TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 3, March 2
015,
pp. 584 ~ 59
4
DOI: 10.115
9
1
/telkomni
ka.
v
13i3.728
2
584
Re
cei
v
ed
No
vem
ber 2, 20
14; Re
vised Janua
ry 4, 20
1
5
; Acce
pted Janua
ry 2
0
, 20
15
Slots and Notc
hes Loaded Microstrip Patch Antenna for
Wireless Communication
Ashish Sing
h*, Kamaks
h
i, Mohd. Aneesh, J.A. An
sari
Dep
a
rtment of Electron
ics an
d Commu
nicati
on,
Univ
ersit
y
of Allah
a
b
ad, Allah
a
b
ad, Indi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: ashsin
09@r
e
diffmail.com
A
b
st
r
a
ct
In this article, t
he the
o
retica
l i
n
vestig
atio
ns a
r
e carrie
d
out o
n
slots an
d n
o
tches lo
ad
ed
mi
crostri
p
patch
ante
nna
for d
ual-
b
a
n
d
op
eratio
ns. T
he
ante
nna
p
a
ra
meters
are
calc
ulate
d
s
u
ch as
return
l
o
ss
,
VSW
R and rad
i
atio
n pattern. It is observed that anten
na
re
sonates at thre
e distinct mod
e
s of frequenc
i
e
s
of 1.49
0/1.95
3/2.941
GH
z
.
T
h
e ch
arac
teristic
s be
havi
o
rs of t
he
prop
ose
d
a
n
tenn
a ar
e c
o
mp
are
d
w
i
th ot
he
r
coaxi
a
l
fe
d mic
r
ostrip patch a
n
tenn
as.
T
h
e
b
andw
idth
of th
e pr
opos
ed
ant
enn
a at
mod
e
s
T
M
01
is 2.01
%
(
simulat
ed) a
n
d
3.42 % (t
heor
etical), T
M
02
is 1.10 %( s
i
mul
a
ted) an
d 3.8
1
% (theor
etical)
and T
M
03
i
s
1
.
01
%( simulat
ed)
and 4.8
0
% (th
eoretic
al). T
he theoretic
al res
u
lts are co
mp
a
r
ed w
i
th IE3D simulati
on res
u
lts
as w
e
ll as repo
rted exper
i
m
en
tal resu
lts an
d they are i
n
clos
e agre
e
m
e
n
t.
Ke
y
w
ords
: du
al-b
and, slots, notches, recta
ngu
lar
microstr
ip patch a
n
ten
n
a
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1.
Introduc
tion
In the re
ce
nt developm
en
t of microstri
p
patch ante
nna in
wi
rel
e
ss commu
n
i
cation.
These anten
nas a
r
e u
s
e
d
in wide
r ra
nge of devic
es in vario
u
s applicatio
ns such as mo
bile
satellite, terre
s
trial
cell
ular,
perso
nnel
co
mmuni
ca
tion system
[1
-3] etc.
As
th
ese antenn
as pla
ys
vital role in ef
ficient re
ce
ption an
d tran
smissi
on of th
e sig
nal in
wi
rele
ss
co
mm
unication. Th
ese
antenn
as b
e
c
ome m
o
re fruitful wh
en
singl
e anten
n
a
can b
e
u
s
ed for both t
r
an
smi
ssi
on
an
d
reception of the sig
nal as
well a
s
can b
e
us
e
d
for d
ual band o
p
e
r
ation havin
g
more than t
w
o
band
s of freq
uen
cie
s
. Thi
s
motivated th
e re
se
arche
r
to desi
gn mi
crost
r
ip p
a
tch
antenn
a for
d
ual
band o
peratio
n having mult
iband of freq
u
enci
e
s.
Dual
ban
d m
i
cro
s
tri
p
pat
ch anten
na
was first re
po
rted by Wa
ng
and L
o
[4] i
n
198
4
.
Thereafter, p
l
enty of dual
band mi
cro
s
trip a
n
t
enn
a
s
have
bee
n rep
o
rte
d
[5-17] in
whi
c
h
maximum re
sea
r
ch pa
pe
rs
rep
o
rted
are exp
e
rim
ental and
si
mulated
re
sults. Only few
resea
r
chers
provide
theo
retical a
nalysi
s
ba
se
d
on
circuit the
o
ry
con
c
e
p
t of
their radiatin
g
stru
ctures. T
he theo
retical
analysi
s
ba
sed on
circ
uit theory
con
c
e
p
t
us help
s
to
comp
re
hen
d on
whi
c
h p
a
ra
m
e
ter the
ch
aracteri
stics b
e
havior
of a
n
tenna
dep
end
s on
su
ch
a
s
len
g
th, wid
t
h,
height of the
sub
s
trate, di
e
l
ectri
c
sub
s
trate, l
ength a
nd width
of n
o
tch a
nd sl
ot etc. The
r
e a
r
e
some
researchers
that h
a
ve
repo
rted
on
dual
ba
nd
mi
cro
s
tri
p
p
a
tch
anten
na
havi
ng tri
p
le-ban
d
su
ch a
s
microstrip
patch antenn
a usi
n
g a spu
r-li
n
e
filter [18], multi-freq
uen
cy
and broadb
and
hybrid
cou
p
le
d [19], GSM/DCS/IMT-200
0 triple
-ban
d
built-in a
n
ten
na for
wireless termi
nal
s [2
0],
broa
dba
nd tri
p
le-frequ
en
cy micro
s
trip
p
a
tch
radi
at
or
combi
n
ing
[2
1], a folded
p
l
anar inverte
d
-f
antenn
a for
GSM/DCS/Bl
uetooth tri
p
le
-ban
d ap
plica
t
i
on [22], inte
rnal tri
p
le-ba
nd folde
d
pla
nar
antenn
a d
e
si
gn for third g
eneration
mo
bile h
and
set
s
[23], de
sig
n
and
op
eratio
n of d
ual/tripl
e
-
band
asymm
e
tric m
-
shap
ed micro
s
trip
patch
ante
nna
s [24], d
ual-b
and
min
i
aturized p
a
tch
antenn
as fo
r
microwave b
r
east im
agin
g
[25], the use
of u-slots in t
he de
sig
n
of
dual-and
tripl
e
-
band p
a
tch
a
n
tenna
s [26],
comp
act
UWB pri
n
ted
slot antenna
with extra Bl
uetooth, GS
M and
GPS band
s [
27], sta
c
ked-patch
dual
-p
olari
z
ed
ant
e
nna fo
r tripl
e
-band
han
dhe
ld termin
als [28]
etc. All the
s
e ab
ove
rep
o
rted
pa
per
of trip
le
ba
n
d
havin
g d
u
al ba
nd
ope
ration
ha
s
o
n
ly
experim
ental
and
simul
a
te
d re
sult
s. Th
ey have
not
explained
the
i
r theo
reti
cal
behavio
r of t
he
antenn
a ba
se
d on circuit th
eory co
ncept as well as
n
o
t provided the
comp
ari
s
o
n
with theoretical,
experim
ental
and sim
u
late
d results.
