TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.7, July 201
4, pp
. 5508 ~ 55
1
3
DOI: 10.115
9
1
/telkomni
ka.
v
12i7.569
5
5508
Re
cei
v
ed
Jan
uary 28, 201
4
;
Revi
sed Ma
rch 1
2
, 2014;
Acce
pted Ma
rch Ap
ril 5, 2014
Analysis and Design of Complementary Ring Type
Metamaterial Filter in THz Wave Domain
Wu Pan
*
, Ju
n Chen, Tian
bo Duo, Zich
en Liu
Photoe
lectric e
ngi
neer
in
g coll
ege, T
he Chon
gqi
ng
Un
iversit
y
of Posts and
T
e
lecommunic
a
tions,
Cho
ngq
in
g 40
0
065, Ch
in
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: aaron
ingc
@1
26.com
A
b
st
r
a
ct
In this paper, the co
mp
le
me
n
t
ary ring type meta
materi
al
u
n
it is theoretic
a
lly
an
aly
z
e
d
by
using th
e
spectral d
o
m
a
i
n ap
proac
h. A terahert
z
b
and
pass filt
er
is desig
ned,
w
h
ich consis
ts of triple-lay
er
compl
e
mentar
y ring
meta
ma
terial. T
he c
e
n
t
er freque
ncy
of the filter is
338GH
z
,
the tr
ans
missi
on r
a
te
i
n
pass
ba
nd r
e
a
c
hes
97%,
the
maxi
mum i
n
s
e
rtion
loss
i
n
p
a
ss b
a
n
d
re
ac
hes
0.62
dB
an
d 3
d
B
ban
dw
i
d
th
reach
e
s 75.9G
H
z
. T
he filter s
how
s st
able filt
erin
g prop
ertie
s
at differ
ent polari
z
a
t
io
n w
a
ve and the sa
me
pol
ari
z
e
d
w
a
ve at differe
nt i
n
cid
ent a
ngl
es
w
i
thin
the sc
ope
of 20°. T
he ra
nge
of o
perati
ng fre
q
u
enc
y
match
e
s th
e fir
s
t terahert
z
at
mos
p
h
e
re c
o
mmu
n
ic
ation
w
i
n
dow
, so it ca
n
be us
ed
in th
e
field
of tera
he
rt
z
atmos
p
h
e
re co
mmu
n
icati
on.
Ke
y
w
ords
: T
e
rahert
z
c
o
mmu
n
icati
on,
metam
a
teria,
ba
nd
p
a
ss filter
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Tera
hert
z
(T
Hz) that refe
rs to frequ
en
cy from 0.1THz to 10T
Hz lie
s in the freq
u
ency ga
p
betwe
en the
micro
w
ave
and infrare
d
. In 1970
s,
the THz
wave attract
s
m
any scientist
s
’
attentions [1], but the methods of ge
ne
rating and
d
e
tecting a
r
e b
a
c
kwa
r
d, which cau
s
e
s
the
so-
calle
d “Te
r
ah
ertz Ga
p”. Re
cently, due to the great
pro
g
re
ss of THz
sou
r
ce su
ch
as the qua
ntu
m
dot la
se
r [2],
free
ele
c
tron
l
a
se
r [3]
and
optical
rectification [4]
app
e
a
rs,
the
THz tech
nolo
g
y
has
been the
cent
er of wo
rld’
s ext
ensive re
search g
r
ad
ual
ly.
Metamateri
al
(MM) i
s
a
ki
n
d
of su
b-wav
e
l
ength units con
s
i
s
ted
of perio
dic or a
perio
dic
arrang
ement
artificial m
a
te
rial, whi
c
h
ha
s be
en a
pplie
d in many fro
n
tier scie
nce
[5]. As MM can
cha
nge thei
r stru
ctures to
make a
n
effective re
spon
se to the terahertz
wave, it can solve t
h
e
probl
em of “Tera
hert
z
G
a
p”. No
w MM
is wi
dely app
lied in terahe
rtz fre
que
ncy
.
