TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.7, July 201
4, pp
. 5174 ~ 51
8
4
DOI: 10.115
9
1
/telkomni
ka.
v
12i7.462
5
5174
Re
cei
v
ed O
c
t
ober 5, 20
13;
Revi
se
d March 16, 20
14; Acce
pted Ma
rch 2
9
, 2014
Circuit Design of Digital Closed Loop Control System
for FOG
Qiudong Su
n*, Yufeng S
h
ao, Jiancun
Zuo, Liandong Wang, Li
n Gui
Schoo
l of Elect
r
onic a
nd El
ectrical En
gin
eeri
ng, Shan
gh
ai
Secon
d
Pol
y
te
chnic U
n
ivers
i
ty,
236
0 Jin
hai R
o
ad, Shan
gh
ai 2
012
09,
Ch
ina, 86-2
1
-50
2
1
6
8
9
5
/86-2
1
-5
021
4
979
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: qdsun
@sspu
.
edu.cn
A
b
st
r
a
ct
F
i
ber o
p
tic gyr
o
scop
e
(F
OG) is a n
e
w
an
g
u
lar r
a
te se
ns
or bas
ed
on th
e Sag
nac
effect. It has
been widely applied in
the na
vigation control system of
aircrafts, spac
ec
rafts and ships
.
But its stability,
relia
bi
lity an
d mi
niat
uri
z
a
t
i
o
n
are alw
a
ys th
e researc
h
foc
u
ses a
nd d
i
fficulties. T
h
is p
a
per pres
ente
d
a
circuit d
e
si
gn
meth
od
for the
dig
i
tal c
l
os
ed
l
oop
contro
l sys
tem
of F
OG ba
sed
on F
P
GA.
Based
on
a
lar
g
e
nu
mb
er of
exp
e
ri
ments, th
is
pap
er su
mmari
z
e
d
th
e
para
m
eter d
e
m
an
ds
for eac
h
mo
du
le
of clos
ed
lo
o
p
control c
i
rcuit a
nd d
e
sig
n
e
d
a
corresp
ond
in
g
circuit usi
ng F
P
GA. T
he prop
osed
du
al cl
os
ed l
oop
techn
i
q
u
e
improved the
z
e
r
o
offset stability
of FOG. The using
of
FPGA brought the digi
t
a
l signal
proc
essing by
softw
are, the s
ystem rel
i
ab
ilit
y and agi
lity en
hanc
e
m
ent as
w
e
ll as the system
min
i
aturi
z
a
t
ion.
Particul
arl
y
,
w
e
discussed
the prob
le
ms of comp
on
ent selecti
on an
d the anti-j
a
mm
i
n
g me
asur
es for PCB design
to
improve the
performanc
es of the system
.
We also
dev
eloped some sam
p
les
of
FOG using this
design
meth
od.
T
h
e exper
iments a
nd
tests
sh
ow
that the pr
op
osed
metho
d
is efficie
n
t an
d val
u
a
b
le. T
h
e
stabiliti
e
s of
z
e
ro-offsets of all
samp
les ar
e le
ss than 0.07
5d
eg/h.
Ke
y
w
ords
: fib
e
r optic gyrosc
ope, circu
i
t des
ign, di
gital cl
os
ed lo
op, seco
n
d
close
d
lo
op, F
P
GA
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
As a new a
n
gular
rate se
nso
r
, the fiber
optic gyroscope (F
OG
) h
a
s many adv
antage
s,
su
ch a
s
co
m
p
leted solid state, small si
ze, light
wei
g
ht, long usin
g life, low co
st and hig
h
a
n
ti-
impact
ca
pab
ility [1]. It has been
paid
wi
dely attent
ion
by the world
and in
crea
se
d investm
ent
in
its re
sea
r
ch
and d
e
velop
m
ent ann
uall
y
. It also ha
s be
en a
ppli
ed to the fiel
d of the ine
r
tial
measurement
in the area
s of spa
c
e prod
uction
s,
military prod
uctio
n
s and
civilian
prod
uctio
n
s.
The
ba
sic p
r
incipl
e of i
n
terferential
F
OG
based
o
n
the
Sagn
a
c
effe
ct [2-7]
and
the
reci
procity theore
m
of its comp
one
nt are intro
d
u
c
ed
in this pape
r. The work chara
c
te
risti
c
s of
the digital clo
s
ed lo
op ap
pl
ied to FOG a
r
e also a
nalyzed. Accordi
n
g
to the design
requi
reme
nts,
the digital cl
ose
d
loop fe
edba
ck co
ntrol system
of
FOG is impl
emented. O
n
the basi
s
of the
amount of te
sting, the p
a
rameter
adju
s
t
m
ents
of mo
dule
s
in the
close
d
loo
p
co
ntrol
system
are
summ
ari
z
ed,
and the rel
e
vant circuit
is scheme
d
out. At
the same time,
we discu
ss th
e
comp
one
nt selectio
n a
nd t
he i
s
sue
s
of
anti-jammi
ng
in PCB
de
sig
n
in
detail. Fi
nally, we
dev
elop
some
sampl
e
s of
FO
G usin
g
the
h
a
rd
wa
re de
si
gn
m
e
thod
prop
osed
i
n
this pap
er and
combi
n
ing th
e relevant software d
e
velo
pment in FP
GA.
This
pap
er is org
ani
zed
a
s
follo
ws. In
se
cti
on
2, we
introd
uce th
e control
techniqu
e of
digital
closed
loop
for
FO
G. Sectio
n 3
pre
s
ent
s th
e
circuit d
e
si
gn
method
of di
gital cl
osed l
oop
system
for
F
OG in
detail.
