TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.7, July 201
4, pp
. 4963 ~ 49
7
2
DOI: 10.115
9
1
/telkomni
ka.
v
12i7.546
7
4963
Re
cei
v
ed
De
cem
ber 2
3
, 2013; Re
vi
sed
F
ebruary 28,
2014; Accept
ed March 1
6
, 2014
Resear
ch on Zigbee Network Temperature Sensor in
Intelligent High-voltage Switch Cabinet
Huan
g Xin-b
o
,
Zhao Yan
g
*
,
Zhao Xia
o
-hui, Liao Zhi-jun
Coll
eg
e of Elec
tronics an
d Informatio
n
, Xi
’an
Pol
y
t
e
chn
i
c U
n
iversit
y
,
Xi
’a
n 710
04
8, Shaa
n
x
i Provi
n
ce, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: 9518
01
764
@
qq.com
A
b
st
r
a
ct
T
he contacts o
f
high-vo
ltag
e sw
itchgear w
ill
heat an
d caus
e safe
ty ha
z
a
r
d
s due to
poor
conta
c
t
w
h
ile ru
nn
ing.
A Z
i
gb
ee-b
a
se
d w
i
reless
n
e
tw
ork sensor
w
a
s d
e
sig
n
e
d
by
the
authors
of
this p
aper
for r
eal
-
time
mo
nitor
i
n
g
of hig
h
volta
ge sw
itchge
ar w
hen cont
act temper
ature ris
e
s. T
h
is pap
er
first gives a b
r
ief
introd
uction to
the Z
i
gb
ee pr
otocol, the
pro
t
ocol
stack a
n
d
the n
e
tw
ork topol
ogy, an
d
then
mak
e
s a
n
elaboration on the
system
fr
am
ework, hardware and soft
ware designs
of the Zigbee
wireless sensor and
the des
ig
n of
hig
h
-volta
ge
b
ootstrap p
o
w
e
r
supp
ly. In
the
end, th
e fiel
d
app
licati
on
an
d an
alysis
pro
v
es
that bas
ed on t
he Zigbee te
c
h
nology,
the online monitor
i
ng system
of
the
t
e
mper
at
ure r
i
s
e
for
high-voltage
sw
itchgear is s
t
able
an
d cap
a
b
le
of
real-ti
m
e
reporti
ng th
e true te
mp
eratur
e of the c
ontac
t.
T
herefore, th
e
desi
gn has the
characteristics
of high stabil
i
ty, low
pow
er
consu
m
ption, lo
w
cost, as
w
e
ll
as high flexi
b
il
it
y
and sca
la
bility.
Ke
y
w
ords
:
Z
i
gbe
e, Z
i
gb
e
e
pr
otocol,
h
i
gh-v
o
ltag
e s
w
it
chgear, w
i
r
e
less
netw
o
rk
sens
or, con
t
act
temp
eratur
e ris
e
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The mo
nitori
ng of safe o
peratio
n of th
e high
-voltag
e
switch
gea
r has
bee
n o
ne of the
major
con
c
e
r
ns of the
safe
operation of
the pow
er
system. Ho
wev
e
r, it still has
not been
solv
ed
as the m
onit
o
ring
of co
ntact tempe
r
at
ure i
s
co
n
s
ta
ntly influence
d
by high
pre
s
sure, m
e
a
s
u
r
ing
point and th
e
interference
of stron
g
ele
c
tric fi
eld. Nowadays, temp
e
r
ature mea
s
u
r
eme
n
t syste
m
mainly inclu
d
e
s thre
e kin
d
s of comm
unication pr
o
g
ram
s
: ordi
n
a
ry cabl
es, o
p
tical fibers
and
wirel
e
ss com
m
unication, among
whi
c
h the ordi
na
ry cable
s
wil
l
bring a
bou
t safety hidden
dang
ers by
affecting el
e
c
tri
c
al i
s
olati
on of t
he
switch
gea
r. O
p
tical fibe
r t
e
mpe
r
ature
online
monitori
ng d
e
vice i
s
imp
e
r
vious to hig
h
pre
s
sure an
d environme
n
t by usin
g t
he opti
c
al fib
e
r to
transmit sign
als [1-3]. Ho
wever, a
s
the
optical
fibe
r
can b
e
broke
n
off easily, cannot sta
nd t
h
e
high tem
pera
t
ure, an
d can
be difficult to wire etc
., it i
s
difficult to
meet the
req
u
irem
ents
of
on-
line monito
rin
g
of the hi
gh-voltage switchgea
r. In
con
t
rast, a
s
Zig
b
ee wi
rele
ss n
e
twork
ha
s th
e
merits of lo
w
co
st, unli
c
en
sed fre
que
ncy
band, l
o
w po
wer con
s
um
p
t
ion, no
wiri
n
g
, no i
m
pa
ct
on
the characte
ri
stics of el
ect
r
icity
[4-5] a
n
d
so
on, it is i
n
full complia
nce
with th
e requireme
nts
of
the swit
chb
o
a
r
d onlin
e mon
i
toring.
2. Introducti
on of Zigb
ee Tech
nolo
g
y
and the Feasibilit
y
Analy
s
is of Application
to
S
w
i
t
chge
ar Communica
tion
2.1. Zigbee Protoc
ol Ov
er
v
i
e
w
and Pr
otocol Sta
c
k
Zigbee, th
e
stand
ard t
hat sti
pul
ate
s
a se
rie
s
of
short
-
di
sta
n
ce wi
rele
ss
netwo
rk
comm
uni
cati
on protocol
for tran
smi
ssi
on
rate
of
data, is mai
n
ly applied
in sh
ort-dist
ance
wirel
e
ss data
transmi
ssion
.
The netwo
rk stan
da
rd
s of Zigbee, formulated by 8
02.15.4 worki
n
g
group est
abli
s
hed by the IEEE,
are based on IEEE802.15.4 protocol
and empl
oy the free gl
obal
comm
uni
cati
on fre
que
ncy
ban
d to
co
mmuni
cate.
On the
whol
e, it define
s
three
fre
q
u
ency
band
s: 2.4G
Hz, 9
15M
Hz
and 8
68M
Hz [6-7]. And th
e num
ber of
the freq
uen
cy band
ch
an
nels
has b
een
set
when they a
r
e stipul
ated
by the wo
rki
ng gro
up. Fo
r example, th
e 2.4GHz ba
nd
coul
d offer
a
total of 16 ch
annel
s (ch
a
n
nels
11-26
) [8
-9], who
s
e d
a
ta tran
sfer
rate is the fa
st
est
-
250
kbp
s
; the
915 M
H
z b
and
coul
d off
e
r a total
of
10 chan
nel
s
(ch
ann
els 1-10),
who
s
e
d
a
ta
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4963 – 49
72
4964
transfe
r
rate i
s
40
kb
ps;
wh
ile the 86
8M
Hz
ca
n only
offer on
e cha
nnel
(ch
ann
el
0), an
d its
d
a
ta
transmissio
n
rate i
s
2
0
kbp
s
[10].