As one
of the
importa
nt co
mpone
nts in
terahe
rtz fre
q
uen
cy, filters
are
wi
dely u
s
ed in
ima
g
ing
,
spe
c
tromet
er,
molecula
r se
nsin
g, se
curit
y
and comm
u
n
icatio
n.
In this
pap
er,
the
com
p
le
mentary
ring
type MM i
s
chosen
as the
ba
sic unit,
whi
c
h i
s
theoreti
c
ally analyzed
by usin
g
the sp
ectral
dom
ain
app
roa
c
h. T
he tripl
e
-laye
r
comple
men
t
ary
ring MM is
compo
s
ed of
singl
e layer cascad
e. By
a
d
justin
g the related structu
r
al pa
ramete
rs,
the filtering
prop
erty
can
be
optimize
d
. The
op
era
t
ing freq
uen
cy match
e
s th
e first tera
he
rtz
atmosp
he
re comm
uni
cati
on
wi
ndo
w, whi
c
h can b
e
used in
th
e field of terahert
z
atmo
sphere
comm
uni
cati
on.
2. The Spectral Domain Appro
ach
Analy
s
is
Freq
uen
cy selective surf
ace
(FSS) is widely us
ed
in terahe
rtz filters. It consi
s
ts of
perio
dic meta
l gri
d
o
r
peri
odic a
rray
ap
erture o
n
th
e
metal
pan
el
[6]. The
com
p
lementa
r
y
ri
ng
type MM is a sort of pe
riodi
c array ape
rture st
ru
cture.
Usi
ng
sp
ectral dom
ain
ap
proa
ch
to
an
alyze
FSS [7
], Figure
1
(l
eft) sho
w
s th
e pat
ch
FSS, the bla
c
k pa
rt is m
e
tal. Incid
ent
wave i
s
a p
l
ane
wave
E
in
c
w
i
th wave vec
t
or
K
i
0
, the
incid
ent direction is (
θ
,
).
Acco
rdi
ng to
the different
polari
z
atio
n, it can b
e
divid
ed into TE wave
and TM wave
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis a
nd
De
sign of Co
m
p
lem
entary Ring T
y
pe
M
e
tam
a
terial Filter in THz Wave
… (Wu Pan)
5509
Figure 1. FSS Patch Structural Mod
e
l (l
eft) and Co
m
p
lementa
r
y Ring Type Met
a
materi
al (ri
g
h
t)
In the fre
e
sp
ace, th
e scatt
e
red
field p
r
o
duced by th
e
indu
ced
cu
rre
n
t on the
pat
ch FSS
can b
e
expre
s
sed a
s
:
s
0
0
1
j
j
EA
A
(
1
)
Whe
r
e
A
is t
he mag
netic
vector p
o
tenti
a
l. There is
o
n
ly tangential
electri
c
current on the p
a
tch
FSS s
u
rfac
e,
A
can be
calculated by Equ
a
tion (2
):
xx
yy
,,
,
,,
Ax
y
J
x
y
Gx
y
Ax
y
J
x
y
(
2
)
Whe
r
e:
0
exp
j
/
4
Gk
r
I
r
,
22
rx
y
,
G
expre
ss the dya
d
ic Green fun
c
tion
s,
I
is the dyadic
unit. From Eq
uation (1
) an
d Equation (2
):
22
2
0
s
2
x
x
0
s
2
22
y
y
0
2
0
2
j
k
A
Ex
y
x
A
E
k
k
xy
y
(
3
)
The tang
enti
a
l ele
c
tric
cu
rre
nt on the
unit of FSS is zero. Use
Fouri
e
r tran
sform o
n
Equation (3).
