r
s
TENCON
200
6
,
2006 IEEE Regi
on 1
0
Cofer
ence. NOV. 20
06: 1-4.
Evaluation Warning : The document was created with Spire.PDF for Python.