Hen
c
e
,
the high
er the
comm
unication ba
nd i
s
,
the g
r
eate
r
t
he
transmissio
n
data rate i
s
.
Ho
wever, d
u
e
to the del
a
y
in the actu
al data tra
n
sf
er p
r
o
c
e
ss, t
h
e
transfe
r rate will be sli
ghtly smalle
r than
the spe
c
ified.
The Zigb
ee stack con
s
ist
s
of four la
ye
rs, and from the top down, they
are the
appli
c
ation l
a
yer, the MA
C laye
r, the
netwo
rk la
yer and
the p
h
ysical laye
r re
spe
c
tively. The
uppe
r layer can acq
u
ire service
s
an
d relative dat
a from its lower layer. The physical layer is
respon
sibl
e f
o
r the
setting
of the th
ree
wo
rki
ng f
r
eq
uen
cy ba
nd
s and
their da
ta tran
smi
ssi
on
rate; the function of the MAC layer is
to mak
e
s
u
re
th
at a
set
of wi
reless
co
mmu
nicatio
n
d
e
vices
workin
g in the sam
e
sp
ace can
sha
r
e t
he frequ
en
cy band
without
prod
uci
ng si
g
nal co
nflicts; the
appli
c
ation la
yer ca
n be
divided into
three p
a
rt
s:
the device o
b
ject
(Z
DO
),
the application
support sub-l
a
yer (APS), and the appli
c
ation objects
.
Its protocol stack i
s
shown in Figure 1.
Figure 1
.
Zig
bee Stack
2.2. Zigbee Net
w
o
r
k T
o
p
o
log
y
[11]
IEEE802.15.4 provide
s
th
ree types of
effectiv
e network st
ru
ctures (clu
ster type, mesh,
and sta
r
sha
pe) an
d thre
e
kind
s of device op
erat
in
g mode
s (coo
rdinators, full functio
n
devices,
and red
u
ced function devi
c
e
s
).
T
he
red
u
ce
d
fun
c
ti
on
device
can
only be
used
as th
e termi
nal
sen
s
o
r
nod
e; the full function device can be take
n as a termin
al
sen
s
or no
d
e
as well a
s
a
routing
no
de;
the
coo
r
din
a
t
or can
only
serve
a
s
a
routing
node.
Thus,
Zigb
ee
-ba
s
ed
wi
rele
ss
sen
s
o
r
netwo
rks can ro
ugh
ly form three
basi
c
topol
ogi
es, as
sho
w
n
in Figure 2:
Figure 2
.
Zig
bee Netwo
r
k
Topolo
g
y Dia
g
ram
(1) T
he
star-sha
pe-ba
sed
topology ha
s a nat
u
r
al di
stribute
d
p
r
o
c
e
ssi
ng capa
bility
and
the routin
g n
ode of the
star shap
e is t
he dist
ri
bute
d
pro
c
e
s
sing
cente
r
,
i.e. it posse
sses
the
cap
ability of data pro
c
e
ssing and inte
gration a
s
well as a ro
uting functio
n
. Each wi
rele
ss
terminal
se
nsor no
de
will transfe
r the d
a
t
a to t
he ro
uting no
de of th
e sam
e
topol
ogy, whe
r
e th
e
data integration will be
co
mpleted in a
simple a
nd ef
fective way a
nd then the p
r
ocesse
d dat
a will
be tran
smitte
d. This ki
nd o
f
network to
p
o
logy is ad
op
ted by this progra
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
Zigbee
Network T
e
m
perat
ure Sen
s
o
r
in
Intelligent Hi
gh-voltag
e…
(Hu
ang Xin
-
b
o
)
4965
(2) Th
e me
sh
-ba
s
ed
topol
o
g
y, who
s
e
wi
rele
ss
sen
s
o
r
nod
es are
conne
cted
into
a n
e
t,
can tran
smit
data thro
ugh
several routin
g ch
ann
el
s
si
multaneo
usly
, which could
maintain hi
g
h
transmissio
n reliability. The netwo
rk of
this t
opolog
y is so powe
r
ful and ela
s
t
i
c that netwo
rk
sep
a
ratio
n
won’t happ
en
whe
n
seve
ral
links a
nd sen
s
or n
ode
s fail
to work.
(3) T
he cl
uste
r-type-ba
sed
topology, wh
ose
sen
s
o
r
n
ode
s are
con
necte
d in one
or more
chai
ns
and
th
e end
of e
a
ch chain i
s
co
nne
cted
with
the termi
nal
sen
s
o
r
n
ode.
In this
pro
g
ram
some te
rmina
l
node
s will lo
se conn
ectio
n
if intermedi
ate node
s lo
se effects.
2.3. Feasibilit
y
of Zigbee Wireless
Netw
o
r
k A
pplication in S
w
i
t
chgear
Online Monitoring
By employing
2.4GHz b
a
n
d
, Zigbee
ca
n fully
meet the dem
and f
o
r onli
ne mo
nitoring
of
the switchge
ar. At first th
e diel
ectri
c
p
r
ope
rtie
s
of t
he m
a
terial
o
f
the hig
h
-vol
tage
swit
chg
ear
and its
semi
-clo
sed
stru
ct
ure m
a
ke it e
quivalent to t
he wavegui
d
e
in the hi
gh
freque
ncy
so
tha
t
high-f
r
eq
uen
cy wirel
e
ss
si
gnal
s in
the
swit
ch
ca
bi
ne
t can
be
bett
e
r tran
smitte
d. Secondly,
the
size of the Zigbee wave length is much smalle
r
than the obsta
cle
s
whi
c
h imped
e
its sprea
d
. The
wirel
e
ss
sig
nals
ca
n b
e
reg
a
rded
as the int
egral
re
sult
of the direct light,
diffractio
n
and
refle
c
tion
, which o
c
cu
r in the spa
c
e
whe
r
e li
ght is prevented from sp
rea
d
ing
.
The spread
of
UHF
b
and
si
gnal
s in
the
swit
chg
ear
cabinet
hav
e
more adva
n
tage
s over that of the VH
F or
lowe
r ban
d si
gnal
s.