Section
4 giv
e
s
som
e
c
o
ns
id
er
a
t
io
ns
for
th
e
h
a
r
d
w
a
re
d
e
s
i
gn
. Se
ctio
n
5 sho
w
s a
go
od p
e
rfo
r
man
c
e
of FO
G
sample
s th
rou
gh exp
e
rim
e
n
t
testing. Se
ction 6
gives t
he
con
c
lu
sio
n
s o
f
this paper.
2. Technique
of Digital Cl
osed Loo
p Control for F
O
G
2.1. Main Frame
In passe
d ye
ars, th
e digita
l schem
e of F
OG o
c
cupie
d
a domi
nant
positio
n grad
ually. Its
prin
ciple
ca
n
be de
scrib
ed
by a style, in
whi
c
h
the
ori
g
inal a
nalog
sign
al should
be qu
antified
a
digital availab
l
e measuri
ng
rang
e qua
ntity as early
a
s
possibl
e and
be pro
c
e
s
sed
in digital field,
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Circuit De
sig
n
of Digital Cl
ose
d
Loo
p Control System
for FOG (Qi
u
dong Sun
)
5175
then the
processed
digital
sign
al
shoul
d
be
co
nver
te
d into
an a
nal
og
sign
al by
D/A co
nverto
r to
control the sy
stem.
The typical
system mainly
con
s
ist
s
of optic
al
sou
r
ce gene
rato
r, photoel
ectri
c
detecto
r,
A/D conve
r
to
r, digital logi
c mod
u
le, D/
A conv
erto
r,
optical inte
grated co
mpo
n
ent (coupl
er,
Y-
waveg
u
ide
)
a
nd optical fiber rin
g
[8-10]
. Its fram
e is sho
w
n a
s
in Figure 1. In this system,
we
input the
p
hase mo
dul
ation si
gnal
s with the
l
adde
r
wave
and
sq
uare wave
into
the
interferomete
r
throu
gh th
e optical i
n
tegrate
d
com
pone
nt. The
ladde
r wav
e
is ap
plied
to
cou
n
tera
ct th
e Sagna
c p
h
a
se
shift thro
ugh
clo
s
ed
l
o
op feed
ba
ck
control. The
square wave i
s
a
s
an offset
sig
nal to
ena
bl
e that th
e o
u
tput si
gnal
of the Sa
gna
c inte
rferome
t
er h
a
s a li
n
ear
relation
shi
p
with
the pha
se shift
si
gn
al.
The
step
height of th
e
ladde
r
wave
is the
mea
s
ured
Sagnac phase shift, which is the
angular rat
e
signal. In this
schem
e, besi
d
es the output of
detecto
r, the drive sig
nal
s of ladder wave and sq
uare
wave, the main sign
al pro
c
e
ssi
ng is do
ne
in the digital field to avoid the circuit noi
ses and
to imp
r
ove the mea
s
uri
ng preci
s
i
on [11]. Hence,
this
scheme
i
s
o
ne of th
e
main meth
od
s of
sign
al p
r
oce
s
sing
syst
em for th
e m
edium
or
hig
h
pre
c
isi
on FO
G.
Figure 1. Fra
m
e of Closed
Loop Control
System of FOG
2.2. Basic Pr
inciple
The pha
se di
fference of FOG ca
n be o
b
tained throu
gh mea
s
uri
n
g the intensit
y of th
e
output of the
photoel
ectri
c
detecto
r. The
light int
ensity
variable P of
the output from the Sagn
ac
interferomete
r
has a
relatio
n
shi
p
with the
Sagnac p
h
a
s
e shift
△
・
S
as follo
wing [
11]:
f
FB
S
d
cos
1
P
P
(
1
)
Whe
r
e
P
d
i
s
the amplitu
d
e
of light i
n
tensity,
・
f
i
s
the ph
ase
shift gene
rate
d by the
squ
a
re
wave
modulatio
n as
sho
w
n in
Figure 2, an
d
△
・
FB
is t
he pha
se
shi
ft of ladder
wave
gene
rated
by the clo
s
ed l
o
op control
sy
stem a
s
sho
w
n in Figu
re 3.
From thi
s
eq
uation, we
kn
ow
that the light
intensity is a co
sine function of phase shift. But,
the output light i
n
tensity can
not
reflect th
e direction
of rota
tion, and the
system
ha
s a
lower se
nsi
t
ivity.
