Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 2, No. 1,
April 201
6, pp. 229 ~ 24
0
DOI: 10.115
9
1
/ijeecs.v2.i1.pp22
9-2
4
0
229
Re
cei
v
ed
Jan
uary 7, 2016;
Re
vised Ma
rch 18, 2016; A
c
cepted Ma
rch 28, 2016
Applications and Design for a Cloud of Virtual Sensors
Ammar Jam
eel Huss
ein*
1
, A
mmar R
i
adh
2
, Moha
mmed Alsultan
3
, Abd Al-r
aza
k
Tareq
4
1
Çanka
y
a
Univ
ersit
y
, T
u
rke
y
, Ankara,
2
Baghd
ad U
n
v
e
rcit
y
,
Ba
ghd
a
d
, Iraq,
3
Çanka
y
a
Univ
ersit
y
, T
u
rke
y
, Ankara,
4
Universit
y
of T
e
chn
o
lo
g
y
, Ba
ghd
ad, Iraq,
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:ammar.jameel.i
ct@gmail.com*
1
, eng_amm
a
r81@
ya
h
oo.c
o
m
2
,
mohamm
ed.alt
a
lib
y@
gm
ail.co
m
3
, abdtareq@
ya
ho
o.com
4
A
b
st
r
a
ct
T
he use of se
nsors in
our d
a
ily l
i
ves is a
grow
ing
de
ma
nd w
i
th the lar
ge n
u
mber of
electro
n
i
c
devic
es ar
ou
n
d
us. T
hese
se
nsors w
i
l
l
b
e
in
clud
ed
in
o
u
r d
a
ily
life
re
quir
e
me
nts so
on
a
n
d
they
w
ill
affe
ct
our l
i
ves i
n
b
o
t
h
pos
itive
an
d
neg
ative w
a
ys.
In this
p
a
p
e
r, w
e
discuss th
e
mann
er, ap
pli
c
ations
an
d d
e
s
ign
issues for a c
l
oud
of virtual
sensors, a
nd
w
e
introduc
e a
distribut
ed sy
stem d
e
si
gn to
deal w
i
th p
h
y
s
ical
sensors
th
at
re
side in divers
e
locati
ons an
d oper
ate
i
n
diffe
rent env
iro
n
me
nts. T
h
is des
ig
n op
erates
in
a
clou
d co
mputi
ng visio
n
an
d can make virtu
a
l sens
or
s in upp
er of physi
cal on
e avai
la
ble fro
m
anyw
h
e
r
e
usin
g ICT
structure. T
hen, w
e
ne
gotiat
ed t
he future
of thi
s
techno
logy, i
.
e., the Interne
t
of T
h
ings (Io
T
).
Additi
ona
lly, w
e
go over the
strengths
an
d w
eaknesses of
using this tec
hno
logy. Our test lab show
s hig
h
perfor
m
a
n
ce a
nd go
od total c
o
st of ow
nershi
p
and effectiv
e respo
n
se ti
me.
Ke
y
w
ords
: Cl
oud Virtu
a
l Se
nsors, Internet of T
h
ings (IoT
),
Sensor Cl
oud,
Virtual Sens
or
, w
e
ir less sensor
netw
o
rk
Copy
right
©
2016 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The main Ph
ysical sen
s
o
r
s are u
s
ed all
aroun
d the worl
d in num
erou
s ap
plica
t
ions [1].
For the
mo
st part, sen
s
o
r
s a
r
e
regul
arl
y
used
by th
eir o
w
n
appli
c
ation
s
sin
c
e
each ap
plica
t
ion
retrieve
s dat
a
enti
r
ely with
the co
ope
ration
of
phy
sical
sen
s
o
r
s and
thei
r
sensor stati
s
tics.
Additionally,
vendor requ
e
s
ts
ca
nnot
be
cu
stomi
z
e
d
t
o
the
physi
ca
l se
nsors i
n
a dive
rse
eve
n
t
[2]. Perhap
s
this i
s
on
e of
the mai
n
rea
s
on
s th
at give u
s
a
ne
w concept of the
need
forvirtu
al
sen
s
o
r
s [3] a
nd a
se
nsor
clou
d [4]. A
sen
s
o
r
clou
d
ca
n be
defi
ned
as
a
col
l
ection
ofvirtu
a
l
sen
s
o
r
s
com
p
rised of phy
sicalsen
sors. Con
s
um
er
s i
nevitably and
dynamically
can e
s
tabli
s
h
or
deliver on the
basi
s
of appli
c
ation d
e
man
d
s. Thi
s
meth
od ha
s a num
ber of advant
age
s.
Firstly, this i
m
proves
sens
or admi
n
istration capability.
Consumers
can use
devices
rega
rdi
ng the
i
r view of wireless sen
s
or network
s
(WSN), typic
a
l tas
k
s
for a varietyof fac
t
ors
inclu
de area
of interest, se
curity and lat
ency. Se
co
nd
ly, statistics a
ttained by WSN can b
e
pu
blic
among
man
y
con
s
um
ers, which
can
red
u
ce the
totalco
s
t of
data gat
hering for
both
an
orga
nization
and the custo
m
er.
As a
re
sult,
many of the
effective po
wer pe
rform
a
nce
metho
d
s have imp
r
o
v
ed and
almost
all
pro
t
ocol
s that
ha
ve bee
n u
s
e
d
in
sensor
n
e
tworks are
enha
nced
to
decrea
s
e
po
we
r
feeding. T
hese improveme
n
ts in
clud
e worki
ng in
different laye
rs, in
cludi
ng the
T
r
an
spo
r
t Lay
er,
the Netwo
r
k
Layer, the
Ph
ysical
Laye
r
and th
e Me
di
um
Acce
ss Control Laye
r
. In
the
m
eanti
m
e
,
the commu
ni
cating
process n
eed
s extra po
we
r re
lat
i
ve to the d
a
ta process
ha
ndling ta
sks. A
variety of additional ma
ch
inerie
s have
been
sug
g
e
s
ted and imp
r
oved to save
powe
r
. The
s
e
inclu
de external-n
etwo
rk
handli
ng [1], topology re
st
ructu
r
in
g, Time Synch
r
on
ization
and
Node
Arc
h
itec
ture [4].
Corre
s
p
ondin
g
ly, the secu
rity and privacy of
a sensor node an
d co
mmuni
cation
s line i
s
also a majo
r standi
ng issu
e in the sensor network
[2]. Sensing and
carrying data
more often h
a
s
its own p
r
ivate use an
d na
ture. Many
ch
alleng
es
i
n
th
is a
s
pe
ct hav
e bee
n issu
e
d
. Furthe
rmo
r
e,
many propo
sals for
sol
u
tions
have be
en ap
plied,
i
n
clu
d
ing
cryp
tograp
hy and
stega
nog
rap
h
y.