s
22
x
x
jx
j
y
0
s
22
y
y
0
0
,
11
ee
,
2j
J
Ex
y
k
Gd
d
J
Ex
y
k
(
4
)
The
G
in Equation (4
) is:
22
2
0
22
2
0
22
2
0
j
2
1
2
k
k
G
k
ot
he
r
s
(
5
)
Use Floqu
et theory:
in
c
i
n
c
xy
j2
m
a
k
x
j2
m
b
k
y
mm
e,
e
mm
Jx
J
J
y
J
(
6
)
y
T
x
T
r
R
x
y
z
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5508 – 55
13
5510
Whe
r
e
a
,
b
resp
ectively e
x
presse
s u
n
i
t
period o
n
the directio
n of
x
,
y
,
k
x
inc
,
k
y
inc
respe
c
tiv
e
ly
expre
s
ses in
cide
nt wave
numbe
r
on th
e di
re
ction
of
x
,
y
, From E
quation
(4),
Equation
(5
)
an
d
Equation (6):
mn
s
22
jx
y
xm
n
x
0m
m
n
mn
s
22
ym
n
y
0
mn
0
n
,
,
2
,e
,
,
j
mn
J
Ex
y
k
G
J
Ex
y
ab
k
(7)
Whe
r
e
in
c
i
nc
mx
n
y
=2
/
,
=2
/
2
/
c
o
s
ma
k
n
b
k
ma
,
is the angle
b
e
twee
n the t
w
o
perio
d di
re
cti
ons of FSS.
Acco
rdi
ng to
Babinet
prin
ci
ple [8], two
complem
entary stru
ctures e
x
ist
compl
e
me
nta
r
y frequ
en
cy
respon
se
s. T
he st
ru
ct
ure
s
of patch type FSS and
a
pertu
re type
FSS
are
com
p
lem
entary, so th
e ape
rture
structu
r
e
of th
e freq
uen
cy
respon
se
ca
n be
co
ncl
u
d
e
d
according
to patch stru
cture.
3. Complementary
Ring ty
pe MM F
ilter
3.1. Structu
r
e Parameter Estimation
Before sim
u
l
a
tion, the unit structu
r
e p
a
ram
e
ters of comple
ment
ary ring type
MM are
need
ed to
be
estim
a
ted. A
s
the
terahe
rt
z at
m
o
sphe
re
co
mmuni
cati
on
wind
ow is 300
~3
76G
Hz,
the cente
r
fre
quen
cy of the
filter is set a
s
338
GHz. Fi
gure
1 (ri
ght)
sho
w
s the 2
×
2 peri
odi
c M
M
,
the unit i
s
al
uminium
sh
e
e
t with
ring
slot
w
h
os
e
th
ick
n
ess
is
2
μ
m. The
su
bstrate
is hi
gh-
res
i
s
t
anc
e
Si,
the relative permittivity
ε
r
=
11.9.
Prelimina
r
y d
e
termini
ng th
e geomet
ry si
ze of unit, particularly the in
ner radiu
s
r
,
t
he si
ze
of unit cell
T
x
and
T
y
, the thic
knes
s
t
Si
of the sili
con
sub
s
trate h
a
ve to be set.
The inne
r ra
d
i
us
r
can be d
e
termin
ed by usin
g the re
sonan
ce
con
d
i
t
ion [9]:
0
1
,
22
22
rr
eff
eff
r
eff
c
r
f
(
8
)
Whe
r
e
c
i
s
velocity of light
,
ε
eff
is
effec
t
ive permittivity,
ε
r
is
relative permittivity
of s
u
bs
trate. The
cente
r
fre
que
ncy
f
r
=3
38G
Hz, a
c
cordin
g to Equation
(8)
r
=55.65
μ
m, and the ri
ng sl
ot width
s
is
s
e
t as
20
μ
m, so the oute
r
radiu
s
R
=75.6
5
μ
m.
To avoid the
grating l
obe,
T
x
and
T
y
mu
st be le
ss th
an the minim
u
m of unit si
ze. Th
e
con
d
ition of g
r
ating lob
e
ap
peari
ng is [10
]
:
2
(si
n
si
n
)
2
,
xg
g
Tn
(
9
)
Whe
r
e
η
i
s
a
ngle of inci
de
nce,
η
g
is th
e
angle of grating lobe.