Therefo
r
e, the
syste
m
sho
u
ld be ad
ded a non
re
ci
pro
c
al ±
π
/2 p
hase offset throug
h the sq
uare
wave m
odulatio
n. In the
light path,
we
dra
w
t
w
o
alternative
pha
ses
with th
e v
a
lue
s
of
π
/2
and -
π
/2 into
two lights
in t
h
e
oppo
site dire
ction
s
. The
s
e
two states h
a
ve t
heir own
output light int
ensitie
s re
spectively:
FB
S
d
FB
S
d
2
sin
1
2
π
cos
1
P
P
P
(
2
)
FB
S
d
FB
S
d
1
sin
1
2
π
cos
1
P
P
P
(
3
)
To do the different de
mod
u
lation for eq
uation (2
) an
d (3), we obta
i
n:
FB
S
d
1
2
sin
2
P
P
P
P
(
4
)
S
o
ur
ce
C
ouple
r
Y
-
Wa
ve
guide
Fibe
r
Ri
n
g
Det
ect
o
r
A/D
D/A
Digita
l
L
ogic
Squa
re
Wave
L
a
dde
r
Wave
Op
t
i
ca
l
In
t
e
g
r
at
ed
Co
m
p
o
n
en
t
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5174 – 51
84
5176
In the Eq
uati
on
(4), th
e
Sagna
c p
h
a
s
e shift
△
・
S
is al
way
s
a
p
p
roximately
equal
to
△
・
FB
and
their
sig
n
s are op
posite,
b
e
ca
use the
a
dded
ladd
er
wave i
s
u
s
e
d
to
counte
r
act
△
・
S
. Theref
ore,
△
・
S
+
△
・
FB
is always app
roxim
a
tely equal to
0, then we h
a
ve:
d
d
FB
S
d
2
sin
2
sin
2
P
P
P
P
(
5
)
Apparently, if
△
・
FB
can cou
n
t
e
ra
ct
co
mplet
e
ly
△
・
S
, that is
△
・
=
0,
△
P
should b
e
equal to
ze
ro
. If
△
P
≠
0, it
is said that t
he no
nre
c
ip
rocal
pha
se
shift generate
d
by the lad
der
w
a
ve
do
es
no
t c
o
un
te
ra
c
t
s
th
e
no
nr
ec
ip
r
o
c
a
l ph
as
e s
h
ift ca
us
e
d
b
y
r
o
ta
tio
n
ye
t. T
h
is
time
, w
e
can ta
ke
△
P
as an e
r
ror
control
signal
to chan
ge th
e step hei
ght
of ladder
wa
ve through th
e
c
l
os
e
d
lo
op
sys
te
m to
c
oun
te
r
a
c
t
△
・
. The additive nonreci
p
rocal
pha
se
shift
g
enerated by
△
P
throug
h the cl
ose
d
loop
system is:
P
K
(
6
)
Whe
r
e K i
s
a
scale
coeffici
ent to gen
era
t
e the non
re
ci
pro
c
al p
h
a
s
e
shift throu
gh t
he cl
osed loo
p
system. The
n
we have:
K
P
P
K
P
P
P
P
d
d
d
d
d
1
2
1
2
2
2
2
(
7
)
Figure 2. Sch
e
matic Di
ag
ram of Square
Wave
Modulatio
n
Figure 3. Sch
e
matic Di
ag
ram of Ladde
r Wave
Modulatio
n
In Equatio
n (7), if 2
P
d
K
=1
, then
△
P
1
=0, that
mea
n
s th
e
cont
rol e
rro
r
of th
e digital
clo
s
ed lo
op
system is
ze
ro
, it is indicate
d that the clo
s
ed l
oop
rea
c
hes
balan
ce.
If 2
P
d
K
≠
1, then
the cl
osed l
o
op fee
dba
ck co
ntrol
will
be
contin
ued
. After feedb
ack
cont
rollin
g n tim
e
s, t
he
system
will be in a state as followi
ng:
n
d
d
n
2
1
2
K
P
P
P
(
8
)
From Eq
uati
on (8
), we
know th
at wh
en 0
<
P
d
K
<1/
2
, the clo
s
ed
loop sy
stem
can
be
monotoni
c co
nverge
nce an
d will rea
c
h the balan
ce g
r
adu
ally. The condition 0
<
P
d
K
<1/2 can
be
ensure
d
by the system d
e
si
gn.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Circuit De
sig
n
of Digital Cl
ose
d
Loo
p Control System
for FOG (Qi
u
dong Sun
)
5177
Whe
n
the clo
s
ed loo
p
syst
em rea
c
h
ed the stat
e of balan
ce, the angula
r
rate of
rotation
can b
e
cal
c
ul
ated by the equation a
s
fol
l
ow
in
g and b
e
measured b
y
the FPGA
module.
FB
π
2
LD
C
Ω
(
9
)
Whe
r
e
i
s
th
e wavelength
of the
optical
so
urce,
LD
i
s
the
produ
ct
of the l
ength
of opti
c
al fib
e
r
ring
s and the
diamete
r
of optical fiber
rin
g
.
3. Circuit De
sign
3.1. Sy
stem
Frame Ba
se
d on FPGA
The sche
me
use
d
in this
pape
r is the
cont
in
uation
of the traditional idea for d
e
sig
n
ing
the cl
ose
d
lo
op
control
system of
FOG,
whi
c
h
co
nsi
s
ts of 6
co
mpo
nents such
a
s
o
p
tical
so
urce
gene
rato
r, in
tegrated
light
path, co
upl
er, opti
c
al
fi
ber
ring, p
h
otoele
c
tric
d
e
tector and
drive
control ci
rcuit.
Structu
r
ally, we ch
oo
se the integratio
n solu
tion of
aluminum al
loy material, i.e., th
e
optical sou
r
ce control circuit board an
d the closed
lo
op cont
rol ci
rcuit boa
rd are
fixed in the b
ody
of optical fib
e
r
rin
g
s.
We
select the
su
p
e
r lumi
ni
fero
u
s
dio
de
with a
pro
perty of wide spe
c
trum
as
the optical
so
urce a
nd d
o
con
s
tant p
o
wer
control
in whol
e
tempe
r
ature ran
ge (-40
~60
Ԩ
) usi
ng
the optical source control
circ
uit board
.
The used o
p
tical fiber i
s
the polari
z
at
ion maintaini
ng
fiber an
d the
ring
s are wi
nded by the
quad
rup
o
le
symmetrical
winding p
a
ttern [12]. The total
length of the fiber coil is ab
out 650m.
FPGA is a logic gate a
rray
,
which is
co
m
posed of m
any indepe
nd
ent macro
c
ell
s
. These
macro
c
ell
s
can be
marke
d
out
some
mutual n
on-
i
n
terferential
l
ogic units, which ca
n
work
i
n
parall
e
l style. The sign
al excha
nge be
tween the
dif
f
erent logi
c u
n
its ca
n be realized thro
u
gh
simple l
ogi
ca
l con
n
e
c
tion
s or some tri
gger l
e
vels
[
13]. This di
g
i
tal logic
co
mpletely fits the
deman
ds of the appli
c
atio
n of the cl
ose
d
loop control
system for F
OG.
Figure 4. Fra
m
e of Closed
Loop Contro
l
System of FOG Based on
FPGA
The FPGA base
d
schem
e
is sho
w
n as i
n
Fi
gure 4. We choo
se PIN/FET with bandwi
d
th
about 7
~
8M
Hz a
s
the p
hotoele
c
tri
c
detecto
r.