Ho
wever,
su
ch te
ch
niqu
e
s
a
r
e
extrem
ely co
stly to
be
impla
n
te
d in
su
ch
d
e
v
ices, i.e., ti
me
con
s
id
eratio
n
s
, espe
cially in real
-time
applic
ation
s
. Others
ha
ve sug
gest
e
d sol
u
tions t
hat
inclu
de addi
n
g
se
curity informatio
n hoo
ked o
n
to the
data pa
cket. Again, this wil
l
cost in term
s of
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 229 –
240
230
pro
c
e
ssi
ng a
nd
m
e
mory. Lastly,
an
oth
e
r aspect
of
t
he
chall
eng
e
in sen
s
or net
works
can
b
e
the
availability and operational
costs as a
result of unreli
able
comm
unications lin
es,
environment
al
con
d
ition
s
an
d rest
rictio
ns
of energy sou
r
ce
s.
While sensor-cloud is
trying to virtualize
s
the physi
cal
sensor by way of putting them on
the cl
oud
dy
namically, Groupin
g
th
e
s
e
se
nsors i
n
virtual ma
nn
er
and
puttin
g
them
in
cl
oud
comp
uting
can be
availa
ble on
dem
a
nd
when
oth
e
r a
ppli
c
atio
ns
need
the
m
, and from
this
con
c
e
p
t, a n
e
w term is f
ound: “Inte
r
n
e
t of Th
ing
s
” (IoT),
whi
c
h
prop
oses th
e potential
o
f
assimilating t
he digital do
main of the Internet with th
e physi
cal do
main in whi
c
h
we bre
a
the [5].
In ord
e
r to
reali
z
e thi
s
prop
osal, we
need to
d
e
mand
a
systemati
c
met
hod fo
r
assimilating
sensors, the o
perato
r
a
nd t
he inform
atio
n on
whi
c
h th
ey operate o
n
the Internet
we
see
nowaday
s. In this pa
p
e
r, we
will di
scuss the
virt
ual
sensor, sensor clou
ds and
the
Inte
rnet
of Thing
s
. We will review issue
s
and
appli
c
ation
s
of a clou
d of
virtual se
nsors, int
r
od
uce a
desi
gn for a virtual clo
ud sensor an
d finally ov
erview
the pro
s
and
con
s
of this tech
nolo
g
y.
2.
Virtual Sens
or
A virtual sen
s
or is the e
m
ulation
of a
physi
c
a
l
s
ens
o
r
th
a
t
ob
ta
in
s
its
ow
n
da
ta
fr
o
m
unde
rlying p
h
ysical sen
s
ors. Virtual
sen
s
o
r
s
p
r
ov
ide a cu
sto
m
ized vie
w
to users u
s
i
n
g
distrib
u
tion a
nd location transparen
cy [6]. Virtual
se
nso
r
s
co
ntain
meta-d
ata a
bout the phy
sical
sen
s
o
r
s. T
h
e
requi
red
phy
sical sen
s
ors sho
u
ld be
dynamically org
anized in the
followin
g
ord
e
r:
virtualizatio
n, stand
ardi
zati
on, automatio
n,
monitorin
g
and groupi
ng
in the servi
c
e
model.
Implementati
on of
virtual
sen
s
o
r
s i
s
ca
rrie
d
o
u
t in
fo
ur
different
configuration
s
: one
-to-
many, many-t
o-on
e, many-to-many, and
derived c
onfi
guratio
ns [7]. In the following part
s
, there
are b
r
ief revie
w
s ofe
a
ch structures:
1)
One-to
-Ma
n
y Structu
r
e: T
h
is
stru
cture
deal
s with
on
e physi
cal
se
nso
r
lin
k to
several virtu
a
l
s
e
ns
or
s
.
2)
Many-to-One
Structure: In
this stru
ctu
r
e, the topographi
cal area
s are allo
cate
d into zon
e
s
and ea
ch
zon
e
can h
a
ve o
ne or mo
re p
h
ysical se
nso
r
s an
d
se
nsor networks.
3)
Many-to-Man
y
Structure: Th
is
config
urat
ion is
a comb
ination of the
one-to
-ma
n
y and ma
ny-
to-one
config
uration
s
. A p
h
ysical sen
s
o
r
can
corre
s
p
ond
with ma
n
y
virtual se
nsors an
d al
so
be a part of a
network that
provide
s
ag
gregate data fo
r a singl
e virtual se
nsor.
4)
Derive
d Stru
cture:
A d
e
ri
ved
configu
r
ation refers to
a
ve
rs
atile configu
r
ati
on of vi
rtual
sen
s
o
r
s de
ri
ved from
a
co
mbinatio
n of m
u
ltiple phy
sical
sen
s
o
r
s.
In
the d
e
rive
d
config
uratio
n, the virtu
a
l
sensor co
mm
unicates
with
multiple
sen
s
or type
s
whi
l
e the vi
rtual
sen
s
o
r
co
m
m
unicates
with the sam
e
type of
physi
cal sen
s
or in th
e other three
config
uratio
n
s
. Figure 1 sh
ows t
he different stru
cture schema.
1
2
3
Vi
r
t
u
a
l
Se
ns
or
s
P
h
y
s
i
c
a
l
S
e
ns
or
s
(a)
En
d
U
s
e
r
s
1
2
3
Ph
ys
ic
a
l
Se
ns
or
s
(b)
En
d
U
s
e
r
s
De
r
i
v
e
d
Se
n
s
o
r
s
A
mma
r
Figure 1. Virtual se
ns
ors structu
r
e sch
e
m
a
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Applicatio
ns
and Desi
gn for a Clo
ud of Virtual Senso
r
s
(Am
m
a
r Ja
m
eel Hussein
)
231
3.