Beside
s, alth
ough
the
2.4
G
Hz b
and
si
gnal
s
can
not
be
com
p
a
r
e
d
with
50
0
~
1000M
Hz
radio
si
gnal
s
in fading
pe
rforma
nce, the
intern
al
di
stance
of swit
chgea
r spa
c
e is
so sho
r
t
th
at
the pro
pag
ation loss of th
e sign
als i
s
within t
he a
c
cepta
b
le ran
ge. Mean
whil
e, given that the
2.4GHz ba
nd
is a free fre
quen
cy ban
d
without ap
pli
c
ation, an
d the po
we
r co
nsum
ption of
the
high-ban
d
chi
p
, the
size
of
the ante
nna
and th
e volu
me of the
wi
reless
data m
odule
are all
very
small, it is ve
ry suitable to
use th
e Zig
b
e
e
of
the 2.4
G
Hz
ban
d a
s
t
he working
freque
ncy b
a
n
d
o
f
the wirel
e
ss d
a
ta tran
smission in the pre
s
ent sy
stem.
3. The De
sign of Temper
ature Monitori
ng Sy
stem f
o
r High Voltage S
w
i
t
ch
g
ear
3.1. Sy
stem
Frame
w
o
r
k
The
comm
u
n
icatio
n bet
wee
n
the hi
gh-voltag
e
switch
gea
r
co
ntact an
d t
he ho
st
comp
uter
of station level
can
be a
c
hi
e
v
ed by
mean
s of Zig
bee
wirel
e
ss n
e
twork, IEC6
1
850
proto
c
ol [12
-
1
3
] and the RS
-485 b
u
s [14],
as sh
own in Figure 3.
Figure 3
.
System Frame
w
ork
Wirel
e
ss tem
peratu
r
e m
e
a
s
ureme
n
t system co
n
s
i
s
ts
of the followi
ng five parts,
namely,
wirel
e
ss
sen
s
or no
de
s, wirel
e
ss
re
ce
iver mo
d
u
le,
the monito
ri
ng ho
st, inte
lligent ele
c
tronic
device a
nd th
e host compu
t
er of the stat
ion level, as shown in Figu
re 3.
(1)
Wirele
ss
sen
s
o
r
no
de
s: As wireless sen
s
o
r
no
de
s are set on
the co
ntact a
r
m an
d
temperature
sen
s
o
r
s a
nd the co
ntact a
r
m are in
go
o
d
conta
c
t, the real-time te
mperature d
a
t
a of
conta
c
ts
can
be gathe
red
and sent out throu
gh Zig
b
e
e
netwo
rk.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4963 – 49
72
4966
(2) Wi
rele
ss re
ceive
r
m
odule: In
stall
ed in
the
b
a
ck of th
e
monitori
ng
h
o
st, it’s
respon
sibl
e for colle
cting the data
of te
mperature
se
nt by wirele
ss sensor n
o
d
e
s an
d upl
oa
ding
them to the monitoring hos
t.
(3) The
moni
toring
ho
st: It’s respon
sibl
e for
setting
the ope
ratin
g
paramete
r
s
of data
receiving
terminal, receiving, saving,
a
nalyzin
g a
n
d
man
aging
th
e temp
eratu
r
e data
u
p
loa
ded
from e
a
ch
Zi
gbee
network co
ordi
nator
etc. It ca
n
al
so
uploa
d th
e data to
IED throu
gh the
RS-
485 bu
s.
(4) Th
e intelli
gent el
ect
r
oni
c d
e
vice:
Th
e intellig
ent e
l
ectro
n
ic d
e
vice
re
ceive
s
t
he d
a
ta
colle
ction i
n
stru
ction
s
se
nt by
the h
o
st
comp
ute
r
at a
fixed
time an
d t
hen
distri
but
es
corre
s
p
ondin
g
colle
ction i
n
stru
ction
s
to
each m
onito
ring ho
st thro
ugh the RS
-4
85 bu
s. After the
monitori
ng h
o
s
t uplo
a
d
s
th
e tempe
r
atu
r
e pa
ramete
r
of each
cont
act to the i
n
telligent el
ectronic
device, the data will be
analyzed a
nd pro
c
e
s
se
d by the intelligent ele
c
troni
c device, and
followin
g
the
IEC6185
0 a
g
r
eem
ent, the
s
e th
erm
a
l
st
ate pa
ram
e
te
rs
as well a
s
the pre-wa
rni
ng
and warning
messag
es
wil
l
be se
nt ba
ck to the ho
st
comp
uter of t
he station l
e
vel to achi
eve the
remote monitoring.
(5) T
he ho
st comp
uter: in
stalled in the control r
oom o
f
the station level, it is in charg
e
of
stora
ge an
d d
i
splay of onlin
e monitori
ng
data.
3.2. Hard
w
a
r
e
Design o
f
Zigbee Sens
or Node
s
Wirel
e
ss
co
mmuni
cation
modul
e takes the
control chi
p
M
C
9
S
08QG
8
an
d
RF
chip
MC13
192 [15
-
16] as its m
a
in com
pon
e
n
ts. The co
ntrol chi
p
MC9
S
08QG
8
in this mod
u
le can
cal
c
ulate th
e
tempe
r
ature
of sw
itch
gea
r conta
c
t by
1-wi
re
digital
therm
o
mete
r DS18B2
0
, a
n
d
throug
h SPI
comm
uni
cate
with
RF
chip
MC1319
2,
which
can
se
n
d
out th
e
wireless m
e
ssa
ges
throug
h ante
nna. MC1
319
2 in wirele
ss receiver mo
d
u
le can recei
v
e the data throu
gh ante
n
n
a
and se
nd out
them throug
h SPI
to MC9S08Q
G8, wh
ich can sen
d
data to the monitoring h
o
st
throug
h a serial port. The
wirel
e
ss
com
m
unication m
odule i
s
co
m
posed of a wirele
ss
se
ndi
ng
module
and
a
wirel
e
ss
re
ceiver mo
dule,
who
s
e
hard
w
are de
sig
n
s are th
e sam
e
, but differe
nt in
prog
ram
m
ing
.
Its block dia
g
ram i
s
sh
own in Figure 4:
Figure 4. Internal Stru
cture
s
of Zigbee
Wirel
e
ss Sen
s
or
Nod
e
s
The M
C
U (MC9S0
8QG
8
) an
d M
C
13
192
can
a
c
h
i
eve the ex
chang
e of inf
o
rmatio
n
throug
h SPI.
The pri
n
ci
ple
of the wirele
ss co
mmuni
ca
tion module i
s
illustrated in
Figure 5.