In this articl
e
,
theoretical analysi
s
of mi
crostri
p
pa
tch anten
na
with thre
e sl
ots and
notch
es fo
r d
ual ban
d /tripl
e
band o
p
e
r
a
t
ion is pr
esen
ted. The theo
retical
analysi
s
of dual b
a
n
d
antenn
a for triple ba
nd f
r
e
quen
cy o
pera
t
ion is not
re
ported
in
pa
st. The theo
ret
i
cal
com
p
a
r
ison
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Slots and Notche
s Lo
ade
d Microstri
p
Patch Antenn
a for Wi
rele
ss…
(Ashi
s
h Sing
h)
585
of pro
p
o
s
ed
antenn
a with
simila
r radia
t
ing struct
u
r
e
s
a
s
well a
s
the theo
retical, experim
e
n
tal
and
sim
u
late
d comp
ari
s
o
n
of
re
sults for
pr
opo
sed a
n
tenn
a
has be
en
prese
n
ted.
Det
a
il
descri
p
tion of
antenna a
nd
their theo
retical anal
ysi
s
ha
s bee
n pre
s
e
n
ted in next section.
2.
Ante
nna De
sign
The p
r
op
ose
d
anten
na
structure i
s
sho
w
n in
Figu
re
1. It con
s
ist
s
of re
ctang
ular patch of
dimen
s
ion
(L
×W)
with three sl
ots S
1
, S
2
and S
3
of dimen
s
ion
s
L
S1
×W
s
, L
S1
×W
s
an
d L
S1
×W
s
respe
c
tively as
well a
s
, fo
ur n
o
tch
e
s
of equal
dime
n
s
ion
(N
L
×N
W
)
is loa
ded
on
both
side
of the
radiatin
g e
d
g
e
s. Th
e
rect
a
ngula
r
p
a
tch
is fed via
coa
x
ial feeding
a
t
(X
0
,Y
0
) and
it is
sepa
rate
d
from groun
d plane
with su
bstrate
(
ε
r
=2.
65) of thickn
e
ss
H. Detail
d
e
sig
n
sp
ecifi
c
ation of anten
na
is given in Ta
ble 1.
L
W
L
s1
L
s2
L
s3
W
s
N
w
L
s1
=L
s3
=L
S
N
L
W
a
W
b
W
c
W
d
Y
X
(X
0
,Y
0
)
S
1
S
2
S
3
R
e
c
t
a
ngul
a
r
pa
t
c
h(
L
W
)
C
o
a
x
ia
l F
e
d
(
X
0
,Y
0
)
Di
el
ec
t
r
i
c
s
u
b
s
t
r
at
e
H
e
i
ght
of
t
h
e
s
u
b
s
t
r
at
e
(
H
)
r
(a)
(b)
Figure 1. Geo
m
etry of recta
ngula
r
micro
s
trip
patch a
n
tenna (a) top
view, (b)
side
view
(a)
(b)
(c
)
Figure 2. Current dist
ributi
on
of prop
ose
d
antenn
a at (a) TM
01
, (b
) TM
02
,
and (c) TM
03
mode
s
.
Table 1. De
si
gn Specifi
c
ati
on
of prop
ose
d
antenn
a structure
Length of the
pat
ch (
L
)
29
mm
Width of the patch(
W
) 28
mm
Dielectric substra
t
e
ε
r
2.65
Length of the slot
s S
1
and S
3
(
L
S1
=
L
S
3
=
L
S
)
24
mm
Length of the slot
S
2
(
L
S
2
)
12
mm
Width of the slots(
W
S
) 1
mm
Width of the notches(
N
W
) 1
mm
Length of N
o
tche
s(
N
L
)
10
mm
Distance betwee
n
slots (
S
1
&S
3
) a
nd notches (
W
a
)
1.5
mm
Distance betwee
n
slot (S
2
) and n
o
tches (
W
b
) 5.125
mm
Distance betwee
n
t
w
o notches (
W
c
)
2.375
mm
Distance betw
e
e
n
non radiating edges of patch an
d slot
(
S
1
&S
3
) (
W
d
)
2 mm
Feeding point(
X
0
, Y
0
)
(0,
4.5)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 584 – 5
9
4
586
3.