Sensor Clou
d
A sensor cl
ou
d can be de
ri
ved from the followin
g
definition: a stru
ctur
e that permits real
universal calculation of dat
a usin
g virtua
l sen
s
ors a
s
an edg
e amo
ng physi
cal sensors
usi
ng an
Internet cl
oud
netwo
rk[8]. Statistics a
r
e
calculated
through servers
to c
l
us
te
r infras
truc
ture
with
the cyber network as the co
mmunication medium. These met
hods will enable consum
ers
effortlessly to
acce
ss, ha
n
d
le, visu
alize
and
evaluate,
in a
ddition t
o
loa
d
, allo
ca
te and
exami
n
e
huge n
u
me
ra
l data from a
sen
s
o
r
. Data
is gathe
re
d
from more tha
n
a few type
s of applicatio
ns,
and this l
a
rg
e sum
of dat
a are vi
suali
z
ed by expen
ding the IT a
nd sto
r
ag
e re
sou
r
ces i
n
cl
oud
comp
uting. T
he idea of a virtual sen
s
o
r
cloud is
a
model that combine
s
the
idea of a virtual
sen
s
o
r
a
nd
clou
d-com
put
ing. Physi
c
al
se
nsor
s (WSN) gathe
r statistics and
co
ndu
ct wh
ole
sen
s
o
r
data i
n
to a clo
u
d
-
computing f
r
a
m
e. Clou
d-se
nso
r
s
ca
n grab sen
s
or
da
ta resou
r
cefu
lly
and use this data to monitor nume
r
o
u
s appli
c
atio
ns
. The cl
ou
d servi
c
e structure is u
s
e
d
to
distribute
the facilities of
shared
virtual network
servic
es in whi
c
h consumers/end user’
s
benefit
by using the
s
e services.
They are not
worrie
d
abou
t how they are detaile
d to implement the
servi
c
e. Thi
s
is refe
rred to as tran
sp
aren
cy and scal
ab
ility.
4.
Internet of Things (IOT)
In orde
r to a
c
ce
ss
obje
c
t o
r
thing
s
fro
m
anywh
ere, it i
s
a diffe
rent i
dea fro
m
the
con
c
e
p
t
of clou
d se
nsors. A
c
cess t
hese vi
rtual
sensors via th
e clo
ud servi
c
e
in ou
r prop
ose
d
de
sign;
it is
calle
d a cl
ou
d sen
s
o
r
. In fact, there i
s
a
nother
co
nce
p
t that is ne
sted within
our
subj
ect, nam
ely
the “Internet
of Thing
s
”
(Io
T
). It
is state
d
that if object
s
, individu
als or
thing
s
prov
ide
an exclu
s
i
v
e
ID, they will have the ca
pa
bility
robotical
ly to transmit
statistics thro
ugh net
wo
rks withoutne
edi
ng
a hum
an
or
n
on-h
u
ma
n/co
mputer interf
ace. IoT
ha
s
gro
w
n f
r
om t
he uni
on
of (WSN) te
chn
o
l
ogy
and micro el
e
c
trom
echani
cal system
s (MEMS)
by using the Intern
et [9] [10].
Furthe
rmo
r
e,
the term “thing” in this
se
nse may me
an som
eon
e with an impla
n
t heart
sen
s
o
r
, anim
a
ls, plant
s, e
t
c. This m
a
y refer to
a
n
y comp
one
nt that has b
e
e
n
integrated
by
sen
s
o
r
s a
n
d
making the
driver be awa
r
e of ch
ange
s in sp
eed or any
other expe
cted
measurement
. Additionally, it may be any items
wi
th the
capability of a
llocating IP addresses
and delive
r
in
g statistics through a n
e
two
r
k. Figu
re 2
symbolize
s
the
“IoT.”
A
mma
r
La
p
t
op
s
Us
e
r
Sm
ar
t
Ph
o
n
e
Se
r
v
e
r
s
Ta
b
l
e
t
In
t
e
rn
e
t
Figure 2. IoT
The id
ea b
e
h
ind theInte
r
net of Thin
g
s
, is
all ab
o
u
t embe
ddin
g
microp
ro
ce
ssors in
objects, hence, they can
communi
ca
te
with each other. The inform
ation
will lead us in t
he f
u
ture
to a new term
called the Int
e
rnet of every
t
hing.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 229 –
240
232
4.1
Things Tha
t Think
Thing
s
i
n
the
context of
the
Intern
et of T
h
ing
s
can
be
any obj
ect,
smart d
e
vice
s,
entities
that can be li
nke
d
to a network an
d pro
v
ide info
rmati
on reg
a
rding
the purp
o
se for whi
c
h it was
desi
gne
d wh
ether
with o
r
without
com
puting a
b
ilitie
s [16]. Usu
a
ll
y these
obje
c
ts
have m
o
bile
ability and
ca
n be a
c
tive o
r
pa
ssive
po
wer
so
urce
s.
Some obj
ect
s
have their o
w
n b
a
tterie
s
and
others are p
o
w
ered by so
urces fr
om the environm
e
n
t and natura
l
su
rroun
ding
s, su
ch as lig
ht,
water,
he
at, etc. Mo
bility denote
s
a
co
mmuni
cation
link
between
an o
b
je
ct an
d
the m
a
in
stat
ion
or nod
es that
are wi
rel
e
ss [27].
4.2
Interne
t
of P
e
ople
The Intern
et of people (Io
P
) [17] is a new dev
elo
p
e
d
para
d
igm that attempts to extend
the usa
ge of
the Internet o
f
Things by i
n
volvi
ng the thing
s
around
people
so a
s
to intera
ct
with
them p
o
sitive
ly and
mea
n
i
ngfully in th
ei
r n
o
rm
al d
a
il
y lives.In the
Intern
et of T
h
ing
s
, the
m
a
in
goal of integ
r
ating thing
s
i
s
to have the
s
e thing
s
b
e
come involved
in our life a
n
d
to make them
more e
a
sily
accessibl
e
for the co
nsumer by ha
ving a machinery mo
del
work for th
em
effortlessly. On the
other
hand, the
Internet
of
Peop
le su
gge
sted
that these
thi
ngs
ca
n an
al
yze
data an
d m
a
ke
de
cisio
n
s
depe
nding
o
n
data
ac
quired fro
m
con
s
umers th
emselves a
nd th
en
respon
d to these d
a
ta accordin
gly.
4.3
The We
b of
Things
The We
b of thing
s
(WoT) i
s
a new p
a
ra
digm
that attempts to extend the con
c
e
p
t of the
Internet of T
h
ing
s
. The
Web
of Thin
gs i
s
an
imp
r
essio
n
of typical live
s
th
at assum
e
s
that
conve
n
tional
obje
c
ts a
nd
sensors a
r
e fu
lly conn
ecte
d
and i
n
teg
r
at
ed u
s
ing
We
b 2.0 te
chn
o
l
ogy
[18]. The We
b of Things prese
n
ts seve
ral benef
its in web soci
ety and has
sug
g
e
s
ted a ne
w web
appli
c
ation p
a
radi
gm. Th
ese a
pplications
can
be
simply built on top of ob
jects u
s
in
g Web
developm
ent
utilization; t
h
is may
include blogging,
securi
ng,
searchi
ng,
linking, caching, etc.