Fro
m
the photo
e
lectri
c d
e
te
ctor to the
post
amplifier, all
module
s
com
pose the digit
a
l clo
s
ed lo
o
p
control
circui
t, and they are integrate
d
into
a si
ngle PCB
as a control ci
rcuit board of F
OG.
In the following
sectio
ns, we
will di
scuss the
impleme
n
tation of the cont
rol ci
rcuit boa
rd.
C
ouple
r
PIN
/
FE
T
A/D
Main
D/A
F
P
GA
SL
D
Assist.
D/A
Angu
la
r R
a
te
L
a
dde
r Wa
ve
+
Squa
re
Wa
ve
Fibe
r
Ri
n
g
Pos
t
-a
m
p
P
r
e-
am
p
/Fil
te
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5174 – 51
84
5178
3.2. Preamplifier and A/D Module
Since the
op
tical si
gnal i
s
compli
cate
d rela
tively, after photo
e
l
e
ctri
c
conve
r
ted, the
electri
c
signal
come o
u
t fro
m
the detect
o
r ha
s ple
n
tiful noises. As
a sign
al picki
ng up am
plifier,
the pre
a
mplifi
e
r ne
ed
s to suppress the
n
o
ise
s
a
s
clea
n as
po
ssibl
e
but must e
n
sure its
effecti
v
e
band
width. T
herefo
r
e,
we
cho
o
se a o
p
e
ration
al am
p
lifier with
hig
h
rate, lo
w e
x
cursion
and
low
noise as th
e prea
mplifier.
And we al
so
desi
gn a
ca
scaded di
re
ctly cou
p
led a
m
pl
ifier as
sho
w
n
in
Figure 5 to
magnify the
signal. Its g
a
in
sho
u
ld
be
a
d
juste
d
a
c
cording to th
e
sensitivity of F
O
G
and the preci
s
ion of the cl
ose
d
loop
co
ntrol.
Figure 5. Circuit of Preamp
lifier
After amplified, the signal
sho
u
ld be
co
nvert
ed from
analo
g
field into digital field to be
pro
c
e
s
sed
convenie
n
tly. Due
to existi
ng of the
wh
ite noi
se in
the
circuit, th
e A/D
conve
r
tor
sho
u
ld m
eet
som
e
requi
rements. If th
e LSB of
A/
D
conve
r
tor i
s
smalle
r tha
n
the
stand
a
r
d
deviation of the noi
se, then the sampli
ng against
the signal will
be satisf
ied. Accordi
ng
to the
analysi
s
, the ratio of the st
anda
rd
deviat
i
on of the noi
se ove
r
π
/2 offset powe
r
is 2.83×1
0
-3
. For
this o
r
de
r of
magnitud
e
, it
is e
noug
h to
satisfy
the
re
quire
ment
s of
circuit i
n
the
wh
ole dyn
a
m
ic
rang
e
whe
n
we j
u
st u
s
e
a
12bit A/D to
co
nvert a
n
a
nalog
sig
nal t
o
a di
gital
sig
nal. The
digit
a
l
integrato
r
ma
y bring the no
ise supp
re
ssi
on like a
lo
w pass an
alog f
ilter, but there
is no long
-term
drift existing in the electron
ic circuit ge
ne
rally [9].
Additionally, we shoul
d consi
der the
ei
genfrequ
en
cy of syst
e
m
whe
n
doi
ng A/D
conve
r
si
on. In our sch
e
m
e
, it is about 158
kHz. In
orde
r to redu
ce the influen
ce from noi
se to
sign
al, the pe
rforma
nce of A/D chip
sho
u
ld en
su
re sampling
32 p
o
ints at lea
s
t
in a semi
-cy
c
le
(316
kHz). At
the same
tim
e
, it should
keep
away
fro
m
the
pea
k
o
f
com
b
wave
in favor of m
ean
treatment. Th
erefo
r
e, the o
peratin
g freq
uen
cy
of A/D sampli
ng chip
is at least 15
MHz.
3.3. FPGA L
ogic Module
The m
a
in fu
nction
s
of F
P
GA incl
ude
the integ
r
al
filtering to th
e samplin
g
signal, the
digital gen
era
t
ion of closed
loop co
ntrol,
the digi
tal ge
neratio
n of se
con
d
clo
s
e
d
loop control, t
he
digital com
p
o
s
ition of squ
a
r
e wave an
d ladde
r wa
ve, the output of clo
s
ed loo
p
control an
d the
output of ang
ular rate.
Its compl
e
te parall
e
l proce
ssi
ng en
able
s
FPGA
to control the ev
ent of every time edg
e
and process
the relative d
a
ta on micro point as
well as hol
d the directio
n of da
ta stream a
n
d
p
r
oc
es
s th
e da
ta
o
n
mac
r
o p
o
i
n
t. Th
e
sys
te
m
c
o
nn
ec
tio
n
d
i
a
g
r
a
m o
f
F
P
G
A
[13] is
s
h
ow
n as in
Figure 6. The digital logic in FPGA can
be com
p
le
ted by software.
Its det
ail will be described in
the se
ction 3.
5.
3.4. D/A Mod
u
le, Second Closed Lo
op
and Post Amplifier
The final
pa
rt
of the di
gital
clo
s
ed
loop
c
ontrol
syste
m
is th
e mo
dul
e for
pha
se
e
x
cursion
control from t
he
cont
rol vo
ltage o
u
tput t
o
Y-waveg
u
i
de. As a vital
pa
rt of
clo
s
e
d
loo
p
circuit,
it
sho
u
ld gu
ara
n
tee the integ
r
ality of signal
stri
ctly and
satisfy the neces
sary regio
n
a
l linearity.