Figure 5. Sch
e
matic Di
ag
ram of a Wirel
e
ss Com
m
uni
cation Mo
dul
e
IR
Q
/
R
S
T
1
B
KGD/
M
S
2
VDD
3
VS
S
4
EX
TA
L
5
XT
AL
6
TP
M
C
H
1
/S
S
7
MI
SO
8
MO
S
I
9
SP
SC
K
10
T
XD/
ADP
5
11
R
XD/
ADP
4
12
S
DA/
ADP
2
14
S
C
L
/
ADP
3
13
ADP
0
/
AC
M
P
+
16
AD
P
1
/
A
C
M
P
-
15
U1
MC
9
S
0
8
Q
G
RF
I
N
-
1
RF
I
N
+
2
NC
3
NC
4
P
AO+
5
P
AO-
6
SM
7
GP
I
O
4
8
GP
I
O
3
9
GP
I
O
2
10
GP
I
O
1
11
RS
T
12
RX
T
X
E
N
13
AT
T
N
14
CL
K
O
15
SP
I
C
L
K
16
MO
S
I
17
MI
S
O
18
CE
19
IR
Q
20
VDDD
21
VDDI
NT
22
GP
I
O
5
23
GP
I
O
6
24
GP
I
O
7
25
XT
AL
1
26
XT
AL
2
27
VDDL
O2
28
VDDL
O1
29
VDDVC
O
30
VB
A
T
T
31
VDDA
32
U2
MC
1
3
1
9
2
C1
10
UF
C3
104
C2
104
VDDA
C7
1
0
4
C8
1
0
4
C1
0
9P
F
C1
1
104
C9
9P
F
VC
C
VC
C
GND
VDDA
VD
DA
GND
GND
RF
I
R
Q
SP
I
C
E
MI
SO
MO
S
I
SP
I
C
L
K
A
TTN
R
TEN
RF
R
S
T
GND
GND
GND
C1
3
18P
F
C1
4
18P
F
C1
5
0.5P
F
C1
2
22
0P
F
GND
C1
6
0.
5P
F
L1
6.
8N
H
C1
7
220P
F
GND
V
DDA
R3
470
K
VC
C
RF
I
R
Q
MS
VC
C
GND
A
TTN
RT
E
N
SP
I
C
E
MO
S
I
MI
SO
SP
I
C
L
K
TX
D
RX
D
R4
8.
2K
C1
8
1
0
4
VC
C
GND
MS
RF
I
R
Q
VC
C
GND
VC
C
GND
VC
C
RF
RS
T
1
3
4
2
Y1
16M
PE
N
RX
D
TX
D
PE
N
1
2
3
4
5
J1
C
ON5
CL
K
O
C4
104
1
2
J2
BK
G
D
片信
号
选
低有
效
SP
I
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
Zigbee
Network T
e
m
perat
ure Sen
s
o
r
in
Intelligent Hi
gh-voltag
e…
(Hu
ang Xin
-
b
o
)
4967
3.3. Zigbee Wireless
Co
mmunicatio
n
Module Soft
w
a
re Proc
e
ss De
sign
In orde
r to re
duce the po
wer con
s
umpti
on of the wireless commu
nicatio
n
mod
u
le, this
prog
ram
ado
pts a mo
re
simplified Zigb
ee protoc
ol stack
and a
communi
catio
n
proto
c
ol. T
he
temperature
of the inte
rn
a
l
mea
s
u
r
ing
point
within t
he
swit
chg
e
a
r
can
be
coll
ected
by
wire
less
sen
d
ing mo
d
u
le on
ce eve
r
y 10 se
con
d
s
, sent out wirele
ssly an
d
uploade
d to the monitori
ng
host M
C
U through th
e seri
al po
rt by the
re
ceiv
ing m
odule. T
he
communi
catio
n
protocol ha
s a
total of 5
p
a
rts:
start
bit (FE), th
e a
ddre
s
s
hi
gh
(1 byte
), the
add
re
ss lo
w (1 byte
),
the
temperature
value (1 byte
) an
d the
CRC pa
rity bi
ts
(1
byte). T
he flo
w
cha
r
t of the
wi
rel
e
ss
sen
d
ing m
o
d
u
le is
demo
n
s
trated
in Fig
u
re
6, and th
e flow
cha
r
t
of wireless
re
ceiver mod
u
l
e
is
displ
a
yed in
Figure 7.
Figure 6. The
Flow Ch
art o
f
Temperature
Colle
ction of the Wirele
ss
Sending M
o
d
u
le
Figure 7. The
Software Flo
w
Ch
art of the
Wirel
e
s
s
R
e
c
e
iv
er Mod
u
le
3.4. Design
of High
-v
oltage Boo
t
s
t
ra
p Po
w
e
r Sup
p
ly
The
po
wer su
pply de
sig
n
i
s
a
cruci
a
l p
a
rt
of
thi
s
p
r
og
ra
m. Wi
rele
ss
sensor net
works can
adopt two p
o
w
er source
m
ode
s: ba
ttery
power
or
bo
otstrap
po
we
r [17]. As the
power fail
ure
o
f
high-volta
ge
swit
chg
ear won’t o
ccu
r
d
u
ring
op
erati
on an
d it i
s
impossibl
e to
exch
ange
the
battery, the
b
a
ttery po
we
r
can’t
gua
rant
ee the
lon
g
-t
erm
wo
rk of
n
ode
s. Th
eref
ore, thi
s
pro
g
r
am
adopt
s the
b
ootstra
p p
o
wer
sup
p
ly, which
mea
n
s
a sm
all
cu
rre
nt obtain
ed f
r
om th
e
cont
act
according
to the ele
c
troma
gnetic th
eo
ry will go
thro
ug
h the front-e
n
d
impa
ct p
r
ot
ection
mod
u
l
e
,
rectifie
r filter module, over-v
oltage an
d over-cu
r
rent prote
c
ti
on mo
dule, step
-do
w
n mod
u
le, and
DC/
DC mo
du
le, who
s
e sy
stem block dia
g
ram i
s
sh
own in Figure 8. Since ca
st a
nd pa
ckage
d in
epoxy
re
sin and
then set arou
nd
the contact
a
r
m,
the boot
stra
p
power
sup
p
ly module i
s
safe
and reli
able.
Figure 8
.