Wh
en the gratin
g lobe skim
s
over
the unit(
η
g
=9
0°), the mini
mum frequ
en
cy
f
g
0
occur
s
.
0
(si
n
1
)
xy
g
nc
TT
f
(
1
0
)
In Equation
(10),
c
is
veloc
i
ty of light,
setting s
i
n
η
=1,
n=1,
the min
i
mum size
of unit
cell can
be
determi
ned.
Cho
o
si
ng the
maximum scannin
g
freq
u
ency
f
g
0
=50
0
G
Hz, the min
i
mum si
ze of
unit
cell
T
x
=
T
y
=3
00
μ
m.
As the filte
r
works in
tera
hertz fre
que
n
c
y ba
nd, the
thickne
s
s of t
he
sub
s
trate
is in
th
e
same
o
r
de
r
of magnitu
de
as pa
ssba
n
d
center
wavelength,
whi
c
h will
cause
the Fab
r
y-Pe
rot
resona
nce occers. The F
a
bry-Pe
rot re
sonan
ce
con
d
i
t
ion [11] is:
1
co
s
a
rc
s
i
n
s
i
n
2
Si
rr
c
tk
f
(
1
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis a
nd
De
sign of Co
m
p
lem
entary Ring T
y
pe
Metamaterial Filter in THz
Wav
e
… (Wu Pan)
5511
Whe
r
e
θ
i
s
a
ngle of inci
de
nce,
k
=1
、
2
、
3…,
f
is the reso
nant freq
uen
cy,
ε
r
is
relative permittivity
of sub
s
trate.
Setting
f
=338
GHz,
k
=1,
θ
=90
°
, the minimum thickn
ess
of the substrate can
be
determi
ned
t
Sim
i
n
=123.12
6
μ
m when the F
abry-Pe
rot re
son
a
n
c
e o
c
curs.
To avoid the
Fabry-P
e
rot reso
nan
ce, th
e thickne
ss
o
f
the sub
s
trat
e must be l
e
ss tha
n
123.12
6
μ
m. The thickn
ess is le
ss, the transmi
ssion
ra
te ca
n get
highe
r. Nev
e
rthele
s
s, it also
cau
s
e
po
ore
r
mechani
cal
stren
g
th. Ta
king all
the fa
ctors into
a
c
cou
n
t, the th
ickne
s
s of th
e
sub
s
trate i
s
set as 0.02
λ
0
(18.38
μ
m)
.
The disco
n
tinuou
s bou
nd
ary will affect the fil
t
ering
prope
rties.
So for the THz wave
beam, the si
ze mu
st be approximate
infinite. In th
e pra
c
tical a
pplication, the size of array
stru
cture mu
st be approxim
ate infinite
as
compa
r
e
d
t
o
v
a
riou
s of
TH
z so
ur
ce
s.
3.2. Filtering Propert
y
In this
paper, Ans
o
ft HFSS is
us
ed to
s
i
mula
te t
he
MM structu
r
e
.
Due to th
e l
a
rge
si
ze
of com
p
lementary ring array, the actual size
of
the model will cause
huge cal
c
ulated am
ount,
whi
c
h
will affects the accuracy of
the
si
mulation. So
the single uni
t is set up
and simul
a
ted by
usin
g Floqu
et port and Ma
ster-slave bo
u
ndary conditi
ons.
The filter whi
c
h
con
s
ist
s
o
f
triple-laye
r
compl
e
me
nta
r
y ring i
s
sho
w
n in Fi
gure
2 (left)
.