The modulati
on gain drift, caused by the infl
uence of
Y-waveguide and post am
plifier in
temperature cha
nge,
will depress
the
scale facto
r
and ze
ro
-offset
stability of FOG. Thus,
in
orde
r to get a high ca
pabi
lity FOG, the
se
con
d
cl
o
s
e
d
loop co
ntrol
circuit sho
u
l
d
be introd
uced
into the digita
l clo
s
ed lo
op
control sy
ste
m
of FOG to
track an
d co
mpen
sate the
2
reset voltage
undul
ate of the ladder wav
e
caused
by the modul
ation gain drift.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Circuit De
sig
n
of Digital Cl
ose
d
Loo
p Control System
for FOG (Qi
u
dong Sun
)
5179
Figure 6. Con
nectio
n
Dia
g
ram of FPGA
The mo
st di
re
ct app
roa
c
h
to co
mplete th
e se
co
nd
clo
s
ed loo
p
control ci
rcuit i
s
d
e
t
ecting
the erro
r of i
n
terferen
ce
signal a
r
o
und
the
/2
re
set
of the la
dde
r wave, an
d
accumul
a
ting
its
value, then
makin
g
thi
s
a
c
cumulate
d v
a
lue a
s
th
e feedb
ack
sign
al of the
se
cond
clo
s
ed
lo
op.
This fee
dba
ck si
gnal
will
be converte
d
by the as
si
stant D/A co
nvertor i
n
to an
analo
g
sig
nal
to
control the referen
c
e volt
age of the main D/
A co
nvertor in th
e main feed
back loo
p
. The
fundame
n
tal prin
ciple of th
e reset error
control ca
n b
e
descri
bed b
y
the Figure 7
.
Figure 7. Second Cl
osed L
oop an
d Fun
dament
al Pri
n
cipl
e of Lad
der Reset Co
ntrol
In Figure 7,
ERD is the d
i
fference sig
n
a
l of
the interfere
n
ce sig
n
a
ls when the
squa
re
wave chan
ge
s from the p
o
sitive semi
-cycle
to the
negative sem
i
-cycl
e
. RD i
s
the differe
nce
sign
al of the ladde
r wave
being in rese
t cycle.
CD i
s
the differen
c
e si
gnal of the ladde
r wa
ve
being
in n
o
rm
al cy
cle.
RF i
s
the
ma
rki
n
g
sig
nal
of re
set cycl
e to j
u
dge if th
e
sig
nal i
s
in
the
reset
cycle. IDM i
s
a module to detect the la
dder
wave
in
cre
a
si
ng o
r
d
e
crea
sing. All
these fun
c
tio
n
s
can b
e
achie
v
ed in FPGA.
On the
ba
si
s
of full con
s
id
ering
cost, e
n
e
rgy
con
s
u
m
ption a
nd
performan
ce,
we
sel
e
ct
a
16 bit D/A convertor a
s
the main D/A module a
nd a 14 bit one as the assi
stant D/A module in
pra
c
tice.
The
main
D/A i
s
co
ntroll
ed
u
s
ing
pa
rallel
i
n
terface,
whil
e the
a
ssi
sta
n
t D/A
can
o
n
ly
comm
uni
cate
with FPGA usin
g SPI protocol b
e
ca
u
s
e of the finite pins of FP
GA. The two
D/A
module
s
a
r
e
requi
red of
having high
er e
s
tabli
s
hi
ng times, which a
r
e far sho
r
ter tha
n
the
transitio
n time of a light going throu
gh th
e fiber rin
g
s.
The b
a
si
c
co
nne
ction id
ea
is: the
FPG
A
con
n
e
c
ts
with and
co
ntrols th
e mai
n
D/A and
the a
ssi
stant
D/A, then ta
ke the
output
of the
assist
a
n
t D/A a
s
a
referen
c
e
valu
e an
d in
put it
to
the main D/A, form the se
cond cl
osed lo
op ci
rcuit to control its g
a
in
. Finally, the
output sig
nal
of
De
m
ADD1
ADD2
RD
CD
RF
SU
B
ID
M
Assist. D/A
Main
D/A
ERD
L
a
dde
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5174 – 51
84
5180
the main
D/A is magnified
by tw
o cascade operational amplifiers,
and the result will be input i
n
to
Y-wave
guide
with the difference method.
The circui
t of
post amplifie
r is shown as
in Figure 8.
Figure 8. Circuit of Post Amplifier
4. Consider
a
t
ions for
Cir
c
uit De
sign
4.1. Compon
ent Selec
t
io
n
Whe
n
applie
d to the practice, the sy
stem
may meet quite atrocio
u
s ci
rcu
m
stan
ce
con
d
ition
and
sh
ould
work reli
ably eve
n
wh
en
the te
mperature
i
s
from
-℃
℃
40
to
6
0
. B
e
s
i
de
s
having
comp
ensation by
software, th
e system nee
ds
very good
co
mpone
nts to
sup
port it. A nice
perfo
rman
ce
represented
in the closed loop c
ont
rol boa
rd is
the stabilization of hard
w
are
para
m
eters in
whole temp
e
r
ature ran
ge.
In our proj
ect,
the temperat
ure drift co
efficient
s of all chips u
s
ed in the system
sh
ould be
less than 10
ppm, and th
e voltage ref
e
ren
c
e
sho
u
l
d
be less th
an 3ppm. Th
e pre
c
isi
o
n
s
of
resi
sto
r
s u
s
e
d
near th
e op
eration
a
l amp
lifier and
dete
r
minin
g
the g
a
in of the am
plifier sh
ould
be
0.1% and thei
r tempe
r
ature
drift coefficie
n
ts sh
ould b
e
less tha
n
25
ppm.
The
dema
n
d
s
fo
r the
ca
pacito
r
s in
the
system
a
r
e
also ri
go
rous.
The
fun
c
tion
s of
c
a
pac
i
tors
in
the c
i
rc
uit c
a
n be c
l
ass
i
fied into tw
o types: the bypa
ss ca
pa
citor fo
r filtering an
d the
blocking
capacitor for
separating the di
rect
curr
ent.