The Web of
Thing
s
pa
rad
i
gm provid
es
a scal
abl
e an
d rema
rkable
model an
d b
e
ca
use of this,
some
re
sea
r
che
r
s
have faith that this model
w
ill be
suitable fo
r con
n
e
c
ting o
b
ject
s in unif
o
rm
edge
s an
d be
simply applie
d by following
these ste
p
s:
1.
Linki
ng the o
b
ject to the Internet by usin
g IPv4 or IPv6
2.
Enabling a
Web se
rvice o
n
these obj
ect
s
3.
Utilizin
g these servi
c
e
s
an
d putting the
m
into the Web model
4.
Rep
r
e
s
entin
g
these services a
s
We
b re
sou
r
ces
Esse
ntially, the
Web
of T
h
ing
s
p
r
o
c
e
s
s
can
be
achi
eved in t
w
o
d
i
fferent ways:
the firs
t
method
in
clu
des ena
bling web se
rvice
s
with
an obj
e
c
t or
by depl
oying an
other device to
act
a
s
a gate
w
ay. T
he main
obje
c
tive of this g
a
teway i
s
pro
t
ocol
conve
r
sion from
TCP
/IP protocol
s
to
the proto
c
ol b
e
ing used by a spe
c
ific obj
ect, in
cludi
ng
ZigBee, Bluetooth, etc. Gateway metho
d
s
are
prefe
r
red
as it i
s
n
o
t li
kely to atta
ch
a T
C
P/IP s
t
ack
within objec
ts
,
s
u
c
h
as
barc
odes and
RFID tag
s
[1
9]. A new st
udy [20] on the issue
s
in
the Web of
things di
scu
s
ses the
glo
bal
detectio
n
of
obje
c
ts; Web
se
rvice
s
e
n
ablers in
obj
ects, time
synchroni
zat
i
o
n
s,
int
e
ra
ct
io
n
throug
h the web and la
ngu
age sta
nda
rdi
z
ation.
5.
Sensor Clou
d Applicatio
n
There are m
any applications
that use
the concept
of cl
oud se
nso
r
s. Th
e four main
c
a
tegories
inc
l
ude the following [11]:
1)
Health
Ca
re:
A clou
d of virtual sen
s
ors
can
be
used i
n
the h
ealth
care
se
cto
r
. In som
e
n
e
w
hospitals, ph
ysical a
nd vi
rtual sen
s
or
netwo
rks a
r
e
comm
only u
s
ed to m
onit
o
r patie
nts’
biologi
cal info
rmation, to switch d
r
u
g
s a
nd to
track a
nd monito
r p
a
tients an
d d
o
ctors
within
or outsi
de a h
o
spital.
2)
Tran
sp
ortatio
n
Mo
nitorin
g
:
A clo
ud
of virtual
se
nsors
can
be
use
d
al
so
in
tran
sp
ort
monitori
ng
system
s by u
s
i
ng ba
si
c
a
d
m
inist
r
at
ion s
y
s
t
e
ms su
ch
as
t
r
af
f
i
c con
t
rol,
cel
e
st
ial
navigation, car plate nu
mb
er ded
uctio
n
, emergen
cy al
arm
s
, etc.
3)
Military pu
rpo
s
e
s
: A cl
oud
of virtual
sen
s
ors
ca
n b
e
u
s
ed
in m
any
military appli
c
ations such
as follo
win
g
up frie
ndly fo
rce
s
m
o
veme
nt, acti
on
su
rveillance, exp
l
oration
of en
emy forces,
determi
nation
of ene
my p
o
inting,
war
asse
ssm
ent and nu
clea
r effects,
a
n
tici
pating and
asse
ssi
ng bio
l
ogical and
ch
emical atta
cks, etc.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Applicatio
ns
and Desi
gn for a Clo
ud of Virtual Senso
r
s
(Am
m
a
r Ja
m
eel Hussein
)
233
4)
Weath
e
r Pre
d
iction: The
potential app
lication
s
are
very useful here to pre
d
ict weath
e
r
con
d
ition
s
a
nd di
sa
sters su
ch
a
s
tsunami
s
a
nd
earthq
u
a
k
e
s
, volca
noe
s i
n
ad
dition t
o
activity survei
llance and ex
pecte
d effect
s, etc.
6.
Sensor Net
w
ork Security
Senso
r
net
works u
s
u
a
lly have seve
ral re
stri
ction
s
simil
a
r to
other n
e
two
r
k types.
Therefore, it
is not l
ogi
cal
to implem
en
t a co
nv
entio
nal
security policy su
ch a
s
the
t
r
aditio
nal
se
curity ste
p
s
[21] co
nse
quently, to build a secu
rit
y
operatio
nal
platform for the Internet
of
things; we ne
ed first to un
derstand th
e nature
of
these restri
ction
s
on the form
of the netwo
rk.
Some se
nsor network rest
riction
s
are b
r
i
e
fly describe
d
belo
w
.
6.1 Limited
Res
ources
Secu
rity mechani
sm proce
dure
s
ne
ed a
spe
c
ific
volu
me of resou
r
ce
s to be ava
ilable at
least to
impl
ement thi
s
mech
ani
sm,
inclu
d
ing
pro
c
e
ssi
ng
unit
s
to
ha
ndle
co
de, m
e
m
o
ry
resou
r
ces a
n
d
power in
se
nso
r
devi
c
e
s
to carry out
tasks i
n
a timely manne
r. It is axiomati
c that
these resou
r
ces are very scarce in
the
context of sen
s
or n
e
two
r
ks.
The two mai
n
rest
rictio
ns
are
the power an
d memory ne
eded [22].
6.2 Unreliable
Communicati
on
Implementati
on of
se
curit
y
mech
ani
sm
pro
c
e
dures
hinge
s o
n
th
e implem
enta
t
ion of a
set of
protocols [22], whi
c
h ultimately
hinges on
the
reliability of
the
comm
uni
cation line
within
the netwo
rk.
This
can b
r
ea
k do
wn the secu
rity mech
anism in diffe
rent way
s
.
Unp
r
edi
ctabl
e Comm
uni
cation links
Secu
rity network pa
ckets
may be d
a
m
aged, d
ue to
link e
r
rors p
a
c
kets d
r
o
ppe
d in hig
h
data traffic co
nge
sted withi
n
the interio
r
of the network.