Theore
t
ical Analy
s
is
Acco
rdi
ng
to the
Modal expan
sion cavity
modal
the rectan
gula
r
pa
tch is
con
s
id
ered
a
s
parall
e
l comb
ination of re
si
stan
ce
R
P
, capac
itance
C
P
and
ind
u
cta
n
c
e
L
P
as
sh
ow
n
in
F
i
gu
re
3
.
The value
s
of
R
P
,
L
P
, and
C
P
are given
as [29],
)
(
cos
2
0
2
0
L
Y
H
LW
C
e
p
(1)
p
p
C
L
2
1
(2)
p
r
p
C
Q
R
(3)
fH
c
Q
r
r
4
(4)
And,
e
L
c
f
2
(5)
f
is the desig
n freque
ncy o
f
rectan
gula
r
patch,
L
is the lengt
h of the patch
,
W
is the wi
dth of the patch
,
H
is hei
ght of the sub
s
trate,
Y
0
is the feeding point on y
axis,
ε
r
is the relati
ve permittivity of the subst
r
ate,
c
is the velo
ci
ty of light,
ε
e
is the effective permittivity of the medium [29]
The total inpu
t impedan
ce
Z
p
of rectang
ular pat
ch is
given as:
p
p
p
p
L
j
C
j
R
Z
1
1
1
(6)
L
P
C
P
R
P
Z
P
Figure 3. Equivalent circuit of simple rect
angul
ar pat
ch
Thre
e p
a
rall
el sl
ots l
oad
ed o
n
the
p
a
tch i
s
co
nsi
dere
d
a
s
pa
rallel
co
mbin
ation of
impeda
nce
Z
S1
,
Z
S2
and
Z
S3
as
sho
w
n in Fig
u
re
4. The in
put
imped
an
ce
Z
S
of the sl
o
t
s is
cal
c
ulate
d
as
[30-33],
Z
S
= R
S
+jX
S
,
cos
)}]
(
2
)
2
(
2
)
(
){
cos(
2
1
)}
(
2
)
(
){
sin(
2
1
)
(
.[
60
s
i
s
i
s
s
s
i
s
i
s
s
S
kL
C
kL
C
kL
In
C
kL
kL
S
kL
S
kL
kL
In
C
R
(7)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Slots and Notche
s Lo
ade
d Microstri
p
Patch Antenn
a for Wi
rele
ss…
(Ashi
s
h Sing
h)
587
)}
]
/
2
(
)
2
(
)
(
2
){
sin(
)}
2
(
)
(
2
){
cos(
)
(
2
[
30
2
s
S
s
i
s
i
s
s
i
s
i
s
s
i
s
L
kW
c
kL
C
kL
C
kL
kL
S
kL
S
kL
kL
S
X
(8)
Her
e
C
is th
e Euler’
s
co
nstant,
ψ
i
s
t
he in
clinatio
n
of the
slot from
radi
ating
edge,
k
is
th
e
prop
agatio
n consta
nt and functio
n
S
i
(x
)
and
C
i
(x
)
are defined a
s
:
x
i
dx
x
x
x
S
0
)
sin(
)
(
dx
x
x
x
C
i
0
)
cos(
)
(
Whe
r
e
W
s
is
width of slot
s and
L
S
is the
Length of the
slots.
No
w, input i
m
peda
nce of
corre
s
po
ndin
g
slots
Z
S1
,
Z
S2
and
Z
S3
can be
cal
c
ula
t
ed from
above Equati
on (7
) and (8) by putting the value of
len
g
th and wi
dth
of their corre
s
po
ndin
g
slot
.
The total inpu
t impedan
ce
of slots on th
e patch i
s
given as:
3
2
1
1
1
1
1
S
S
S
S
Z
Z
Z
Z
(9)
Z
S2
Z
S1
Z
S3
Z
S
Figure 4. Equivalent circuit of slots
Whe
n
a fou
r
notch
es i
s
lo
aded to the
p
a
tch
o
n
both
side of the
ra
diating ed
ge
s of the
antenn
a. Du
e to the effe
ct of notche
s
and
slots,
th
ree
cu
rre
nt flows on th
e p
a
tch of different
length, on
e current flows n
o
rmal to th
e
patch
and
re
sonate
s
at the
desi
gn fre
que
ncy of the init
ial
patch, a
nd ot
her t
w
o
curre
n
t flows
arou
nd the n
o
tch
e
s
an
d sl
ots a
s
sho
w
n in
Fi
gure
2. Figu
re 2
(a-c)
sho
w
s the curre
n
t distributio
n at three
di
stinct
reso
nan
ce f
r
equ
en
cie
s
a
r
e 1. 490G
Hz,
1.953G
Hz a
nd 2.9
41G
Hz respe
c
tively. Therefo
r
e,
this
pertu
rb
ation mo
difie
s
the
equiva
lent
circuit of the i
n
itial patch
wi
th an additio
n
a
l se
rie
s
indu
ctan
ce
∆
L
an
d se
rie
s
capa
citan
c
e
∆
C
[34]
as sho
w
n in
Figure 5.