In order to
ensure the
stability of worki
ng
sign
al, the powe
r
supply
circuit should
use the
a
r
m
y
grade tanta
l
um ca
pa
citors with lo
w ESR
and ESL.
Th
e othe
r
sta
c
ked
cap
a
cito
rs sh
ould
sele
ct
the hig
h
p
r
e
c
isi
on
ca
pa
citors ma
de
by
the
material
C0G
or X7R.
4.2. Anti-jam
ming Design
for PCB
An excellent
PCB desi
gn i
s
the cru
c
ial
factor fo
r the system wo
rki
n
g norm
a
lly.
(1)
Basic pri
n
ciples for the PCB d
esi
gn
The ba
sic p
r
i
n
cipl
es for th
e PCB desi
g
n
are as follo
ws:
(a)
Usi
ng mul
t
ilay
e
r boa
rd
The high fre
q
uen
cy circuits usually have
a hi
gh deg
ree
of integration
and high den
sity of
layout. Using multilayer b
oard
is obli
g
atory for the
layout a
s
wel
l
as an
effici
ent mea
s
u
r
e
for
redu
cin
g
the mutual interfe
r
en
ce
s. In PCB design,
ch
o
o
sin
g
the nu
mber of layers rea
s
o
nably for
the po
wer su
pply layer
ca
n de
crea
se th
e si
ze of P
C
B
gre
a
tly. At th
e sa
me time,
the interim l
a
yer
can
be
well u
s
ed to
set
shi
e
ld an
d it ca
n
make an
adv
antage
ou
s co
ndition fo
r ha
ndy groundi
n
g
.
This m
e
a
s
ure ca
n redu
ce the pa
ra
sit
i
c ind
u
ct
a
n
ce
effectively and shorte
n t
he tra
n
smi
s
si
on
length
s
for si
gnal
s availa
bl
y as
well
as
depress th
e cross
i
n
terfe
r
e
n
ce
bet
ween
sign
als greatly.
Such p
e
rfo
r
mances im
proved will a
d
v
antage the
cr
e
d
ible
wo
rking of high f
r
equ
en
cy circuit.
Some one p
r
oved that 4-la
yered bo
ard can red
u
ce
20
dB more n
o
ise than 2-l
a
yered boa
rd whe
n
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Circuit De
sig
n
of Digital Cl
ose
d
Loo
p Control System
for FOG (Qi
u
dong Sun
)
5181
usin
g the sa
me materi
al. But more lay
e
rs th
e boa
rd
applied, mo
re com
p
licate
d
manufa
c
turi
ng
pro
c
e
ss a
dop
ted and hig
h
e
r
co
st will be.
(b) Ab
stainin
g
bend
ed lea
d
wire
s
The lead
wires bet
wee
n
the leg
s
of co
mpone
nts in
a high freq
ue
ncy circuit sh
ould be
straig
ht but not bended.
W
hen the ben
d
ed lead wi
re
s are inelu
c
tab
l
e, we sho
u
ld
use 4
5
°fold li
ne
or a
r
c transiti
on to
red
u
ce
the emi
ssi
on
of the hi
gh f
r
eque
ncy
sig
n
a
l an
d the
co
upling
bet
we
en
the wire
s.
(c) Le
ssenin
g
via holes
The alte
rnati
on of lea
d
wi
res between
the le
g
s
of compon
ents
d
i
stribute
d
in
different
layers in a hi
gh frequ
en
cy circuit sh
ould
be lessen
ed.
That is to say
that via holes for co
nne
cti
n
g
the com
pon
e
n
ts should
b
e
lessen
ed.
Acco
rdi
ng to
the test, a via hole can
bring a
0.5
p
F
distrib
u
ted ca
pacita
n
ce. Re
duci
ng via hol
es will e
nhan
ce the rate of circuit rem
a
rkably.
(d) L
e
sse
n
ing
via holes
The cro
ss i
n
terferen
ce ind
u
cted by
clo
s
e par
allel lea
d
wires
sho
u
l
d
be paid
attention
whe
n
arra
ngi
ng the
wires i
n
a hig
h
fre
q
uen
cy circ
uit.
If the parall
e
l
arrang
ement
is un
avoida
b
l
e
,
laying a l
a
rg
e area
of gro
und
on the
b
a
ck of th
e p
a
rallel
lea
d
wires shoul
d b
e
con
s
ide
r
ed
to
depress the cross inte
rfere
n
ce g
r
eatly.
(e) G
r
o
und surroun
ded p
r
oce
s
sing
The
gro
und
surroun
ded
m
easure
shoul
d be
u
s
ed
fo
r the
spe
c
ial
sign
al
wire
s
or
som
e
local u
n
its su
ch a
s
the clo
c
k unit. It is
also of benefit to the high rate
system.
(f) No lo
op ground, no
current loop
The lea
d
wi
res
can n
o
t form a lo
op
grou
nd o
r
a
curre
n
t loo
p
. A high freque
ncy
decouplin
g capa
citor shou
ld be set ne
ar every integra
t
ed circuit.
(g)
No loo
p
ground, no
current loop
The a
nalog
grou
nd a
nd
digital groun
d co
nne
cted
to the co
mm
on on
e ne
ed
the high
freque
ncy
ch
oke
lin
ks.
When
asse
mbli
ng the
hig
h
f
r
equ
en
cy
ch
oke
lin
ks, th
e hig
h
frequ
ency
ferrite be
ad
s with a lead p
a
ssing throug
h its cent
ral h
o
le sh
ould b
e
used.
(2) G
e
ner
a
l la
y
out criterion of PCB b
o
ard
On the ba
sis of principl
es mentioned a
bove,
we det
ermin
ed the curre
n
t gene
ral layout
crite
r
ion for P
C
B boa
rd de
sign.