Hi
gh-p
r
e
s
sure self with the powe
r
syste
m
block dia
g
ra
m
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4963 – 49
72
4968
(1) T
he Ha
rd
ware De
sig
n
of the Current
Tran
sform
e
r
The ove
r
all
d
e
sig
n
con
s
i
s
ts of th
ree
pa
rts:
the
cu
rre
n
t
tran
sforme
r,
the p
o
st-pro
ce
ssi
ng
prote
c
tive ci
rcuit an
d the
battery charg
e
and
disch
a
r
ge m
odul
e. Its blo
c
k diag
ram is
sh
own
in
Figure 8. In the de
sign of
the cu
rre
nt transfo
rm
e
r
, a
m
orp
hou
s m
a
terial i
s
ch
o
s
en fo
r the iron
core, which i
s
retra
c
tabl
e. The
cu
rrent
tran
sfor
m
e
r is in
stalle
d
in the p
r
ima
r
y side
of hig
h
pre
s
sure, an
d the current
prod
uced by
the mut
ual i
ndu
ctan
ce
would g
o
thro
u
gh the front-end
impact p
r
ote
c
tion modul
e, the re
ctifier filter mo
dul
e, th
e over-voltag
e
and ove
r
-cu
rre
nt prote
c
ti
on
module, the
antihyperte
nsive module a
nd the
DC/DC mod
u
le. When the
cu
rrent throu
gh t
h
e
prima
r
y side
of high pre
ssure is
so sma
ll that
the induce
d
voltage can
not meet the requi
rem
ent
of the operati
ng voltage of
the
m
onitori
ng equipm
ent
, the design
of the
circuit
will automatically
swit
ch into the battery power to meet the deman
ds; while the current throug
h the prima
r
y si
de of
high p
r
e
s
sure is so big that the indu
ced volt
ag
e is more than
the operatin
g voltage of the
monitori
ng e
quipme
n
t, the stabl
e an
d
safe o
p
e
r
ati
on of the m
onitorin
g
eq
u
i
pment
can
be
maintaine
d
b
y
the over-vol
tage and ove
r
-curre
nt
prot
ection mo
dul
e, i.e., it can cha
r
ge a
nd st
ore
power for the
battery with the cha
r
ge a
nd disc
ha
rg
e
module so t
hat it can be
used when t
h
e
indu
ced
po
wer i
s
not a
d
e
quate e
nou
g
h
. If short
ci
rcuiting
occu
rs in th
e pri
m
ary si
de, tra
n
s
ient
curre
n
t may reach ten
s
of
kA and i
n
rush cu
rrent
will
be produ
ce
d i
n
the current
transfo
rme
r
,
but
with m
u
ltiple
prote
c
tion
of
front imp
a
ct
prote
c
ti
on
ci
rcuit a
s
well
as th
e foll
owi
ng
circuit
s
, DC
voltage of 5V can b
e
output
completely a
nd stably.
The st
ru
ctura
l
desi
gn of th
e rea
r
stage
prote
c
tion p
o
r
tion is
sh
own in Figu
re 9.
The rear
stage
processing
mod
u
le i
s
con
n
e
c
ted t
o
the
cu
rre
nt transfo
rme
r
a
nd
the
re
ar st
age prote
c
tio
n
portion
co
nsi
s
ts of a fro
n
t-end im
pa
ct prote
c
tion
m
odule, the re
ctifier filter m
odule, the ov
er-
voltage over-curre
nt prote
c
tion mod
u
le,
the
buck mo
dule an
d DC/
DC mo
dule.
The front
-imp
act
prote
c
tion
m
odule co
mpri
se
s
the ca
pa
citor C1
and
the TVS tube
D1
and
D2; the re
ctifier fil
t
er
module i
s
m
ade u
p
of the re
ctifier
b
r
idge
by
dio
de D3, D4,
D5 a
nd
D6,
and el
ectrol
ytic
cap
a
cito
rs
C2 and C3 to achi
eve the AC-to-DC
co
nversi
on; the
buck mo
dul
e, formed by the
voltage conv
ersi
on
chip
s
and resi
sto
r
s
R1 a
nd R2
, make
s the
co
nversi
on from
voltage 6V-7
5V
to 5V; the
DC/
DC mod
u
le, compo
s
ed of th
e
ca
pacito
r
C4,
C5, di
ode
D7 an
d el
ectrolytic
cap
a
cito
r C8,
can stably o
u
tput DC voltage of 5V;
th
e over-voltag
e
and over
-current prote
c
t
i
on
module, conn
ected to the output te
rmin
al of the rectifier bridg
e
an
d the output terminal of the
DC/
DC m
o
d
u
le, provid
es the prote
c
ti
on for it
self and the m
o
n
i
toring e
quip
m
ent. The o
v
er-
voltage
a
nd over-cu
r
rent prote
c
tion
m
odule
is ma
d
e
up
of
diod
e D8-D13,
re
sisto
r
s
R3-R12,
cap
a
cito
rs C7 an
d
C8, th
e MOS tu
be
T1, o
peratio
nal am
plifier
U1
and
U2 t
o
a
c
hieve
ov
er-
voltage and o
v
er-curre
nt protection.
Figure 9. Backsta
ge Prote
c
tion Circuit
4. Testing o
f
Sy
stem Performance
4.1. Experiments a
nd Da
ta Analy
s
is o
f
High-v
o
ltag
e Boo
t
strap
Po
w
e
r
The physi
cal
map of obtaining po
wer from t
he curre
n
t transfo
rme
r
is sho
w
n in
Figure
10,
in whi
c
h the
sensors and
hi
gh
-voltage b
ootst
ra
p po
we
r pa
ckag
e is cast
and p
a
cka
g
e
d
in
epoxy resin
and th
en
set
around
the
conta
c
t a
r
m.
Amorph
ou
s
material
is chosen fo
r th
e
iro
n
core, who
s
e
circula
r
unit
s
are 61/7
0
/10,
and the diam
eter of enam
eled wi
re is 0.
23mm.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
Zigbee
Network T
e
m
perat
ure Sen
s
o
r
in
Intelligent Hi
gh-voltag
e…
(Hu
ang Xin
-
b
o
)
4969
The primary side
current
of t
he intelligent substation is
so
unstable
that current
may
vary from
do
zens of am
ps to t
hou
sa
nd
s
of amp
s
. In o
r
de
r to m
a
ke
the wi
rele
ss
netwo
rk sen
s
ors
work prope
rly with th
e
sm
all current
an
d p
r
event th
e
dam
age
to t
he
wirel
e
ss n
e
twork sen
s
o
r
s
becau
se of the high volta
ge of
the seconda
ry side current, the
testing ha
s bee
n carried o
u
t on
the se
con
dary side cu
rrent
voltage in mutual indu
ct
a
n
ce in the la
b
o
rato
ry, to make
sure wh
e
t
her
the wirel
e
ss n
e
twork temp
e
r
atur
e se
nsor can still wo
rk stably and re
liably when th
e prima
r
y sid
e
curre
n
t rea
c
h
e
s 40A
-15
0
0
A
. The experi
m
ental site
of
mutual indu
ctance i
s
sh
own in Figure 11
.
Figure 10. Physical Ma
p of the Curre
n
t Fiel
d
Figure 11. Mutual Indu
cta
n
ce Ele
c
tri
c
al
Tran
sfo
r
mer
After a peri
o
d of experim
ental ob
se
rva
t
ion, it
is foun
d that with th
e gra
dual i
n
crea
se of
the prima
r
y side cu
rre
nt, the mutual in
ducta
nce co
il
tends to be saturate
d. Hence, it can be
inferred that, whe
n
the pri
m
ary sid
e
cu
rre
nt is
too bi
g, the temperature
sen
s
o
r
of the wirel
e
ss
netwo
rk will
n
o
t be
dam
ag
ed. It pr
oves that
the wirel
e
ss
n
e
two
r
k
t
e
mpe
r
ature sensor ca
n wo
rk
stably an
d
reliably when
the intellig
e
n
t su
bstatio
n
take
s p
o
we
r with
the m
u
tual ind
u
cta
n
ce
module. System perfo
rm
ance testin
g
of po
wer-
ta
king
with m
u
tual ind
u
cta
n
ce
ca
n be
is
illustrated in Table 1.