Acco
rdi
ng to the analysi
s
i
n
Part 2, the singl
e
-
laye
r FSS can be
rega
rd
ed a
s
a LC resona
nt
circuit, so mu
lti-layer FSS is a filtering n
e
twork t
hat is compo
s
e
d
of multiple LC reso
nant ci
rcu
i
ts
ca
scade
d. Due to the th
e
o
ry of
tra
n
sm
issi
on lin
es [
12], the interl
ayer
spa
c
ing
must b
e
λ
0
/4 to
make
sure th
e imped
an
ce
match
between the l
a
yers, and
λ
0
is t
he resonan
ce wavel
ength
in
free spa
c
e. T
he sh
ape
an
d size of every FSS must be identi
c
al
so as to
ma
ke
t
h
e coin
cid
e
n
ce
of reflection
coefficient.
Whe
n
simula
ting,
the stru
cture
pa
ram
e
ters
ar
e
s
e
t a
c
c
o
rd
in
g to
Pa
r
t
3
.
1
an
d
the
in
te
r
l
a
y
er
s
pac
in
g
is
λ
0
/4, the S paramet
ers
sh
ow i
n
F
i
gure
2 (mi
ddl
e) N1. The
center freque
n
c
y
is 33
2G
Hz, 3
d
B band
width
is 52.7
G
Hz,
the in-b
and t
r
ansmi
ssion
coefficient
(S
21
) is
not flat.
By
redu
cin
g
the
layer
spa
c
in
g, it can
stre
ngthen
s
the i
n
terlaye
r
cou
p
ling in th
e
electroma
gne
tic
field, so it ca
n improve the
filter perfo
rm
anc
e an
d exp
and the
ban
d
w
idth. Comp
ared
with m
o
del
N1, the inte
rl
ayer spa
c
ing
of N2 redu
ces 1
0
μ
m, an
d the in-ban
d tran
smi
ssi
o
n
co
efficient
is
flatter, and the Bandwi
d
th is bro
ade
r.
Figure 2. The
Triple-l
ayer
Compl
e
me
ntary Ring M
e
tamateri
als M
odel (left) S Param
e
ter of
Different Interlayer Spa
c
ing
(middle
)
S Parameter of Improved Model (right)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5508 – 55
13
5512
Acco
rdi
ng to
Equation (8
), by
incre
a
si
ng the inne
r radiu
s
r
, it can m
a
ke the cente
r
frequency redshift. And combining wi
t
h
interlayer spaci
ng, it ca
n make further improvement
o
f
the filtering
p
r
ope
rtie
s. Ulti
mately, the in
ner
ra
diu
s
r
=59.3
μ
m,
ri
ng slot width
s
=56
μ
m, interlayer
spa
c
in
g
d
=190
μ
m, the si
ze
of unit cell
T
x
=
T
y
=3
00
μ
m,
the thickne
s
s of the sili
co
n su
bstrate
t
Si
=
18.38
μ
m, the
S paramete
r
sho
w
s i
n
F
i
gure
2
(rig
h
t). The
ce
nter frequ
en
cy is 338G
Hz, th
e
transmissivity re
ache
s 9
7
%
, the max i
n
-ba
n
d
insert
ion lo
ss i
s
0.62dB
and
3d
B ban
dwidth
is
75.9G
Hz, whi
c
h mat
c
he
s the first tera
he
rtz atmo
sph
e
re comm
uni
ca
tion wind
ow.
4. Stabilit
y
o
f
Complementar
y
Ring Ty
pe MM F
ilter
4.1. Stabilit
y
of Polariz
a
tion
Figure 3
sh
o
w
s the S
parameter of
filter, when
the
incid
ent wave
is diffe
rent
p
o
lari
zed.
As sho
w
n in
Figure 3 (left), transmissio
n coeffici
ents (S
21
) of TE
wave an
d TM wave have
an
overlap, b
o
th
of the ce
nter freque
nci
e
s
are 3
38G
Hz. Whe
n
the in
cide
nt wave i
s
TE wave, the
3dB ban
dwi
d
th is 75.9
G
Hz. wh
en the
i
n
cid
ent wave
is TE
wave,
3dB ban
dwi
d
th is 76
GHz.