R
2
L
1
L
C
1
C
Z
n
Z
n
Z
P
C
m
L
m
Z
S
Figure 5. Equivalent circuit of notch
Fi
gure 6. Equivalent circuit of propo
se
d
antenn
a
))
/
(
8
.(
8
W
L
N
N
H
L
,
g
W
L
C
N
N
C
)
.(
8
,
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 584 – 5
9
4
588
Whe
r
e
7
10
4
H/m,
C
g
is the gap
cap
a
cita
nce [35].
)}
75
.
0
exp(
1
{
09
.
4
1
)
(
86
.
1
exp(
.
.
5
.
0
1
W
H
H
N
Q
H
C
W
g
07
.
0
272
.
0
03
.
0
04598
.
0
4
1
r
Q
H
W
Q
,
)
(
6
.
0
1
)
(
3
.
0
5
.
1
09
.
2
9
107
.
0
05
.
1
23
.
3
2
H
W
H
W
H
N
H
N
H
W
Q
W
W
55
.
0
)
5978
.
0
exp(
3
Q
23
.
1
4
Q
Whe
r
e
N
W
i
s
the width of th
e notch
es a
n
d
N
L
is the le
ngth of the no
tche
s.
The impe
dan
ce of notch lo
aded o
n
the a
s
sh
own in Figure 5 i
s
give
n as:
2
2
2
1
1
1
L
j
C
j
R
Z
n
,
(10)
The value
of
R
2
re
si
stan
ce
[36] after cutting the
not
ch
is calculated
simila
rly as
R
1
. Thus
the equivale
n
t
circuit of propo
sed a
n
ten
na ca
n be giv
en as
sho
w
n
in Figure 6, in whi
c
h
L
m
and
C
m
are mutua
l
inducta
nce
a
nd ca
pa
citan
c
e [36-37] bet
wee
n
the two
reso
nato
r
s.
)
1
(
2
]
)
1
(
4
)
(
[
)
(
k
L
2
2
/
1
2
1
2
4
2
2
1
4
2
1
2
c
m
c
c
c
c
k
L
L
k
k
L
L
k
L
L
,
2
]
)
/
1
1
(
)
[(
)
(
2
/
1
2
1
2
2
1
2
1
2
C
C
k
C
C
C
C
C
c
m
,
The mutual i
m
peda
nce fro
m
Figure 5
ca
n be given a
s
:
m
m
m
C
j
jwL
Z
1
,
(11)
Whe
r
e,
L
L
L
1
2
,
C
C
C
C
1
1
2
C
.
,
2
1
1
Q
Q
k
c
,
1
1
1
1
L
C
R
Q
,
2
2
2
2
L
C
R
Q
,
Q
1
and
Q
2
are
quality factor fo
r both the reso
nators.
Therefore, th
e total input impeda
nce of
the prop
osed
antenn
a for F
i
gure 6 i
s
:
)
.
.
.
.
.
(
P
m
P
s
s
m
p
s
m
n
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
,
(12)
No
w usi
ng E
quation
(12
)
, one can
calculate the to
tal
input imped
a
n
ce of the p
r
opo
sed a
n
ten
n
a
and va
riou
s
antenn
a pa
ra
meters such
as
refle
c
tio
n
co
efficient,
voltage sta
nding
wave
ratio
(VSWR) an
d return loss
(RL) is given a
s
:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Slots and Notche
s Lo
ade
d Microstri
p
Patch Antenn
a for Wi
rele
ss…
(Ashi
s
h Sing
h)
589
Reflec
tion Coeffic
i
ent
0
0
Z
Z
Z
Z
.
Whe
r
e
Z
0
is t
he input impe
dan
ce of the coaxial fee
d
(50
Ω
),
1
1
VSWR
,
And RL
=20 lo
g |
г
|
4.
Radiation P
a
ttern
The
radiatio
n
pattern
for th
ree
pa
rallel
sl
ot
s a
nd ei
ght
notch
es load
ed
single
lay
e
r p
a
tch
antenn
a
i
s
ca
lculate
d
by consi
deri
ng
it
as re
ctan
gula
r
p
a
tch.
The
norm
a
lized
p
a
tterns in
the
E-
plane (E
θ
in
=0
˚
plan
e) a
n
d
the H-pla
ne (
E
in
=90
˚
plan
e
)
[34-3
7
] are
given by:
)
2
/
0
(
cos
sin
sin
2
cos
sin
sin
2
)
sin
sin
2
sin(
)
cos
cos(
0
0
0
0
0
L
k
W
k
W
k
kH
r
WVe
jk
E
r
jk
)
2
/
0
(
sin
cos
sin
sin
2
cos
sin
sin
2
)
sin
sin
2
sin(
)
cos
cos(
0
0
0
0
0
L
k
W
k
W
k
kH
r
WVe
jk
E
r
jk
Whe
r
e, V is radiating e
dge
voltage
r is
t
he dis
t
ance of an arbitrary point.
2
0
0
k
k
k
r
5. Discus
s
ion
of
Re
sults
Figure 7 sho
w
s th
e variati
on of refle
c
tio
n
co
efficient
with freq
uen
cy for variou
s
antenn
as
config
uratio
n
s
for si
mple rectan
gula
r
p
a
tch with
out notch
es a
nd
slots,
only sl
ots, only notches,
and with
no
tche
s and
sl
ots (p
rop
o
se
d) ante
nna.