Table 1. Mutu
al Inducta
nce
Electrical Te
sting Data
Primar
y
cur
r
ent
()
A/AC
Secondar
y
side c
u
rrent
(mA/AC)
Secondar
y
side v
o
ltage
(V/AC)
Remark
20 45.2
1.44
The secondar
y side of the
30 ohm resistor i
n
series
60 110.25
2.98
100 136.85
3.23
150 172.5
3.67
200 189.2
3.85
300 223.25
4.36
400 242.76
4.74
500 264.3
4.98
600 279.63
5.28
700 300.26
5.52
800 314.51
5.74
900 330.34
6.01
1000
342.43
6.20
1100
351.58
6.35
1200
358.8
6.49
1300
361.35
6.57
1400
365.13
6.72
1500
367.26
6.79
4.2. Wireless
Temperatur
e Sensor Te
mperatu
r
e M
easur
e
ment
Accu
racy
Ex
periments
In order to a
c
hieve the cov
e
rag
e
of the m
easurement
points of the prima
r
y equip
m
ent o
f
the entire hig
h
-voltage
swi
t
chge
ar, the
wirel
e
ss
tem
peratu
r
e
sen
s
or
accu
ra
cy testing mu
st be
carrie
d out.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4963 – 49
72
4970
In the experiment, three wireles
s
temper
ature
sensor
mod
u
l
e
s (em
p
loye
d
in
th
e
temperature
acq
u
isitio
n
a
nd
tra
n
smi
s
si
on) and a
sin
k
no
de
(u
sed
to re
ceive
3-way temp
erat
ure
data an
d to
sen
d
to the
compute
r) a
r
e
involved to netwo
rk
with
a star to
polo
g
y to simulat
e
a
small
wirele
ss temp
erat
ure sensor net
work, in
whi
c
h wi
rele
ss te
mperature
se
nso
r
can
be
put
into the high
and lo
w temp
eratu
r
e te
st chambe
r
after
taking
po
wer,
and the tem
peratu
r
e
of the
test cha
m
be
r ca
n be ad
justed by th
e cont
rolle
r on it after 3
0
minute
s
for tempe
r
atu
r
e
stabili
zation
and then the
data of the wirele
ss tem
p
e
r
ature se
nsor can b
e
ob
se
rved. Figu
re
12
sho
w
s the hi
gh and lo
w te
mperature m
onitorin
g
te
st cham
be
r, an
d Figure 13 i
s
Zigbe
e wi
re
less
receiver m
o
d
u
le, in whi
c
h
the tempera
t
ure data
acquire
d from t
he co
nver
ge
nt note of a sin
k
node
and a
USB circuit b
oard
ca
n be
sent to the
USB
serial
boa
rd throug
h the se
rial p
o
rts,
the
then the tem
peratu
r
e
data
will be t
r
an
smitted to
the
comp
uter th
rough
a USB
port. In this
way,
the quality of wirele
ss temperature
se
nso
r
as
we
ll
as the accu
racy of wi
rel
e
ss tempe
r
at
ure
sen
s
o
r
s
will b
e
tested by o
b
se
rving the
operati
on of the Zigbe
e wi
reless re
ceive
r
modul
e.
Figure 12. Hi
gh and L
o
w T
e
mpe
r
ature Modul
e
Figure 13. Zigbee
Wirel
e
ss Re
ceive
r
Monitori
ng of the Test Cha
m
ber
Table
2
sh
ows the
temp
erature
value
s
uploa
ded
by t
h
ree
wi
rel
e
ss tempe
r
atu
r
e
sen
s
o
r
s
in the hig
h
an
d low te
mpe
r
ature te
st cha
m
ber
(No.1,
No.2 a
nd
No.
3
). The
temp
eratu
r
e
rang
e
of
the high and
low tempe
r
ature is
-50
Ԩ
~1
20
Ԩ
. Wi
th the calibration of the wirel
e
ss net
work
temperature
sen
s
o
r
, it turns out to be preci
s
e an
d the
measu
r
em
en
t erro
r is lowe
r than 1°
C.
Table 2. Tem
peratu
r
e Me
a
s
ureme
n
t Dat
a
Test Chambe
r
Temper
ature (
Ԩ
)
The 1st monitori
ng
temperatu
r
e (
Ԩ
)
The 2nd Mo
nitoring
Temper
ature (
Ԩ
)
The 3rd
Monitori
ng
Temper
ature (
Ԩ
)
-40
-40.2
-39.8
-39.8
-20
-20.1
-19.9
-19.6
0 -0.4
0.3
0.2
20 19.9
20.0
20.4
40 40.1
40.6
40.5
60 60.2
59.4
60.8
80 80.3
79.8
79.6
100 100.2
100.5
100.7
4.3. Testing
Experiments
on Zigbee Wirel
ess
Ne
tw
o
r
k Tra
n
s
m
ission Packet Lo
ss Ra
te
In ord
e
r to m
easure th
e transmi
ssion
d
i
stan
ce of th
e wi
rele
ss m
odule
accu
rat
e
ly, the
test
on
com
m
unication d
i
stan
ce between points
of wirele
ss
netwo
rk tem
peratu
r
e
sen
s
or,
con
s
id
erin
g the influen
ce of the external
environmental fa
ctors,
is co
ndu
cted,
wh
ose
experim
ental
appa
ratu
s a
nd process
are the
sam
e
as the te
st
on the a
c
cu
racy of
wirel
e
ss
temperature
sen
s
o
r
. The
test sh
ows t
hat the pa
cket loss rate i
s
smalle
r th
an 2%
withi
n
a
distan
ce of 1
00 meters. T
he re
sults a
r
e
sho
w
n in Ta
ble 3.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
Zigbee
Network T
e
m
perat
ure Sen
s
o
r
in
Intelligent Hi
gh-voltag
e…
(Hu
ang Xin
-
b
o
)
4971
Table 3. Co
m
m
unication Di
stan
ce Te
st Data
Tes
t
distance
Packet
length
Send the packag
e
number
No. 1, packet loss
rate
No. 2, packet loss
rate
No. 3, packet loss
rate
10
20B
y
t
es
500
0%
0%
0%
30
20B
y
t
es
500
0%
0%
0%
50
20B
y
t
es
500
0%
0%
0%
70
20B
y
t
es
500
0%
0%
0%
90
20B
y
t
es
500
0.3%
0.2%
0.2%
110
20B
y
t
es
500
0.4%
0.5%
0.5%
It can
be
dra
w
n f
r
om th
e
test of th
e a
c
cura
cy
and
the tra
n
smi
ssion di
stan
ce
of the
wirel
e
ss tem
peratu
r
e
sen
s
or th
at the wirel
e
ss
tem
peratu
r
e
sen
s
or
ca
n a
ccu
rately monito
r th
e
measured te
mperature
st
ate, and m
a
in
tain a go
od
a
nd sta
b
le
co
mmuni
cation
efficien
cy wit
h
in a
distan
ce of
100 mete
rs t
o
meet the deman
ds
of
the online te
mperature m
onitorin
g
of the
intelligent sub
s
tation eq
uip
m
ents for the
accura
cy an
d
the stability of data commu
nicatio
n
s.
