TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.6, Jun
e
201
4, pp. 4157 ~ 4
1
6
5
DOI: 10.115
9
1
/telkomni
ka.
v
12i6.505
2
4157
Re
cei
v
ed
No
vem
ber 4, 20
13; Re
vised Janua
ry 2
7
, 20
14; Accepted
February 12,
2014
Fuel Cell – Ultra Capacitor Hybrid System for Grid
Connected Applications
P.Vija
y
a
pri
y
a*
1
, D. P. Kothari
2
, M. Kow
s
al
y
a
3
1,3
Vellore Institute of T
e
chnol
og
y, Un
iv
ersit
y
,
T
h
iruvalam R
oad, Vel
l
or
e
2
MVSR Colle
g
e
of Engin
eer
in
g, H
y
dera
b
a
d
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: pvija
ya
pri
y
a
@
vit.ac.in
1
, dp
k071
0@
ya
ho
o.com
2
A
b
st
r
a
ct
F
uel cells ar
e consi
dere
d
as one of the mo
st
promis
ing d
e
vices for stan
dal
one/
grid co
nnecte
d
d
i
stri
bu
te
d
g
ene
ra
ti
on
s du
e to
i
t
s cle
a
n
l
in
ess, m
o
d
u
l
a
rity
and
hi
gh
er p
o
tentia
l ca
pa
bil
i
ty. In the
pres
en
t
ener
gy scen
a
ri
o, F
uel cel
l
s co
mb
in
ed w
i
th other ren
e
w
abl
e
techno
lo
gies ar
e gai
ni
ng attra
c
tion. T
h
is pa
p
e
r
focuses on th
e combi
natio
n
of Fuel Cell
(FC) and
Ultra
-Cap
acitor (U
C) systems fo
r sustaine
d po
w
e
r
gen
eratio
n. Mode
l of Proto
n
Excha
n
g
e
Membra
ne (P
EM) F
uel Ce
l
l
hav
e be
en
deve
l
op
ed
in
th
e
MAT
L
AB/Simul
i
nk Env
i
ron
m
e
n
t. T
o
supp
ly
the re
quir
e
d
hydro
g
e
n
moles, El
ectroly
z
e
r
mod
e
l w
a
s
deve
l
op
ed. Hy
drog
en stor
ag
e tank w
a
s
mode
led s
u
ch
t
hat the
gen
era
t
ed
mol
e
s of
hydro
gen
fro
m
the
electro
l
y
z
e
r
ar
e stored i
n
the stor
age ta
nk
and the fue
l
cell rec
e
ives t
he req
u
ire
d
a
m
o
unt of hydr
oge
n
mo
les fro
m
th
e
storage t
ank r
a
ther tha
n
the
electr
o
l
y
z
e
r
. T
he co
mbin
ed s
ystem w
a
s syn
chron
i
z
e
d t
o
th
e
grid
and w
h
en
the lo
ad
de
ma
nd exc
e
e
d
s th
e cap
a
city of t
he fue
l
cel
l
sys
tem, the
n
the
add
ition
a
l
pow
er i
s
supp
lie
d by the
grid thus ens
u
r
ing co
ntinu
i
ty of supply to the
load.
Ke
y
w
ords
: fue
l
cell, ultra ca
p
a
citor, electro
l
y
z
e
r
, hy
drog
en
storage tank, g
r
id con
necte
d
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
In orde
r to move towa
rd
s a su
staina
ble ex
isten
c
e
in our criti
c
ally energy d
epen
dent
so
ciety, there
is a continui
ng nee
d to a
dopt
environ
mentally su
st
ainabl
e meth
ods fo
r en
ergy
prod
uctio
n
,
storag
e, a
nd
conversion.
Th
e u
s
e
of
fuel
cell
s
in
both
stationa
ry
a
n
d
mo
bile po
wer
appli
c
ation
s
can offer si
gnif
i
cant adva
n
ta
ges fo
r
the sustain
able
co
nversi
on of e
nergy. Benefi
t
s
arisi
ng from t
he use of fuel cells in
clu
d
e
effi
cien
cy and relia
bility,
as well as e
c
onomy, uniqu
e
operating
cha
r
acte
ri
stics, plannin
g
flexibility and fu
ture developm
ent potential.
By integratin
g the
fuel cell
s in
serie
s
with
ren
e
wa
ble en
erg
y
st
orag
e an
d pro
d
u
c
tion
method
s, su
stainable e
n
e
r
gy
requi
rem
ents
may be reali
z
ed.