Interference
Wirel
e
ss se
n
s
or
net
wo
rks use
a spa
c
e
to
bro
a
d
c
a
s
t
and
be
cau
s
e
of the
nature of lin
k
competition, interference, co
llisions and crashes m
a
y occu
r in the
wirel
e
ss packets.
Laten
cy
Becau
s
e
of the load i
n
da
ta traffic and
the pro
c
e
s
s time nee
ded,
delays m
a
y occur in
the sen
s
o
r
ne
twork. This
wi
ll directly imp
a
ct
the se
cu
ri
ty mechani
sm in real-tim
e
application
s
.
6.3 Una
tte
nded
Opera
t
ions
Wirel
e
ss sen
s
or n
e
two
r
ks
are
de
sign
ed
to ope
rate
in
natural
condit
i
ons [22], So
metimes
these n
a
tural
conditio
n
s m
a
y be beyond
our control,
i
n
clu
d
ing n
a
tu
ral disaste
r
s, animal attacks,
storm
s
, etc. T
herefo
r
e, phy
sical attacks
can o
c
cur in
a sen
s
o
r
net
work.
7.
Sensor Mod
e
l and Stand
a
rdiza
t
ion
In the presen
t day, there are many efforts to
characte
rize
sen
s
o
r
d
a
ta as stan
da
rd data
entities. Thi
s
help
s
to
bui
ld a b
a
sed
structu
r
e m
o
d
e
l for
se
nsor system
s. T
hese n
e
w
d
a
ta
rep
r
e
s
entatio
ns attempt to
prod
uce a st
anda
rdi
z
ed
model for
se
nso
r
net
works.Thi
s
model
can
sup
port dive
rse sen
s
or a
p
p
licatio
ns to a
l
te
r data effortlessly bet
we
en se
nsor net
works.
7.1
Sensor
Web Enablement (SWE)
This first mod
e
l was d
e
velo
ped for this a
s
pe
ct, namel
y Sensor We
b Enableme
n
t
(SWE)
stand
ard
s
fo
unde
d by the Op
en G
eospatial
Co
nso
r
tium (O
GC) organi
zation [23], who
formulate
d
a
set of sta
n
dard
s
/mo
del
and
schem
a to gathe
r so a
s
to
serve ge
og
ra
phic
interop
e
rability. Sensor
we
b enabl
emen
t standa
rd
s
d
e
liver e
s
senti
a
l stru
cture e
n
co
ding
s that
permit a rea
l
-time co
mbi
nation of various
se
n
s
o
r
s. Engineers,
develope
rs and ap
plication
desi
gne
rs ca
n u
s
e the
s
e
standards
to
create thei
r p
r
o
duct
platform
s a
nd a
ppli
c
a
t
ions. To
en
a
b
le
the web in th
ese d
e
vice
s, Open G
e
o
s
p
a
tial Con
s
o
r
tium memb
ers work with m
any se
rvice
s
and
encodin
g
s. S
W
E en
co
din
g
incl
ude
s S
ensor
M
odel
Lang
uag
e (Senso
r
ML
),
Observation
s
&
Measurement
s (O&M
), Tra
n
sd
ucer Mod
e
l Langu
age (TML) an
d SWE se
rvice
s
whi
c
h incl
ude
the
Senso
r
Ob
se
rvations Se
rvice (SOS
), Web
Notifi
cat
i
on Services
(WNS), Sen
s
or Alert Servi
c
e
(SAS), and Sensor Planning Service (SP
S
).
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 229 –
240
234
7.2 SensorML
Senso
r
Mod
e
ling
Lan
gua
ge
(Sen
so
rM
L) [2
4] is a
data
mod
e
l
lang
uag
e
si
milar to
Extensible M
a
rkup Lan
gu
age (XML
).
SensorM
L
atte
mpts to
offer
a me
cha
n
ism
to de
scrib
e
t
h
e
data of sensor sy
stem
s
and their
com
m
unicator podiums. Every
single
sensor will be m
o
deled
as a
fun
c
tion
al ope
rato
r t
hat is
an e
ssential po
rtion
of the
syste
m
. The
s
e e
s
sential
ope
rat
o
rs
cover inp
u
t
and
output
perfo
rman
ce.
The
mod
e
l
metad
a
ta d
e
livers info
rmation
reg
a
rding
measured p
henom
eno
n, calib
ration
informatio
n
,
location i
n
formatio
n, time stamp
for
measurement
s, and the pu
r
pose of the measure
m
ent.
7.3
Sensor Ob
s
e
rv
ation Serv
ice (SOS)
This
web
se
rvice stan
da
rd
has b
een a
p
p
roved
by the Open G
e
o
s
p
a
tial Con
s
o
r
ti
um [23]
and d
e
scri
be
s a
web
se
rvice ed
ge to
enabl
e dete
c
tion a
nd the
retrieval
of data in
real
-time
appli
c
ation
s
. It is enco
ded i
n
Senso
r
ML
and mea
s
u
r
e
s
value
s
with
O&M encodin
g
.
8.
R
e
lated Work
Javier Mi
ran
d
a
, et al
[12],
prop
osed
a
smar
t archite
c
ture that is ba
sed on
sma
r
t-pho
ne
s
as a way to intera
ct with
peopl
e wh
o are involved i
n
Internet of Thing
s
appli
c
ations. Th
e n
e
w
things i
n
thi
s
para
d
igm
are
the con
s
ide
r
ation
of inte
racting
and
th
e ada
ptively betwe
en p
e
o
p
les
and
sm
art thi
ngs in
every
day live
by
context of inte
rnet of thi
n
g
s
,
This is an
im
portant
ide
a
t
hat
extends the u
s
e of Internet
of Things a
p
p
licatio
n
s
an
d make
s them
sma
r
ter in pe
ople’
s everyd
ay
life activities. More
over, they discu
ss
the so
cia
lly related issu
es of the impa
ct on pe
ople
to
accomm
odat
e this transf
o
rmatio
n, i.e., from r
eal
life to sm
art life. Fina
lly, they design
middle
w
a
r
e a
r
chite
c
tu
re th
at depen
ds
o
n
this di
scussion a
nd
con
s
ide
r
s Pe
opl
e as a Se
rvi
c
e
(PeaaS
) [13]
and So
cial
Devices.Thi
s
laye
r
ha
s many co
m
pone
nts, in
cl
uding
an a
c
tio
n
repo
sito
ry, application re
posito
r
y, a d
e
vice
regi
stry
and an
appl
ication m
ana
ger. Thi
s
mo
del
gives the
user the ability to build
a
social profile on their own devi
ces and
share this profile with
the middl
eware l
a
yer, t
here
b
y ena
b
ling the a
d
aptive re
acti
on bet
wee
n
things. So
me
wea
k
n
e
sse
s
in this proj
e
c
t inclu
de di
scussin
g
issues o
u
t of the scop
e of the technol
ogy
frame
w
ork an
d assumin
g
e
nd-u
s
e
r
interf
eren
ce a
s
a p
a
rt of this mo
del.