The charact
e
risti
cs
of variou
s a
n
ten
n
a
config
uratio
n
s
are
summ
a
r
ize
d
in Tabl
e 2. From
fig
u
re it is ob
se
rved that sim
p
le re
ctang
ul
ar
patch
anten
n
a
witho
u
t not
che
s
a
nd
slo
t
s is re
sonati
ng at 3.10
5
G
Hz offers a
band
width
o
f
131M
Hz (3.0
34G
Hz-3.19
5
G
Hz) this me
ets the
fre
q
u
ency
ban
d of
S–band
ap
pli
c
ation
s
. F
o
r o
n
ly
notch
es
ante
nna i
s
re
so
n
a
ting at two
distin
ct
mode
s 2.60
5G
Hz
and 3.0
75G
Hz for l
o
we
r a
n
d
highe
r reson
ance freq
uen
cie
s
. Thi
s
ant
enna m
eets the requi
reme
nt S-ban
d ap
plicatio
ns fo
r
an
ISM
band
s. For slot
s onl
y
antenn
a re
son
a
tes
at
1.483G
Hz
a
n
d
1.953
GHz, whi
c
h meet
s
the
requi
rem
ent
of L-b
and
ap
plicatio
ns f
o
r
GPS and
GS
M mobil
e
ph
one
s. Fo
r p
r
o
posed mi
cro
s
trip
patch a
n
tenn
a (with
slots
and not
che
s
) is re
so
n
a
tin
g
at 1.490G
Hz, 1.95
3G
Hz and
2.941
GHz,
whi
c
h covers different app
lication
s
of L
and S ban
ds freque
ncy fo
r GSM mobil
e
phon
es, G
P
S
and in biom
e
d
ical a
pplications for tum
o
r detection.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 584 – 5
9
4
590
Figure 7. Co
mparative plo
t
of
simple re
ctang
ular p
a
tch (without n
o
tche
s an
d sl
ots), only
notch
es, only
slots an
d pro
posed pat
ch
antenn
a
with notch
es
a
nd slots
Table 2.
Ch
aracteri
stics of
Antenna
s
A
n
t
e
nna
Frequ
e
nc
y
(G
Hz
)
Band
(G
Hz
)
Band
w
i
dth(MHz
)
Without notches and Slots
(single band)
3.105
3.034-3.1
9
5
131
4.2%
Onl
y
N
o
tches
(dual band
)
2.605
3.073
2.404-2.7
1
5
311
12.15%
2.935-3.3
0
7
372
11.91%
O
n
l
y
slots
(dual band
)
1.483
1.953
1.416-1.5
1
5
99
6.7%
1.900-2.0
0
2
102
5.22%
With notches and Slots (Propose
d
)
(triple band)
1.490
1.953
2.941
1.465-1.5
1
5
50
3.7%
1.900-2.0
0
2
102
5.22%
2.875-3.0
1
2
137
4.65%
Figure 8
sho
w
s th
e
comp
arison of th
e
theoreti
c
al re
sults alon
g
with
simulat
ed [38]
and
experim
ental
[25] re
sult
s fo
r p
r
op
osed
a
n
tenna.
It is f
ound
that the
o
retical a
nd
simulated
re
su
lts
are in cl
ose a
g
ree
m
ent wit
h
the repo
rte
d
experim
ent
al results.
From
Figu
re
9, it i
s
ob
served
that o
n
de
crea
sing
the l
ength
L
s
of
slots S
1
and S
3
simultan
eou
s from 24mm
to 12mm, T
M
03
and TM
02
reso
nating
mode
s of th
e antenn
a shift
towards lo
we
r re
son
a
n
c
e side wh
ere
a
s f
i
ne shifting in
TM
01
mode is obse
r
ved.
Figure 10 sh
ows the varia
t
ion of reflecti
on co
e
fficient
with frequ
en
cy for differe
nt length
of the
slot S
2
. On i
n
crea
si
ng the
le
ngth
L
s2
of the
sl
ot from
12m
m to 2
4
mm,
fine vari
ation
is
observed
on
first an
d
se
cond
ord
e
r f
r
e
quen
cie
s
shif
t towards hig
her
sid
e
whe
r
ea
s thi
r
d o
r
der
freque
ncy
shi
ft toward
s hi
gher
sid
e
wit
h
high
er va
riation in
com
pari
s
on
with
first and
se
cond
orde
r freq
uen
cie
s
.
Figure 11
sh
ows the va
ri
ation of refle
c
tion
c
oeffici
ent with freq
uen
cy for
wi
dth of the
slot
s
(S
1
S
2
a
nd
S
3
).
On i
n
cre
a
si
ng
the
width
of the
slots
W
s
from
1mm to
2.5m
m, third
an
d f
i
rst
orde
r
re
son
a
n
ce
freq
uen
cies
shift toward
s lo
we
r
reso
nan
ce
si
de
whe
r
e a
s
se
co
nd o
r
d
e
r
resona
nce fre
quen
cy
shift towa
rd
s hi
ghe
r
side.
T
h
is is hap
pen
s
due
to len
g
th of
slot S
2
whi
c
h
is
the half of the slots S
1
and
S
3
.
1
1.
5
2
2.
5
3
3.