There are m
a
ny challe
nge
s and te
chni
cal hurdl
es
in
reali
z
ing thi
s
, but howeve
r
the fuel
cell
com
m
uni
ty must fa
ce
this in
orde
r t
o
be
wi
dely
use
d
in
the
d
i
stribute
d
g
e
n
e
ration
ma
rket.
The first ch
a
llenge i
s
tha
t
fuel cell
s could
cont
ri
bu
te to the est
ablishment o
f
a distrib
u
te
d
gene
ration m
a
rket if they becom
e mo
re
eco
nomi
c
a
lly
comp
etitive with curre
n
t technolo
g
ies. T
h
e
key challe
ng
e is to
pro
d
u
ce
an id
eal
hydrog
en
-fu
e
lled e
ngine
(a fuel
cell
) that can
co
st-
effectively produ
ce
po
wer in the
hyd
r
oca
r
bo
n-
ba
se
d e
c
on
omy
of today. Th
is i
s
the
mo
st
signifi
cant te
chni
cal
chall
enge
with
regard to
i
n
tegratin
g fuel
cell
sy
stem
s
with avail
able
infrast
r
u
c
ture,
re
du
cing
their ca
pital
co
st
throug
h
volume
ma
nufactu
ring,
and
achievin
g
wide
sp
rea
d
u
s
e in v
a
rio
u
s
se
ct
or
s.
Different mo
dels of PEM
Fuel Cell (Polymer Ele
c
trolyte Mem
b
ran
e
Fuel
Cell) i
s
available in li
terature [1-8]
that are suit
able for ele
c
t
r
ic po
we
r ge
neratio
n purp
o
se
s in whi
c
h
some
a
r
e ve
ry simplified
el
ectri
c
al
mod
e
l
that c
an be use
d
in
de
sig
n
ing a control
syste
m
[2-[4]
.
In [5], Caishe
ng Wa
ng et a
l
develope
d d
y
namic mo
de
l for PEM fuel cells
whi
c
h i
n
clu
d
e
s
dou
b
l
e
layer ch
argi
n
g
effect
an
d thermo
dynam
ic cha
r
a
c
teri
stics that coul
d be use
d
in control relat
ed
studie
s
. Kodjo Agbo
sso
u
et al [6]
discu
s
ses a
b
out the activ
a
tion loss, o
h
mic lo
ss a
n
d
con
c
e
n
tration
loss
with the
help of polarization
cu
rve
s
. Ali et al [7
] propo
sed a
dynamic m
o
d
e
l
that modul
ari
z
e
s
the fun
d
a
mental th
ermal-p
h
ysi
c
al
behavio
r of
a fuel cell a
nd devel
ope
d a
modula
r
blo
c
k that exhibit
s
mo
st of the
fuel ce
ll p
r
o
pertie
s
an
d i
n
co
rpo
r
ate
s
essential
phy
sical
and ele
c
tro
c
h
e
mical p
r
o
c
e
s
ses that ha
p
pen
s alon
g
its ope
ration. Another dyn
a
m
ic mod
e
l that is
suitabl
e
for d
e
termini
ng co
ntrol strategy
wa
s
d
e
ve
lop
ed by G
o
rg
u
n
[8] that will
ensure effici
ent
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4157 – 4
165
4158
and relia
ble operation of
the
ele
c
troly
z
er.
Also
the model ca
n
b
e
integ
r
ated with
rene
wa
b
l
e
energy syste
m
model
s to
desi
gn, analy
z
e a
nd opt
imi
z
e
su
stainabl
e ene
rgy sy
stems. Alejan
dro
et al [9] devel
oped
both Si
mulink and
prototype mod
e
l
of PEM fuel
cell o
r
iente
d
t
o
wa
rd
s
control
and
ope
ratio
n
optimi
z
atio
n an
d can
be
used a
s
to
ol
for d
e
si
gn of
Fuel
Cell
ba
sed
sy
stem.
In
[10], A. Kirubaka
r
an
et al
discu
s
ses
ab
out reg
u
la
tio
n
of the fuel
cell terminal
voltages
with
a
simple
DC/DC bo
ost
conv
erter i
n
terfa
c
ed with
PEM
fuel cell
syst
em. It was
o
b
se
rved that
the
desi
gn
of si
mple DC/
DC
boo
st conve
r
ter gives
bet
ter pe
rforma
nce
for va
ryi
ng lo
ads the
r
eby
increa
sing it
s life sp
an. El
Sharkh
et
al [11] analy
z
ed
how
active
a
nd rea
c
tive p
o
we
r o
u
tput o
f
a
stand
alon
e P
E
M Fuel
cell
power plant
i
s
cont
rolle
d a
nd ve
rified th
e result by u
s
ing the
mo
del
to
predi
ct the
re
spo
n
se of po
wer plant
und
er two di
ffere
nt load
con
d
itions. Pe
r Un
it mathematical
model
usi
ng
dq0
refe
ren
c
e fram
e the
o
r
y was devel
oped
by Sh
ai
lendra et
al [
12] to d
e
fine
the
power flo
w
li
mits that can
be s
uppli
ed b
y
the fuel cell
power pl
ant.