5. Running
Resul
t
s and
Data
This syste
m
has bee
n su
cce
ssfully
a
ppl
ied
in
T
ang
Shan Hon
gqi
ao
sub
s
tation
,
who
s
e
operation is
stable and
reli
able. Its insta
llation is
sho
w
n in Fig
u
re
14 and Fi
gure 15. Each
switch
cabi
net layou
t
s 9 Zigbe
e sensor no
de
s for testin
g
the temperature
of the joint co
nne
cting swit
ch
conta
c
t with
busbar, an
d all the Zigbe
e sen
s
o
r
nod
es in the dist
ribution
room
form the Zigbee
netwo
rk. Zi
gb
ee sen
s
or
no
de is i
n
the d
o
rma
n
t st
ate i
n
most
of the
time, and it
woul
d be
awake
every 10
se
cond
s (th
e
int
e
rval
can
be
set) to
re
ad
the sen
s
or tempe
r
ature v
a
lue
s
an
d se
nd
them o
u
t. Th
e wi
rele
ss
re
ceiver mo
dul
e can
re
ceiv
e an
d
sen
d
out the
data
to the m
onito
ring
host through t
he se
rial po
rt.
Figure 14. Zigbee Sen
s
o
r
Nod
e
s In
stall
a
tion
Figure 15. Monitorin
g
Ho
st Installation
Figure 16. Th
ree Te
mpe
r
at
ure Data of Switch
gea
r A, B, C
34
.0
0
34
.5
0
35
.0
0
35
.5
0
36
.0
0
36
.5
0
37
.0
0
2
0
12-
9-1
0
2
0
12-
9-1
0
2
0
12-
9-1
0
2
0
12-
9-1
1
2
0
12-
9-1
1
2
0
12-
9-1
1
2
0
12-
9-1
2
2
0
12-
9-1
2
2
0
12-
9-1
2
2
0
12-
9-1
3
2
0
12-
9-1
3
2
0
12-
9-1
3
2
0
12-
9-1
4
2
0
12-
9-1
4
2
0
12-
9-1
4
2
0
12-
9-1
5
2
0
12-
9-1
5
2
0
12-
9-1
5
M
o
n
i
t
o
r
i
n
g
t
i
m
e
T
e
m
p
errat
u
re(
℃)
Li
n
e
A
p
h
a
s
e
b
u
s
b
ar
t
e
m
p
er
at
u
r
e
L
i
ne
A
pha
s
e
ou
t
g
oi
ng
b
u
s
b
a
r
t
e
m
p
er
at
u
r
e
34.
00
34.
50
35.
00
35.
50
36.
00
36.
50
37.
00
2
012-
9-10
2
012-
9-10
2
012-
9-10
2
012-
9-11
2
012-
9-11
2
012-
9-11
2
012-
9-12
2
012-
9-12
2
012-
9-12
2
012-
9-13
2
012-
9-13
2
012-
9-13
2
012-
9-14
2
012-
9-14
2
012-
9-14
2
012-
9-15
2
012-
9-15
2
012-
9-15
M
o
ni
to
r
i
n
g
ti
me
T
e
m
p
e
r
atu
r
e(
℃)
L
i
ne
B
pha
s
e
b
u
s
b
a
r
t
e
m
p
e
r
a
t
u
r
e
L
i
ne
B
pha
s
e
ou
t
g
o
i
ng
b
u
s
b
a
r
t
e
m
p
er
at
u
r
e
34.00
34.50
35.00
35.50
36.00
36.50
37.00
20
12-9
-10
20
12-9
-10
20
12-9
-10
20
12-9
-11
20
12-9
-11
20
12-9
-11
20
12-9
-12
20
12-9
-12
20
12-9
-12
20
12-9
-13
20
12-9
-13
20
12-9
-13
20
12-9
-14
20
12-9
-14
20
12-9
-14
20
12-9
-15
20
12-9
-15
20
12-9
-15
M
oni
t
o
r
i
ng t
i
m
e
T
e
m
p
er
at
u
r
e
(℃)
L
i
ne
C
pha
s
e
b
u
s
b
a
r
t
e
m
p
e
r
a
t
u
r
e
L
i
ne
C
pha
s
e
ou
t
g
oi
ng
b
u
s
b
a
r
t
e
m
p
er
at
u
r
e
Zigbee
Sensor
nodes
Monitoring
host
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4963 – 49
72
4972
Run
n
ing in m
o
re than on
e year, Zigbee
wirel
e
ss com
m
unication m
odule can a
c
curately
transmit data
;
monitorin
g
host
can
re
ceive proc
ess
and u
p
loa
d
the data
to th
e ho
st comp
uter;
and the ho
st comp
uter exp
e
rt so
ftware
works prope
rl
y. Figure 16 i
s
the interfa
c
e diagram of the
recorded tem
peratu
r
e ri
se
curve.
Acco
rdi
ng to t
he ab
ove an
a
l
ysis of th
e o
per
atin
g data,
the ap
plicati
on of Zig
bee
netwo
rk
sen
s
o
r
s i
n
th
e intelligent
high-volta
ge
swit
chg
ear
can effectively
solve
the problem
s
of switch
cabi
net data
commu
nication. It has the ch
ara
c
te
ri
stics of thorough i
s
ol
atio
n, stron
g
an
ti-
interference ability,
low cost,
si
mple
structure and strong stabili
ty etc. to achieve real
-time
monitori
ng
of high
-voltage
switch
gea
r
conta
c
ts an
d
insi
de tem
p
eratu
r
e, a
n
d
acquires th
e
function
of g
i
ving ea
rly warnin
gs and
alarm
s
so
a
s
to u
pgrade
the safe op
eration
of th
e
swit
chg
ear.