5
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Fr
e
que
nc
y
(
G
H
z
)
S1
1
(
d
B
)
W
i
t
hout
N
o
t
c
he
s
a
nd
S
l
ot
s
O
n
ly
N
o
t
c
h
e
s
O
n
ly
S
l
o
t
s
W
i
t
h
N
o
t
c
he
s
a
nd S
l
ot
s
(
P
r
opos
e
d
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Slots and Notche
s Lo
ade
d Microstri
p
Patch Antenn
a for Wi
rele
ss…
(Ashi
s
h Sing
h)
591
Figure 12
sh
ows the va
ri
ation of refle
c
tion
coeffici
ent with freq
uen
cy on va
rying the
length of the notch
es. On
decrea
s
in
g the notche
s
len
g
th N
L
form 10mm to 7mm, it is obse
r
ve
d
that third an
d se
con
d
ord
e
r freq
uen
cie
s
shift towa
rds hig
her
sid
e
whe
r
ea
s o
n
increa
sing
the
length N
L
form 10mm
to 1
3
mm, third
a
nd
se
cond
o
r
der f
r
eq
uen
ci
es
shifts towa
rd lo
we
r
side
and
no variation i
s
ob
serve
d
at first orde
r re
son
a
n
c
e freq
uen
cy.
Figure 13
sh
ows the va
ri
ation of refle
c
tion
coeffici
ent with freq
uen
cy on va
rying the
width
of the
notch
es.
On
increa
sing
th
e wi
dth of
th
e not
che
s
N
W
from
1mm
to 5m
m, it is
observed
tha
t
third,
se
con
d
, and
first o
r
de
r
re
son
a
n
c
e f
r
eq
uen
ci
es
shift to
wa
rds lo
we
r
sid
e
.
There i
s
sligh
t
or
negli
g
ible
variation
s
are ob
se
rv
ed
at
first
order re
son
a
n
c
e f
r
eq
uen
cy in
mo
st of
the variatio
ns be
cau
s
e fi
rst
ord
e
r
re
so
na
nce
freq
uen
cy is
con
s
ide
r
t
o
be
re
so
nan
ce frequ
en
cy
of
the
simpl
e
re
ctang
ular pat
ch whi
c
h shifts
towa
rd
lower
resona
nce
side as notches and slot
s
are
inco
rpo
r
ate
d
into the pat
ch wh
ere
a
s seco
nd a
nd t
h
ird o
r
d
e
r
re
son
a
n
c
e fre
q
uen
cie
s
are
due
notch
es an
d
slots resp
ecti
vely. Thus, th
e variatio
ns
o
f
the wi
dth a
n
d
len
g
th of
sl
ots a
nd
notch
es
are
ob
serve
d
on
se
con
d
and thi
r
d
ord
e
r
re
sona
nce
frequ
en
cie
s
. On va
riation
of length
an
d
width of
notches the in
put
imped
an
ce
of notche
s
Z
n
varie
s
whe
r
eas on va
riat
ion of
width
and
length of slot
s the input im
peda
nc
e of sl
ots varie
s
wh
ich affect
s th
e total input impeda
nce Z
in
of
prop
osed ant
enna.
Figure 14
sh
ows the radi
ation pattern
of si
mulate
d [38] and t
heoretical
re
sults fo
r
prop
osed a
n
tenna. F
r
om F
i
gure
14
(a)-(c) sho
w
s
radi
a
t
ion pattern o
f
prop
ose
d
a
n
tenna
of E
θ
at
TM
01
, TM
02
a
nd TM
03
mod
e
s respe
c
tively. It is found that simul
a
ted
and theo
retical re
sults a
r
e
in
clo
s
e ag
ree
m
ent.
Figurev8. Co
mpari
s
o
n
of the theoretical
,
simulate
d [38
]
and experim
ental [13] results
Figure 9. Vari
ation of reflection coeffici
en
t with
freque
ncy on
varying the le
ngth of the sl
ots S
1
and S
3
Figure 10. Variation of refle
c
tion coefficie
n
t
with frequ
en
cy on varying the length of the slot
S
2
Figure 11. Variation of refle
c
tion coefficie
n
t
with frequ
en
cy on varying the width of th
e
slot
s (S
1
S
2
a
nd S
3
)
1
1.
5
2
2.
5
3
3.
5
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Fre
que
nc
y
(
G
H
z
)
S1
1
(
d
B
)
Th
e
o
re
t
i
c
a
l
E
x
pe
ri
m
e
nt
a
l
S
imu
la
t
e
d
1
1.
5
2
2.
5
3
3.
5
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Fre
que
nc
y
(
G
H
z
)
S1
1
(
d
B
)
Ls
=
2
4
m
m
Ls
=
2
0
m
m
Ls
=
1
6
m
m
Ls
=
1
2
m
m
1
1.
5
2
2.
5
3
3.
5
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Fre
que
nc
y
(
G
H
z
)
S1
1
(
d
B
)
L
s
2=
12
m
m
L
s
2=
16
m
m
L
s
2=
20
m
m
L
s
2=
24
m
m
1
1.
5
2
2.
5
3
3.
5
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Fre
que
nc
y
(
G
H
z
)
S1
1
(
d
B
)
W
s
=
1
.0
m
m
W
s
=
1
.5
m
m
W
s
=
2
.0
m
m
W
s
=
2
.5
m
m
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 584 – 5
9
4
592
Figure 12. Variation of refle
c
tion coefficie
n
t
with frequ
en
cy on varying the length of the
notch
es
Figure 13. Variation of refle
c
tion coefficie
n
t
with frequ
en
cy on varying the width of th
e
notch
es N
W
(a)
(b)
(c
)
Figure 14. Ra
diation pattern at (a) 1.49
0
GHz,
(b) 1.9
53 GHz, and
(c) 2.941 G
H
z for E-pl
ane
1.
4
1.
6
1.
8
2
2.
2
2.
4
2.
6
2.
8
3
3.
2
3.