So
unde
r the different p
o
lari
ze
d incid
ent wa
ve, filt
er sho
w
s g
ood
stab
ility. Meanwhi
le, TM wave
has
the less
reflec
tion coeffic
i
ent (S
11
).
Figure 3. The
S Parameter of Different Polari
zed
Wav
e
s S
21
(left) S
11
(right)
4.2. Stabilit
y
of Incident Angle
Figure 4
sho
w
s th
e fre
q
u
ency
re
spon
se of t
he filter whe
n
the in
cide
nt wave
has th
e
different an
gl
e. Whe
n
inci
dent wave is TE wa
ve, the center f
r
e
quen
cy is 3
3
8
GHz
with the
incid
ent angl
e
θ
=0°; the
cente
r
fre
q
u
ency is
339
GHz with
θ
=10°; the cen
t
er freq
uen
cy is
340G
Hz with
θ
=2
0°. It can be seen
that when th
e incid
ent a
ngle
in
cre
a
se
s,
t
he ce
nt
er
freque
ncy sli
ghtly drifts, and the 3dB b
and
width get
s a little narro
wer from 75.9
G
Hz to 74.6G
Hz.
Figure 4. The
S Parameter of Different Ince
dent Angl
e Wave
s TE (left) TM (rig
h
t)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis a
nd
De
sign of Co
m
p
lem
entary Ring T
y
pe
M
e
tam
a
terial Filter in THz Wave
… (Wu Pan)
5513
Whe
n
in
cide
nt wave i
s
T
M
wave,
with t
he in
crea
sing
of in
cid
ent angl
e, th
e ce
nter
freque
ncy ha
s a blue
shift in small rang
e
,
the 3dB
ban
dwidth g
e
ts sl
ightly broad
er. In conclu
sio
n
,
within the 20
° sco
pe of the incid
ent
angl
e, the filter has a goo
d stab
ility.
5. Conclusio
n
In this p
ape
r,
the compl
e
mentary
ring
ty
pe MM unit
is the
o
retical
l
y analyze
d
b
y
using
the spe
c
tral d
o
main ap
proa
ch. And the b
andp
ass filt
er that works in
terahe
rtz is d
e
sig
ned, which
con
s
i
s
ts of triple-laye
r
co
mpleme
ntary
ring
type M
M
. The cent
er fre
que
ncy
is 33
8G
Hz,
the
transmissivity re
ach
e
s 97
%, the max i
n
-ba
nd i
n
sert
i
on lo
ss i
s
0.6
2dB an
d the
3dB ba
nd
widt
h is
75.9G
Hz,
whi
c
h m
a
tch
e
s the first tera
h
e
rtz
atmo
sph
e
re
com
m
uni
cation
win
d
o
w
. The
filter o
ffers
a supe
rio
r
st
eepn
ess
of skirt
s
an
d o
u
t-of-ban
d
re
je
ction. Wh
en t
he in
cide
nt
wave i
s
different
polari
z
e
d
,
it shows a stabl
e
freq
uen
cy re
spo
n
se.
An
d
within
20°
scope
of in
cide
nt angl
e, it h
a
s a
stable filterin
g prop
erty.
Ackn
o
w
l
e
dg
ements
The
wo
rk is
sup
porte
d by
Scie
nce a
n
d
Te
ch
nolog
y Re
sea
r
ch
proje
c
t
of Ch
ongqi
ng
Educatio
n co
mmission in 2
011 (item n
u
m
ber: KJ110
518).
Referen
ces
[1]
Yao Ji
an
qu
an,
Lu Y
ang.
Ne
w
Rese
arch Pr
og
ress of T
H
z Re
diati
on.
Jou
r
na
l o
f
Op
to
el
e
c
tron
i
cs·La
se
r
.
200
5; 16(4): 50
3-51
0.
[2]
D Ghods
i N
a
h
r
i, H Arabs
ha
hi. Static C
har
acte
rizati
on of
InAs/AlGaAs Broad
ba
nd
S
e
lfAssembl
e
d
Quantum Dot L
a
sers.