6. Conclusio
n
In view of the
urgent
dema
nd of
tempe
r
ature
monito
ring of
the
hig
h
-voltage
swi
t
chge
ar
and the
cha
r
acteri
stics
of
the proje
c
t fie
l
d, a
wi
rele
ss
tempe
r
ature monitori
ng system
b
a
sed on
Zigbee te
ch
n
o
logy is p
r
e
s
ented in thi
s
pape
r to co
ndu
ct the monitorin
g
of key points in
the
swit
ch
ca
bin
e
t so
that th
e o
c
curren
ce
of ma
j
o
r a
c
cide
nts
ca
n
be p
r
eve
n
ted
effectively.
The
system i
s
of low
co
st, ea
sy installation,
low
po
wer consumption
i
n
the te
rmin
al nod
e, sta
b
l
e
operation, an
d stron
g
eng
ineeri
ng
practicality and marketing va
lue. In this prog
ram, Zigb
ee
netwo
rk com
m
unication
works a
s
the
core
of the
wi
reless te
mpe
r
ature
se
nsor
netwo
rk an
d
in
combi
nation
with a star t
opolo
g
y network
stru
ct
ure, it provides the stabl
e an
d reliabl
e da
ta
transmissio
n.
Referen
ces
[1] L
Bal
gar
d
,
L
Lun
di
n. Mon
i
torin
g
Primar
y C
i
rcuit T
e
mperatur
e a
nd
Breakers
Co
n
d
itio
n in
M
V
Substations.
ABB Review.
19
93; (3): 21-26.
[2]
Z
heng
Da
oh
o
ng, L
i
u
Ni
an,
Z
hou
Lo
ng
xi
a
ng. H
i
gh
vo
lta
ge s
w
i
t
chg
ear
contacts
opti
c
al fi
ber sm
art
temperatur
e.
High-v
o
ltag
e el
e
c
trical ap
pli
anc
es.
1995; 3
1
(4)
:
37-39.
[3]
Cai W
e
i. Optic
a
l fib
e
r Brag
g
gratin
g temp
erature
se
nsor te
chno
log
y
r
e
se
arch. Master T
hesis. W
u
h
a
n
.
W
uhan U
n
iver
sit
y
of T
e
chnol
og
y. 200
4.
[4]
Hua
ng
Xi
nb
o. On-lin
e mon
i
to
ring
and f
ault d
i
ag
nosis
of tra
n
smissio
n
l
i
ne.
F
i
rst Edition.
Beiji
ng: C
h
in
a
Electric Po
w
e
r Press. 2000: 5-
15.
[5]
Den
g
L
e
i-l
e
i, Z
hang
Xi
an. Z
i
gbe
e
T
e
chn
o
lo
g
y
i
n
Inte
lli
gent E
l
ectric
Leak
ag
e Prote
c
tion S
y
st
e
m
Applied Research.
T
E
LKOMNIKA Indo
nes
i
an J
our
nal
of
Electrical
En
gi
neer
ing
.
20
13;
11(
8): 4
291-
429
5.
[6]
HAN L
i
-na. Z
i
g
bee-
base
d
the
mine
perso
nn
el ma
nag
eme
n
t
s
y
stem d
e
sig
n
. Master thes
i
s
. Shang
ha
i
.
T
ongji Univ
ersi
t
y
. 200
7.
[7]
X
u
Rende. Researc
h
and design of
w
i
r
e
less video access control s
y
stem bas
ed on Zigbee
techno
lo
g
y
. Ma
ster thesis. Na
njin
g. Nan
jin
g
Univers
i
t
y
. 2
0
0
8
.
[8]
W
ang R
an. Z
i
gbe
e
w
i
r
e
l
e
ss
net
w
o
rk
ing t
e
c
hno
log
y
t
o
ac
hiev
e. Master
thesis, Jil
i
n. Jil
i
n U
n
ivers
i
t
y
;
200
7.
[9]
Z
hu Jia
n
h
ua.
Z
i
gbe
e 2
006 r
e
searc
h
a
nd a
pplic
atio
n
of th
e protoc
ol stac
k.
Master T
hesis .Shan
gh
ai
.
East Chin
a Nor
m
al Univ
ersit
y
;
2007.
[10]
Z
hang
Ho
ngta
o
, Xul
i
an
Min
g
, Z
han
g Yi-
w
e
n
.
Ke
y te
ch
nol
o
g
ies
an
d s
y
ste
m
ap
plic
ations
of Internet
o
f
T
h
ings. F
i
rst Editio
n. Chin
a Machi
ne Press. 201
1: 30-4
5
.
[11]
Liu
Qing,
So
ng
Li
jun.
Stud
y
o
n
Z
i
g
b
e
e
W
i
re
l
e
ss Se
nsor
Ne
t.
Co
mputer
D
e
vel
o
p
m
e
n
t a
n
d Ap
plic
atio
n
.
200
8; 44(6): 44
-48.
[12]
Yin Z
h
il
ian
g
, Li
u W
an-shu
n
Y
ang Qi
xu
n.
Process bus c
o
mmu
n
icati
on r
e
searc
h
bas
ed
on IEC61
8
5
0
standar
d.
Proceed
ing
of the CSEE. 2005; 25(
8): 84-89.
[13]
W
u
Z
a
i-Jun, HU Min-qi
ang.
R
e
searc
h
on a substatio
n
auto
m
at
ion s
y
stem base
d
on lEC
618
50.
Power
System
Technology.
200
3; 27(10): 62-
65.
[14]
W
ang Ra
n, T
a
ng Do
ng
yi. Ach
i
ev
em
ent of Masterslav
e Co
mmunicati
on A
r
chitecture Bas
ed on
RS48
5
.
Moder
n electro
n
ics T
e
chn
i
qu
e
.
2003; 24: 67-
71.
[15]
W
u
Xia
o
ran. Desig
n
of
Z
i
gb
ee S
y
st
em Ba
sed on MC
131
92.
Industria
l Contro
l Co
mp
uter.
2007;
2
4
(4): 19-20.
[16] Z
heng
hu
a
Xi
n,
Hong
L
i
,
Li
an
g
y
i Hu.
T
he
R
e
searc
h
on C
C
25
30 No
des
Commun
i
cati
n
g
w
i
t
h
E
a
ch
Other Based
o
n
W
i
reless.
T
E
LKOMNIKA Indon
esia
n Jo
urnal
of El
ectrica
l
Engi
ne
erin
g.
201
3; 11(1)
:
430-
435.
[17]
Sha Yuz
h
o
u
, Qiu Ho
ngh
ui,
Xi
on
g Yin
g
. D
e
sig
n
of Se
lf-supp
l
y
in
g Po
w
e
r Sour cu
e Ap
plie
d i
n
Hi
g
h
Voltag
e Electro
n
ic S
y
st
em.
High Volta
ge Ap
paratus.
20
07;
43(1): 21-
24.
Evaluation Warning : The document was created with Spire.PDF for Python.