4
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Fre
q
u
e
nc
y
(
G
H
z
)
S1
1
(
d
B
)
N
L
=
7
mm
N
L
=
8
mm
N
L
=
9
mm
NL
=
1
0
m
m
NL
=
1
1
m
m
NL
=
1
2
m
m
NL
=
1
3
m
m
1
1.
5
2
2.
5
3
-4
0
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Fr
e
q
u
e
nc
y
(
G
H
z
)
S1
1
(
d
B
)
N
W
=
1
mm
N
W
=
2
mm
N
W
=
3
mm
N
W
=
4
mm
N
W
=
5
mm
30
210
60
240
90
270
12
0
300
150
33
0
18
0
0
Si
m
u
l
a
t
e
d
Th
e
o
r
e
t
i
c
a
l
-2
5
-2
0
-1
5
-
1
0
-
5
0
De
g
.
dB
30
210
60
240
90
27
0
120
300
150
330
18
0
0
Si
m
u
l
a
t
e
d
Th
e
o
re
t
i
c
a
l
-2
5
-
2
0
-1
5
-
1
0
-5
0
dB
De
g
.
30
21
0
60
240
90
27
0
120
300
15
0
33
0
18
0
0
Si
mu
l
a
t
e
d
Th
e
o
r
e
t
i
c
a
l
-2
5
-2
0
-
15
-1
0
-5
0
dB
De
g
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Slots and Notche
s Lo
ade
d Microstri
p
Patch Antenn
a for Wi
rele
ss…
(Ashi
s
h Sing
h)
593
6.
Conclusion
The theo
reti
cal investigatio
n of pro
p
o
s
e
d
radi
ating structu
r
e ha
s
b
een carried o
u
t
along
with their
sim
ilar radiation
st
ru
ctures. It has
been
ob
serve
d
that
triple ban
d can
be obtain
ed
by
inco
rpo
r
ating
slots
and
not
che
s
tog
e
the
r
on
simple
re
ctang
ular pat
ch. Th
e p
r
op
ose
d
recta
n
g
u
lar
patch ante
n
n
a
depen
ds o
n
notche
s
wi
dth and l
engt
h and slot
s width and lengt
h. The prop
o
s
ed
radiatin
g a
n
tenna
lie
s in
L an
d S freq
uen
cy ba
nd
s. This ante
n
na
can
be
ut
ilized
in va
ri
ous
wirel
e
ss com
m
unication systems such as GSM (mo
b
ile phon
es),
GPS and biomedi
cal (tu
m
or
detectio
n
) ap
plicatio
ns.
Referen
ces
[1]
Wu WW, Miller
EF, Pritchard WL, Pick
holtz RL. Mobi
le sat
e
llite c
o
mmun
i
cation.
Proc. IEEE
. 1997; 8
2
:
143
1-14
48.
[2]
Elbert BR. T
he Satellite C
o
m
m
unic
a
tion Ap
plicati
ons H
a
n
dbo
ok. Nor
w
o
o
d
, MA, Artech
Hous
e. 199
7.
[3]
Miller B. Satel
l
i
t
e free the mob
ile p
hon
e.
IEEE spectrum
. 19
98; 35:2
6
-35.
[4]
W
ang B, L
o
Y. Microstrip a
n
te
nnas for
du
al fr
equ
enc
y
oper
a
t
ion.
IEEE Tran
. Antenn
a Prop
agat.
1
984
;
32: 938-
93
4.
[5]
Sing
h A, Ansa
ri JA, Kamaks
hi, Ane
e
sh M,
Sa
ye
e
d
S S, Mishra A. An
al
ysis of sl
ots and
notch
es
loa
ded patch anten
na
for d
ual
ban
d
o
pera
t
ion.
Mult
im
edi
a, Sign
al Proc
essin
g
an
d C
o
mmunic
a
ti
o
n
T
e
chnolog
ies (
I
MPACT
)
. Allahab
ad, 20
13; 1
68-1
71.
[6]
Hua
ng CY, L
i
ng CW
, Kuo J
S
. Dual-b
an
d
microstrip
a
n
te
nna
us
in
g cap
a
citive l
o
a
d
in
g.
IEEE Trans.
Antenn
as Prop
agt.
, 2003;1
50:
401-4
04.
[7]
Polivk
a
M, Drahovz
a
l M, Mazan
e
k M. S
y
nthesis
of d
u
a
l
ba
nd br
oads
id
e radi
ated mic
r
ostrip pat
c
h
anten
na o
perat
ing
w
i
t
h
T
M
10
a
nd T
M
21
modes.
IEEE Antenna Propa
gat. So
c. Int. Symp
. 2
004; 1: 24
5-
248.
[8]
H
w
an
g SH, K
w
a
k
W
,
Moon
JI, Park SO. An inter
n
a
l
Dual
ba
nd
print
ed a
n
ten
na fo
r CDMA/PC
S
han
dsets.
Microw
. Opt. T
e
chnol. Lett
., 2005; 45: 537-
54
0.
[9]
Nings
ih Y K, Hadi
ne
gor
o R. Lo
w
Mutu
al C
oup
lin
g Du
alb
a
nd MIMO Microstrip Ante
nna
w
i
t
h
Air G
a
p
Parasitic.
TELKOMNIKA.
2014; 12(2), 4
05-
410.
[10]
Lau
KL, K
ong
KC, Luk
KM.
Dual-
b
a
nd st
ac
ked fo
lde
d
pat
ch a
n
ten
na.
El
ectronic
Lett.
2
007; 43: 789-
790.
[11]
Che
n
W
-
S,
Ku K-Y. Band-r
e
je
cted d
e
sig
n
of
the o
pen
slot
a
n
tenn
a for W
L
AN/W
iMAX
op
eratio
n.