(a) Ove
r
all de
sign
Acco
rdi
ng to
the requi
re
ments of st
ructure
of FO
G in our p
r
oj
ect, PCB bo
ard i
s
an
anomal
ou
s ro
undn
ess. Its
diamete
r
i
s
7
5
mm. We
d
e
s
ign
it usi
ng
6 layer PCB
board. From
the
top to the bo
ttom, they are uppe
r
sign
al layer,
ro
un
d layer, digit
a
l power
su
p
p
ly layer, an
alog
power supply
layer, anothe
r gro
und laye
r and lo
we
r si
gnal layer.
(b) Po
we
r su
pply
desi
g
n
Acco
rdi
ng to
the req
u
ire
m
ents of sy
ste
m
, t
he powe
r
supply inte
rface
s
of control boa
rd
are split into two gro
u
p
s
, i.e., A group
(+5V
, -5V an
d GND) an
d B group (+5
V
and GND),
as
sho
w
n i
n
Fig
u
re
9. They
supply the p
o
w
ers fo
r
the main comp
on
ents
a
nd
the output
opto
c
o
upler
on the cont
rol board re
spectively. In
our p
r
oje
c
t, we u
s
e de
co
upling de
sig
n
for every power
entran
c
e
to
the boa
rd
a
nd conn
ect
with 47
F a
nd 10
F ta
ntalum
capa
citors in tu
rn
to
guarantee th
e calm of input powe
r
si
gnal. And then,
the signa
l of A group
is split into tree
route
s
. One
of them con
n
e
cts to the in
put part
of A/D thro
ugh th
e high fre
que
ncy ferrite
be
ad.
Another on
e i
s
fo
r
D/A. Th
e third o
n
e
lin
ks
to
t
he digital part of FPGA through t
he power sup
p
ly
chip. B
e
fore
con
n
e
c
ted to
their aim
re
gion
s, th
ree
power supply
units
sh
o
u
ld
be
sepa
rate
d by
the high f
r
eq
u
ency
cho
k
e li
nks an
d be fil
t
ered
by a
series
filter networks, whi
c
h
a
r
e comp
osed of
the
tantalu
m
ca
pa
citors with cap
a
cita
nce
s
of
2
2
F
an
d 1
0
F.
Finally, a
g
r
oup
of
pa
ra
llel
cap
a
cito
rs
of 0.1F and
0.01F shou
ld be
conn
ected to the n
eare
s
t poi
nt from the p
o
w
e
r
sup
p
lied
chip
. In order to
ensure th
e calm of pow
er supply, it sh
ould be tran
smitted in the form
of surfa
c
e through
spe
c
ial l
a
yer to decre
ase the transf
e
r impe
dan
ce
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5174 – 51
84
5182
Figure 9. Layout of Power
Supply for PCB
(c) Groundi
ng
desig
n
All earth
wi
re
s h
a
ve thei
r i
m
peda
nces.
The
cu
rre
nt
must flo
w
b
a
c
k to its source
point
like all circuit
s
. The cu
rre
n
t passing th
e effici
ent impeda
nce pro
duced by the earth wire will
make a
pote
n
tial
drop, which will
gen
erate
a g
r
ou
nd loop
cu
rrent to form the ground l
o
op
interferen
ce.
Whe
n
two
or
more th
an t
w
o ci
rcuits
u
s
e
the same
se
ction of
earth
wire,
a comm
on
impeda
nce couplin
g will be prod
uced. So, using
the
advantage o
f
6 layer board, our sy
ste
m
build
s two group
s of larg
e area g
r
ou
n
d
to solve the probl
ems
of shield an
d
decrea
s
ing t
h
e
available im
p
edan
ce. Thi
s
method
can
make th
e groundi
ng current flowing
b
a
ck ra
pidly a
n
d
enabl
e the functio
nal co
mpone
nts to
conn
ect the
earth in a
sho
r
test di
st
ance as
soo
n
as
possibl
e. The
sch
eme of groundi
ng de
si
gn is sho
w
n a
s
in Figu
re 10
.
Figure 10. La
yout of Groun
d for PCB
(d) Sign
al ro
u
t
e desig
n
Acco
rdi
ng to
the desig
n prin
ciple, the
lead wi
re o
f
signal, whi
c
h is
su
scep
tible to
interferen
ce, sho
u
ld be
sh
ort and thi
c
k. For exam
ple,
the input sig
nal wi
re of A/D co
nverto
r, the
output
sign
al
wire of
D/A
conve
r
tor, th
e si
gnal
wi
re
of refere
nce
so
urce
and
so
on, a
r
e
such
wire
s. The
r
ef
ore, our p
r
oj
ect thinks over t
he routin
g manne
r of signal wi
re
s and sele
cts the
method
of m
anual
wi
ring,
to insure h
a
ving
sho
r
te
st di
stan
ce
of
sig
nal
routing
a
n
d
to try
ou
r
b
e
st
to avoid via hole for
sig
n
a
l routin
g. Additiona
lly, u
s
ing la
rg
e area spre
adin
g
cop
pers o
n
two
A
n
a
l
og Pa
rt
Digita
l Pa
rt
Sig
n
a
l
L
a
ye
r
C
o
m
m
on G
r
oun
d L
i
nk
A
n
a
l
og G
r
o
u
n
d
L
a
ye
r
Digita
l Gro
u
n
d
La
ye
r
Pow
e
r
Sup
p
ly
fo
r
A/D P
a
r
t
Pow
e
r Su
pp
ly
for
Digita
l Pr
oc
e
ssin
g
P
a
rt
Pow
e
r
Sup
p
ly
fo
r
D/A P
a
r
t
+
-
Pow
e
r Su
pp
ly
En
t
r
an
ce
H
i
gh F
r
e
que
nc
y
C
hoke
C
o
il
+
-
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Circuit De
sig
n
of Digital Cl
ose
d
Loo
p Control System
for FOG (Qi
u
dong Sun
)
5183
sign
al layers
may red
u
ce the impe
dan
ce of gro
und
wire, provide th
e shi
e
ld for
n
u
merou
s
si
gn
als
and le
sser cu
rre
nt loop. It
also a
c
hi
eved
a good effect
.