Another
stud
y done by Sa
njay Madri
a
e
t
al [
14] propo
sed a
ne
w archite
c
ture fo
r
building
a virtual se
n
s
or
on top of
the physi
cal
one. T
hey d
i
scuss ma
ny comp
one
nts of this desi
gn.
These a
r
chitectures
co
nta
i
n an inte
rme
d
iate layer
b
e
twee
n a
sen
s
or’
s
d
e
vice i
n
the re
al wo
rld
and
co
nsume
r
s.Th
e d
e
si
g
ned
archite
c
t
u
re
in
clude
s three
laye
rs:
a sen
s
o
r
-cen
tric l
a
yer to d
eal
with physi
cal
sen
s
o
r
s; a
middle
w
a
r
e l
a
yer, interm
e
d
iate layers;
and a
client
-centri
c laye
r
tha
t
handl
es the
appli
c
ation
s
. In this de
sig
n
, it is
not clearly shown
how the
s
e la
yers
can b
u
il
d a
stand
ard
virt
ual
sen
s
o
r
te
mplate o
n
to
p of t
he
phy
sical on
e to
handl
e different sen
s
or types
comin
g
from
different vend
ors a
nd wo
rk using
diverse technol
ogy.While Hoon
-Ki Lee et al [15]
prop
osed a
new p
a
ra
dig
m
that enabl
e the con
c
e
p
t
of the Social Web of T
h
ing
s
(SoT
), the
para
d
igm
wa
s ba
sed
on
machi
ne-to
-machi
ne tal
k
ing in in
spire the We
b of Thing
s
. They
impleme
n
t a so
cial sen
s
o
r
netwo
rk that
enable
s
in
fo
rmation a
s
so
ciation
s
in th
e context of
web
and so
cial
n
e
tworks.The
main com
p
o
nent
of
this
model
incl
ud
es th
e
se
rvice do
main,
so
cial
relation
shi
p
s
and u
s
er inf
o
rmation. Th
e
main obje
c
tive benefits o
f
this model
were finding
a
relation
shi
p
b
e
twee
n u
s
e
r
s, things
and
so
cial
n
e
two
r
ks and
providing a
dyna
mic
servi
c
e t
hat
has the abilit
y to be recon
f
igured a
c
cording to use
r
need
s and a
c
tivities in the so
cial network
worl
d. On the other han
d, no security or priva
c
y issues were discu
s
sed as a
con
s
e
que
nce
of
this wi
de
sha
r
ing of info
rm
ation rel
a
ted
to sen
s
itive
da
ta
, s
u
c
h
as
s
e
ns
or
n
e
t
w
o
r
k
s
.
Mor
e
o
v
er
,
Jih-Wei
et al [25] introd
uce
d
a ne
w pa
ra
digm called
“The Virtual E
n
vironm
ent of
Thing
s
(VEo
T).”
This p
a
ra
dig
m
aims to a
s
similate
sma
r
t things in the
real worl
d wi
th a virtual en
vironme
n
t in the
context of the Web of Thi
ngs. In this p
r
oje
c
t,
they confirm the eff
e
ctiv
ene
ss of the model b
y
desi
gning
a
sma
r
t gate
w
ay and a
co
re resource
excha
nge.
T
h
is co
re
in
cl
uded a
reso
urce
manag
er,
an
event ma
nag
er
and
a
sma
r
t obj
ect m
a
n
ager.
The
p
r
o
posed
model
sho
w
s h
o
w the
obje
c
ts/thing
s
interactin
g with each other u
s
e
re
al
-time appli
c
a
t
ions in the Web of Thin
gs
environ
ment.
This p
r
oje
c
t
lacks
stand
ardi
zation
i
n
the pro
p
o
s
ed
desig
n an
d
they focu
sed
on
softwa
r
e te
ch
nologi
es in
ste
ad of creating
app
lication
s
to serve the
Web of Thi
n
g
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Applicatio
ns
and Desi
gn for a Clo
ud of Virtual Senso
r
s
(Am
m
a
r Ja
m
eel Hussein
)
235
9. Proposed
Design
Our p
r
o
p
o
s
ed
desig
n for a
sen
s
o
r
cl
oud
inclu
d
e
s
thre
e main laye
rs, each of
whi
c
h ha
s a
spe
c
ific role a
nd se
rves the
up down layer. The
s
e lay
e
rs
can b
e
cl
assified thu
s
:
1)
Layer_
1
: This layer contra
cts with the p
r
epa
ra
tio
n
of the servi
c
e te
mplate co
nst
r
uction an
d
provisi
on
sta
ndard definiti
on in a
dditio
n
to
defining
the physi
cal
sen
s
o
r
s
as XML, web
servi
c
es or
HTTP enabled.
This
will
allow the
servic
e provider to access
these sensors and
develop th
em
on
seve
ral pl
atforms with
o
u
t co
ncer
n
fo
r the i
n
tegration of a
varia
n
ce
num
ber
of application
s
platform
s.
2)
Layer_
2
: Thi
s
layer commu
nicate
s
with
many
g
r
ou
pin
g
s of
phy
sical
se
nsors and
attempts
to
place them i
n
to one
cla
s
sified g
r
ou
p. In
addition,
thi
s
l
a
yer i
s
the m
o
re im
po
rtant
layer in
ou
r
prop
osed
de
sign. T
he l
a
yer all
o
ws
se
n
s
or servi
c
e p
r
ovide
r
s and
other IT
re
so
urces to b
e
manag
ed
re
motely witho
u
t co
ncern
fo
r the
location
of the
re
al
sensor
site
s.
This layer ca
n
be con
s
ide
r
e
d
the mo
st i
m
porta
nt laye
r in o
u
r
de
sig
n
, whi
c
h in
cl
ude
s serve
r
s,
storage
and
netwo
rks d
e
vice
s. In this l
a
yer we u
s
e
open
so
urce serve
r
s
an
d appli
c
ation
s
and
a
pply
the
con
c
e
p
t of virtual serve
r
s to redu
ce the t
o
tal co
st of owne
rship.