IE
EE
T
r
ans. Antenn
as Propa
gt.
, 2008; 56: 11
63 –
116
9.
[12]
Sung YJ. Simp
le tuna
bl
e dua
l
-
ban
d microstri
p
patch a
n
tenn
a.
Electronics Lett.
2009; 45:
666-
667.
[13]
Al-Joum
a
y
l
y
M
A
, Agui
lar SM
,
Beh
d
a
d
N,
H
agn
ess SC.
D
ual-B
and
min
i
aturize
d
p
a
tch
ante
n
n
a
s for
micro
w
av
e bre
a
st imagi
ng.
IEEE Antennas and Wire
less Propagation Lett
e
rs
. 2010; 9: 2
68-2
71.
[14]
Sing
h P. R
e
cta
ngu
lar
Notch
L
oad
ed
D
u
a
l
Ban
d
An
nu
l
a
r R
i
ng
Pa
tch An
tenn
a
.
Jo
urn
a
l of Microw
aves,
Optoelectro
n
ic
s and Electro
m
agn
etic App
lica
t
ions
. 201
4; 13
: 85-96.
[15]
Sing
h A, Ans
a
ri JA, Kamaks
hi, An
eesh
M, Sa
ye
ed SS.
Anal
ys
is of S
l
ot Lo
ade
d C
o
mpact Patc
h
Antenn
as for Dualb
a
n
d
Operatio
n.
Internati
ona
l Jo
urna
l of App
lied El
ectro
m
agn
etics an
d
Mechanics
. D
OI-10.3233/JA
E-140
02
0, 201
4.
[16]
Li Y, Xu
e Q,
T
an HZ
, Long Y
.
A dual frequ
e
n
c
y
mi
cr
ostrip
anten
na us
ing
a dou
ble si
de
d
parall
e
l strip
line peri
odic
str
u
cture.
IEEE Trans., Antenna Propag.
, 2012;
60: 301
6-30
19
.
[17]
Sing
h A, Ane
e
sh M, Kama
kshi K, Mishra
A,
Ansari JA. Anal
ysis of
F
-
shape micr
o
s
trip lin
e fed
dua
lba
nd a
n
te
nna for W
L
AN
app
licati
ons.
Wireless Netw.
2014; 20: 1
33-1
40.
[18]
Sanch
e
z Her
n
and
ez D, Rob
e
r
tson I.
T
r
iple b
and micr
ostrip patch
a
n
ten
na usin
g
a spur-
lin
e filter an
d a
perturb
atio
n se
gment techn
i
q
ue.
Electron
ics
Lett
. 1993; 29:
1565-
15
66.
[19]
Ra
y KP, Kum
a
r G. Multi-fre
que
nc
y a
nd
b
r
oad
ban
d
h
y
br
id co
up
led
cir
c
ular m
i
crostri
p
ant
enn
as.
Electron
ics Let
t.
, 1997; 33: 43
7-43
8.
[20]
F
a
y
a
dh
AR, M
a
lek MF
A, F
a
d
h
il A
H
, W
ee
H
F
. Planar F
i
ng
er-Sha
ped
Ant
enn
a us
ed
in
U
l
tra-W
i
deb
an
d
Wireless S
y
stems.
TELKOMN
I
KA.
2014; 12(
2), 419-4
28.
[21]
Angu
era J, M
a
rtinez-O
rtigos
a E, Puente C,
Borja
C, Soler
J.
Broa
dba
nd
triple-fre
qu
enc
y m
i
crostri
p
patch rad
i
ator
combin
ing a
dual-
ban
d m
odifi
ed sier
pi
n
ski fractal an
d a mono
ba
n
d
anten
na.
Antennas and Propa
gation, IEEE Trans.,
2006; 54: 33
67-3
373.
[22]
K
w
a
k
W
I
l Park,
SO, Kim JS. A F
o
lde
d
Pl
anar
Inverted-F
Ant
enn
a for GSM/DCS/Blu
etooth
T
r
iple-Ban
d
Appl
icatio
n.
IEEE Trans. Antennas a
nd Wirel
e
ss Propa
gati
o
n Letters
. 200
6
;
5: 18-12.
[23]
See CH, Abd-
Alham
eed R A
,
Ex
cell PS, McE
w
an NJ,
Gardiner JG. Inter
nal tr
iple-band folded planar
anten
na d
e
sig
n
for third ge
nerati
on mob
i
l
e
han
dsets.
Microw
aves, Antenn
as & Prop
agati
on, IET
.
200
8; 2: 718 –
724.
[24]
Peng L,
Ru
an CLi,
W
u
XH. D
e
si
g
n
a
nd
oper
ation
of d
ual/tri
p
le-
ban
d as
ym
metric M-sha
p
ed micr
ostri
p
patch ant
enn
a
s
.
Antennas a
n
d
W
i
reless Pro
pag
atio
n Letter
s
, IEEE
, 2010;
9: 1069-
10
72.
[25]
Al-Joum
a
y
l
y
M
udar
A, Agu
i
l
a
r SM, Beh
dad
N,
Hag
ness
S
C
. Dua
l
-b
and
miniat
urize
d
p
a
tch a
n
ten
n
a
s
for micro
w
av
e breast ima
g
in
g
IEEE Trans. A
n
tenn
as Wirel. Propag. Lett
. 201
0; 9: 268-2
71.
Evaluation Warning : The document was created with Spire.PDF for Python.