5. Experiment Re
sults
We have de
veloped som
e
sampl
e
s o
f
FOG using
the design
method de
scribed in
above
se
ctio
ns a
nd
pro
g
ramming i
n
F
P
GA with
rele
vant algo
rith
ms. We al
so t
e
sted th
em
si
mply
usin
g the main perfo
rma
n
ce item
s of scal
e
fa
ctor and ze
ro-offset throu
gh the experim
e
n
ts,
althoug
h som
e
better meth
ods [14
-
15] for testing m
o
re detail
s
of FOG can be
use
d
wh
en th
ere
are en
oug
h testing d
a
ta.
5.1. Scale Factor
The scale fa
ctor represe
n
ts the prop
or
tional relati
on betwe
en
the chan
ge
of inpu
t
rotation rat
e
and the ch
an
ge of output of FOG.
According to the measure
d
input
data and out
put
data in the whole range
of input ro
tation
rates, we ca
n use th
e lea
s
t squ
a
re met
hod to calcul
ate
the slop
e of them. That is the scale fa
ctor.
Thro
ugh the
experim
ent test, we obtain
ed that
the scale fa
ctor of
our sam
p
le
s is about
0.0001
154 d
e
g
•s/LSB, no matter the rot
a
tion dire
ctio
n of FOG.
5.2. Zero-o
ffset
The ze
ro
-offset is the outp
u
t value of
FOG wh
en it is at zero inp
u
t state.
Thro
ugh
the
experim
ent te
st, we
kne
w
t
hat t
he stabili
ties
of ze
ro
-o
ffsets
of all sample
s
are le
ss tha
n
0.075d
eg/h.
The expe
rime
nts and te
sts
sho
w
that the
propo
se
d me
thod is efficie
n
t and valuab
le.
4. Conclusio
n
This p
ape
r prese
n
ted a
circuit de
sign m
e
thod
for the
digital clo
s
e
d
loop control
system
of FOG ba
se
d on FPGA
and d
e
velop
ed some
sa
mples.
Due t
o
apply the
dual
closed l
oop
techni
que, the zero-off
set stability of FOG had be
en
improved. After the test to the sample
s,
the
result data sh
ow that their
stabilit
ie
s of zero
-offset
s are all less tha
n
0.075d
eg/h
.
Therefo
r
e, this
method
pro
p
o
se
d in thi
s
pape
r is efficient and val
u
able. In ad
dition, the agilit
y of signal
in
put
and outp
u
t interface of FPGA is co
nvenient fo
r hard
w
a
r
e d
e
sig
n
. And, the digital si
gnal
pro
c
e
ssi
ng b
y
software in
FPGA is also conve
n
ient
for paramet
er adj
ustme
n
t
in experime
n
t.
This technique can greatly
shorten dev
elopment
period, improve
the reli
ability of system and
reali
z
e miniat
urization of F
OG.
The pro
p
o
s
e
d
method ca
n
be used in th
e fields
of aviation, spa
c
e, military affairs and so
on. But the fl
uctuate
d
zero
-offset
s of F
O
G du
ring
warm up
and
at
extreme tem
p
eratu
r
e
s
limit
its
appli
c
ation a
r
eas. Th
at is o
u
r re
se
arch work to imp
r
ov
e them in the future.
Ackn
o
w
l
e
dg
ements
This work wa
s su
ppo
rted b
y
the Leading
Academi
c
Di
sci
pline Proj
e
c
t of Commu
nicatio
n
and Inform
ation System of Shanghai S
e
cond Poly
techni
c University Gr
ant (No. XXKZD1302)
and th
e
Natural Scie
nces a
nd Engi
nee
ri
ng
Re
sea
r
ch
Cou
n
cil
of
Ca
nada
(NSERC),
Can
ada.
We
also
would
like to tha
n
k Prof. Z. H. Z
hu
and
Dr.
B.
P. La
rou
c
he
of
York Universi
ty, Canad
a, for
their co
nst
r
u
c
tive advices a
nd other
all
suppo
rts to this proj
ect.
Referen
ces
[1]
Sun
L, W
a
n
g
DZ
. Latest d
e
v
e
lo
pment
of fib
e
r o
p
tic g
y
r
o
sc
ope.
S
pac
eflig
ht Co
ntrol
.
200
3; 21(
3): 7
5
-
80.
[2]
Sagn
ac
G.
L’ét
her
l
u
min
e
u
x
d
é
montré par l’ effet
du ve
nt relativ
e
d’
eth-e
r
dans
un
inter
f
erometer e
n
rotation uniforme.
Compte-re
ndus d
e
l
’
Ac
ad
émie d
e
s Scie
nces
. 191
3; 95
: 708-71
0.
[3]
Strandj
ord
K.
Performanc
e i
m
pr
ove
m
ents
of a p
o
lar
i
z
a
tio
n
-rotatin
g
res
o
nator fib
e
r o
p
ti
c gyrosco
pe
.
Procee
din
g
s of
the SPIE -
T
h
e Internatio
na
l Soci
et
y for Optical En
gin
eeri
n
g. 1992; 1
795:
314-
320.
[4]
Hotate K. A
d
j
u
stment-free me
thod to
e
limi
n
a
t
e
the no
ise in
duce
d
b
y
the
backscatteri
ng
in an optic
al
passiv
e
ring-r
e
sonator g
y
r
o
.
IEEE Photon.Technol. Lett.
, 1990; 2(1): 1
09-
112.
Evaluation Warning : The document was created with Spire.PDF for Python.