T
E
LKOMNIKA Indone
sian Jo
urna
l of Electrical E
ngi
neer
ing.
2
012;
10(1): 55-
60.
[3]
Z
hang H
a
i, W
ang Jia
n
g
uo.
De
sign a
nd An
aly
s
is of a Co
mpa
c
t Te
rahert
z
Si
gna
l Gener
ator
for Militar
y
Co
mmun
icati
o
ns
. T
he 5th In
ternatio
nal
Co
nferenc
e o
n
W
i
reless
Com
m
unic
a
tions,
Net
w
orki
ng
an
d
Mobil
e
Com
put
ing. Bei
jin
g. 20
09: 1-4.
[4]
Hua
ng Ka
och
eng, W
a
n
g
Z
haoc
he
ng. T
e
rahertz T
e
rabi
t W
i
reless C
o
mmunic
a
tio
n
.
Microw
av
e
Maga
z
i
ne
. 2
0
1
1
; 12(4): 10
8-1
16.
[5]
Lan Ji
an
yu, T
ang Ho
uj
un, Ge
n Xin. F
i
nite E
l
ement
An
al
ysi
s
of a Contactl
ess Po
w
e
r T
r
ansformer
w
i
t
h
Metamaterial.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2014; 1
2
(1): 6
78-6
84.
[6]
Umair Rafi
qu
e, S
y
e
d
Ahsa
n Ali, M.
T
ausif Afzal,
et al. Band
stop F
ilter Desi
gn for GSM Shield
in
g Us
i
n
g
F
r
eque
nc
y Sel
e
ctive Surfac
e
s
.
Internation
a
l
Journ
a
l of El
ectr
ical a
nd C
o
mputer E
ngi
n
eeri
n
g
. 20
12
;
2(6): 846-
85
0.
[7]
W
ang Ji
anch
e
ng, W
u
Aitin
g
. Anal
ys
is an
d D
e
sig
n
of F
r
equ
enc
y Se
lective
Surface Ba
nd
pass F
ilter
i
n
T
H
z Wave
Domain.
Ch
ines
e Journ
a
l of Elec
tron Devic
e
s
. 2012; 35(
4): 431
-434.
[8]
Sun W
e
i, Z
h
a
o
Junm
ing. F
r
equ
enc
y S
e
lec
t
ive Su
rface B
a
sed
on A
pert
u
re of Per
i
od
i
c
Split Ri
n
g
Reso
nators.
Jo
urna
l of Microw
aves
. 200
7; 23
(3): 14-16.
[9]
Subrata
D
a
s,
Khan
Mamu
n
Reza. F
r
e
q
u
e
n
c
y
Se
lective
Surface B
a
se
d Ba
nd
pass F
ilter for
T
H
z
Communication Sy
stem.
Infra
r
ed, Milli
meter, and Terah
e
rt
z
W
a
ves
. 2012;
33(1
1
): 116
3-1
169.
[10]
Ben A. Munk, Hon
g
Xin
y
u. F
r
equ
enc
y Se
le
ctive Surfaces
T
heor
y
an
d
D
e
sig
n
. F
i
rst Edition. Bei
jin
g:
Scienc
e Press. 2009: 2
0
-21
[11]
Biber S, B
o
zz
i M, Gunther
O. Design
an
d T
e
sting of
Freque
nc
y-Sel
e
ctive S
u
rface
s
on S
ilic
o
n
Substrates for Submil
limet
er-W
ave Appl
icati
ons.
Anten
nas and
Pro
p
a
gatio
n
. 2006; 5
4
(9): 263
8-26
45.
[12]
Hu
Xi
aoq
in
g, Xi
a T
ongsh
eng
. Optimal Des
i
gn
of
Dou
b
l
e
-l
a
y
er F
r
eq
ue
nc
y S
e
lectiv
e Su
rface.
Moder
n
Electron
ics T
e
chni
que
. 2
012;
35(5): 19-2
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.