3)
Layer_
3
: Thi
s
layer corre
s
po
nd
s with con
s
um
ers/e
nd users and
their appli
c
a
b
le req
u
e
s
ts.
Nume
ro
us co
nsum
ers
nee
d to
conta
c
t t
he valu
ed
dat
a sen
s
or fro
m
many
kin
d
s
of
ope
rating
system platfo
rms u
s
in
g different types of
application.
From the ab
o
v
e, we can say that we have
many types of actor
(se
n
so
r owner, sensor-
clou
d admini
s
trato
r
and e
nd users) a
n
d
many com
pone
nts in th
e clou
d se
nsor (client, e-p
o
rtal
serve
r
,
p
r
ovision serve
r
an
d
re
so
urce
s
manag
er server, virtual
se
nso
r
g
r
o
up, monitori
ng se
rver
and physi
cal
sen
s
o
r
s). Thi
s
pro
p
o
s
e
s
a schema
whi
c
h provide
s
the transparen
cy and scal
abil
i
ty
for end
users to conn
ect
physi
cal se
nso
r
s. Fi
gure
3 sh
ows a
c
tors a
nd
co
mpone
nts in
our
prop
osed de
sign.
Figure 3. Actors a
nd comp
onent
s in the prop
osed de
sign
1
2
3
V
i
r
t
ua
l
S
e
ns
or
s
P
h
y
s
i
c
a
l
S
e
ns
or
s
1
2
3
Ph
y
s
i
c
a
l
S
e
n
s
o
r
s
De
r
i
v
e
d
Se
n
s
o
r
s
A
mma
r
Vi
r
t
u
a
l
Gr
o
u
p
1
V
i
r
t
u
a
l
Gr
o
u
p
2
Re
so
u
r
c
e
Ma
n
a
ge
m
e
n
t
We
b
Bro
w
s
e
r
We
b
Bro
w
s
e
r
We
b
Bro
w
s
e
r
E
t
c
...
U
s
er
I
n
t
e
r
f
ace
OS
1
OS
2
OS
3
E
t
c
...
3
U
3
U
3
U
2
U
2
U
3
U
3
U
M
o
n
i
t
o
rin
g
se
rv
e
r
P
o
rt
a
l
s
e
rv
e
r
2
U
3 La
ye
r
S
w
i
t
c
h
P
r
o
v
is
io
n
i
n
g
s
e
rv
er
M
i
ddl
ew
ar
e
L
a
ye
r
VS
s
e
r
v
e
r
VS
s
e
r
v
e
r
S
t
o
r
ag
e D
e
v
i
ce
R
e
s
o
u
r
ce
M
a
n
a
gem
e
nt
(
D
B
)
3
U
A
u
th
e
n
tic
at
io
n
s
e
r
v
e
r
Cl
o
u
d
Cl
o
u
d
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 229 –
240
236
10.
Issues in the
Sensor Clo
ud Design
There are m
any issue
s
re
gardi
ng the
d
e
sig
n
of se
nsor cl
oud
s
. M
o
reove
r
, there are
no
mode
rn
con
c
epts for
app
lication
s
a
n
d
impleme
n
tation from
pre
v
ious p
r
op
osed structu
r
e
s
.
Therefore,
to
co
me out,
t
here a
r
e ma
ny issue
s
tha
t
should be consi
dered wh
ile working
with
sen
s
o
r
clo
ud
desi
gn, whi
c
h
includ
es b
u
t is not limited to cycle, a
s
sh
own in Fig
u
re
4:
Figure 4. De
sign issue
s
cy
cle
Senso
r
net
works Se
curity
usually hav
e severa
l re
stri
ctions
sim
ilar to other
netwo
rk
types. The
r
ef
ore, it i
s
n
o
t logi
cal to i
m
pleme
n
t a
conve
n
tional
se
cu
rity poli
c
y such a
s
t
h
e
traditional
se
curity ste
p
s,
con
s
e
que
ntly, to build
a secu
rity opera
t
ional platform for the se
nso
r
clou
d, we n
e
ed first to un
derstand th
e
nature
of
the
s
e rest
riction
s
on the fo
rm
of the netwo
rk.
Some sen
s
o
r
network
re
stri
ctions are
,
Unre
li
able Comm
uni
c
ati
on,
Limited Re
sou
r
ces a
n
d
Unatten
ded Operation
s
.
11.
Pros and Co
ns of th
e Proposed
Desig
n
Followi
ng a
r
e
some Pros.
and Con
s
. Of our propo
se
d desi
gn:
A. Pros
1)
Tran
sp
are
n
cy
: The con
s
um
er doe
s not n
eed to wo
rry
about the det
a
ils.
2)
Scalability: The Sensor
Cl
oud offers ea
se of mana
ge
ment to the end co
nsume
r
.
3)
Reliability: The consum
er
can follow up the st
atus of his own virtual
sensors from
anywhere.
4)
Flexibility: The consum
er
can rapidly start
to use the physi
c
al
sensors by using virtual
s
e
ns
or
s
r
e
mote
ly.
5)
The
con
s
um
er
can
ma
ke
his
gro
up of
sen
s
o
r
s de
p
e
nd in
his n
e
ed by
con
s
uming virtu
a
l
sen
s
o
r
group
s.
6)
The owne
r of the physi
cal sensors ca
n tr
ack the usag
e of the sen
s
ors.
B. Cons
1)
ICT re
sou
r
ce
s nee
d for a sen
s
o
r
-clo
ud infrast
r
u
c
ture
sho
u
ld be we
ll configu
r
ed t
o
serve thi
s
desi
gn pu
rpo
s
e.
2)
Each phy
sica
l sen
s
or n
eed
s template
s for virtual sen
s
ors to be joi
ned.
3)
Bandwi
d
th a
n
d
conne
ctivity types b
e
twe
en t
he co
nsu
m
er and clo
u
d
-sen
so
r serv
ermay be
a
factor of wea
k
ne
ss.
4)
The possibilit
y of shearing dat
a from
some of the
physical
sensors gives
the possibility
of
loss of pre
c
isi
on data in re
a
l
time.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Applicatio
ns
and Desi
gn for a Clo
ud of Virtual Senso
r
s
(Am
m
a
r Ja
m
eel Hussein
)
237
12.
Lab Tes
t
In our la
b, we use
d
on
e
Wind
ows Server
201
2 an
d three
Red
Hat Linux
se
rvers to
accompli
sh o
u
r propo
se
d desi
gn. We al
so u
s
ed O
r
a
c
le Virtual Box as the virtual
environm
ent to
host all our
servers. Each
virtual machi
ne had
1 CP
U 2.1HZ, Me
mory 2 GB and HD 1
5
GB. Our
test lab sho
w
ed high
perfo
rman
ce a
nd
a good total
co
st of own
e
r
shi
p
an
d effective re
sp
on
se
time
figure 6 sho
w
o
u
r
la
b workb
e
n
c
h. We
a
pplie
d a
stre
ss load
(100,20
0,300,
350,40
0)
req
uest
and ea
ch
user will
run
10
0 threa
d
s
si
multaneo
usly
) to ou
r de
si
gn and
gathe
red the
re
sult
s of
system p
e
rfo
r
mance. Tabl
e
s
1, 2, 3, 4 a
nd 5 sh
o
w
th
e static
re
sult
s obtai
ned
re
spe
c
tively, while
table 6 sh
ow
our sy
stem p
e
rform
a
n
c
e compa
r
ed to o
n
line proje
c
t perfo
rman
ce
[26].
Figure 5. Lab
workbe
nch
Table 1. 100
Thre
ad
s run
100 time
Login Request
100
0.014
15
159
691.66
1.4
110.56
15414
Logout Req
uest
100
0.318
10
100
614.01
0.1
1.54
14
HTTP R
equest
10000
0.068
5
146
91.6
49.4
1188.81
46489
DM
Z
Zo
n
e
Us
e
r
s
fir
e
w
a
ll
Ro
u
t
e
r
ID
S
IP
S
Pro
x
e
y
Mo
d
e
l
UT
M
1
Cont
e
n
t
F
ilt
e
r
1
VP
N
2
QO
S
4
ID
S&
I
P
S
DM
Z
Li
n
u
x
‐
Re
d
ha
t
li
n
u
x
ub
unt
u
MS
Se
r
v
e
r
2
012
Po
r
t
a
l
Ap
p
.
Se
r
v
.
St
o
r
a
g
e
Da
ta
Ba
s
e
Cl
i
n
e
t
Lo
c
a
l
LA
N
SW
Ext
e
r
n
a
l
Us
e
r
s
LAN
Us
e
r
s
Ho
s
t
la
p.
li
n
u
x
ub
u
n
t
u
AM
M
A
R
2
016
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 229 –
240
238
Table 2. 200
Thre
ad
s run
100 time
Login Request
200
0.235
9
3203
570.35
3.3
358.58
25323
Logout Req
uest
200
0.033
5
5352
935.55
0.8
0.99
33
HTTP
R
equest
20000
0.273
5
3030
222.53
39.5
2300.93
37389
Table 3. 300
Thre
ad
s run
100 time
Login
Request
300 1.009
7
7186
3.96
0.3
80.81
15313
Logout Req
uest
300
0.106
1
1503
609.18
1
1.6
13
HTTP R
equest
30000
0.193
6
517
370.66
51.6
1387.78
37389
Table 4. 350
Thre
ad
s run
100 time
Login
Request
350 1.789
5
311 357.7
7.7
513.55
35533.5
Logout Req
uest
350
1.755
51
55
339
7.3
8.15
35
HTTP R
equest
35000
1.393
5
355
333
55.5
3573.39
57589
Table 5. 400
Thre
ad
s run
100 time
Login Request
450
1.731
13
7778
1135.83
11.7
388.73
35535
Logout Req
uest
450
1.177
31
3385
788.33
11.7
11.88
1135
HTTP R
equest
45000
1.513
5
3513
511.55
53.5
3538.7
57588
Table 6. System perfo
rma
n
ce
comp
ar
e
d
to online project pe
rform
ance
Model
On line Project T
e
st
Our s
y
s
t
e
m
Term
Request
Ave.(ms)
Throug.
Request
Ave.(ms)
Throug
Login
30,000
5,100
30.6
400
1.731
11.7
Logout
30,000
22
31.5
400
1.177
11.7
HTTP
N/A
N/A
N/A
40000
1.513
53.5
13. Conclu
sion
In this pape
r,
we pre
s
e
n
t a sen
s
o
r
clo
ud st
ructu
r
e
whi
c
h en
able
s
the virtualization of
physi
cal
se
nsors a
c
cording
to o
n
-d
eman
d con
s
um
ers’
re
quirement
s
without
wo
rrying
about
the
details of ho
w to impleme
n
t virtual sen
s
ors.
Ou
r de
sign p
r
ovide
s
transparen
cy and flexibility to
end u
s
e
r
s to
host th
eir o
w
n
sen
s
o
r
s. More
over, o
u
r
re
sult
s
sho
w
hig
h
sy
ste
m
perfo
rma
n
c
e
whe
n
applyin
g
the stress l
oad te
st and
the lowe
st
total co
st of ownership. O
n
the othe
r ha
n
d
,
usin
g a
co
m
m
unication li
ne am
ong
th
e cl
oud
se
nsor n
ode
s i
s
a formi
dable
task, si
nce
the
s
e
ns
or
c
l
ou
d h
a
s
man
y
is
su
es
, s
u
c
h
a
s
se
cu
r
i
ty a
nd integrity. Addre
s
sing t
hese issue
s
and
attempting t
o
devel
op t
hem
along
with
wo
rkin
g
in d
e
velopi
ng a
ne
w
desi
gn
of virtual
environ
ment
will
contri
but
e to in
crea
si
ng the
ap
p
lications ba
se
d
on thi
s
type
of sen
s
or cl
oud
architectu
re.
Our p
r
op
ose
d
desi
gn is
a big
step t
o
wa
rd
s the
rapid p
r
o
g
re
ss of the n
e
w
techn
o
logy te
rm
“Intern
e
t
of Thing
s
”
which
will
be
i
m
pleme
n
ted i
n
the futu
re.
F
uture
work
may
focu
s on dev
elopin
g
heterogen
eou
s di
stribute
d
sy
st
em desi
g
n
s
and develo
p
i
ng proto
c
ol
s to
deal with
ph
ysical se
nsors
in stand
ard
way
s
,
se
curity issue
s
f
o
r
comm
unication line
s
a
n
d
allowin
g
p
e
o
p
le to
contri
b
u
te to man
a
g
e
ment d
e
si
gn
and
allowi
ng
them to b
e
p
a
rt of the
se
n
s
or
clou
d model
by using thei
r own sen
s
ors.
Ackn
o
w
l
e
dg
ments
The a
u
thors
A. J., A. T. and A. R. than
k
the Iraqi Bo
ard
of Supre
m
e Audit Ira
q
/Baghdad
and Bagh
dad
University, which
cont
ri
but
ed effectively to give us this opportu
nity for publi
c
atio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.