Soedibyo [13]
utilized
Gen
e
t
ic
Algorithm me
thod to determine the opti
m
al cap
a
ci
tie
s
of hydrog
e
n
, wind turbi
nes a
nd micro-
hydro unit a
c
cording to th
e minimum
cost obje
c
ti
ve function
s. M.Uzuno
glu et al [14] model
ed a
wind/F
C
/UC
hybrid p
o
wer system fo
r
a grid
-i
nd
epe
ndent u
s
e
r
with ap
pro
p
ri
ate po
wer fl
ow
controlle
rs.
T
he p
r
op
osed
system
can
b
e
u
s
ed
fo
r no
n-inte
rconn
ected remote
areas o
r
i
s
olate
d
cog
ene
ration
power sy
ste
m
s with n
on-i
deal wi
nd
spe
ed ch
ara
c
te
ri
stics. The ad
ditional hydro
gen
moles g
ene
rated are
stored in hydrog
en for futu
re
use an
d the model do
es
not descri
be
how
this can be ut
ilized.
2. Rese
arch
Metho
d
In this
pap
er,
a g
r
id
co
nne
cted fu
el
cell/
Ultra
ca
pa
citor m
odel
is d
e
sig
ned
to m
eet the
load re
quirem
ents. The Fu
el cell take
s h
y
droge
n from
the electroly
z
er di
re
ctly until the thresh
old
voltage, whil
e
after that, th
e hydrogen
storage
s
uppli
e
s hyd
r
o
gen
to the Fuel
Cell thus utilizi
ng
the stored hydrog
en for m
eeting the loa
d
requi
rem
e
n
t
s
2.1. Fuel Cell – Ultra Capa
citor Dy
namic Model
For
su
staina
ble existe
nce in the
en
ergy
d
e
ficie
n
t
so
ciety, we sh
ould
ad
opt to
su
staina
ble
method
s of energy p
r
od
uction, conversi
on and
stora
ge.
Fuel cell
s finds a
strong
place in
sust
ainabl
e en
ergy co
nversio
n
that offe
rs gre
a
ter adv
antage
s fo
r
both mo
bile
and
stationa
ry po
wer ap
plian
c
es.
Reliability
,
efficienc
y, fl
exibility and f
u
ture
develo
p
ment p
o
tent
ials
are
som
e
of
the ben
efits of usin
g fue
l
cell
te
chnol
ogy for di
stri
buted g
ene
ra
tion. The ma
in
disa
dvantag
e
is the cost a
nd the availa
bility or ex
traction of hydro
gen. Of the different types of
fuel cell
s avai
lable, PEM fuel cell is p
r
om
ising te
chn
o
lo
gy for distrib
u
t
ed gene
ratio
n
.
The
pola
r
ization
cu
rve fo
r
the PEM fuel
cell
i
s
o
b
tai
ned f
r
om
the
su
m of
the
Nernst’
s
voltage, the
activation
over volta
g
e
,
and
the
ohmic ove
r
voltage. A
s
suming
con
s
tant
temperature and
oxygen concentra
tio
n
, the fuel cell o
u
tput voltage may be expre
s
sed a
s
:
trans
ohmic
act
cell
E
V
(
1
)
Whe
r
e:
)
ln(
fc
act
CI
B
(
2
)
fc
ohmic
I
R
int
(
3
)
fc
nI
trans
me
(
4
)
No
w, the Nernst’s in
stanta
neou
s voltag
e may be expresse
d as:
O
H
O
H
F
RT
E
N
E
O
O
2
2
2
log
2
(
5
)
Whe
r
e:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Fuel Cell –
Ul
tra Cap
a
cito
r
hyb
r
id syste
m
for Grid Co
nne
cted Appli
c
ation
s
(P.Vijaya
pri
y
a
)
4159
)
2
(
1
/
1
2
2
2
2
I
K
qH
s
KH
H
r
H
(
6
)
)
(
1
/
1
2
2
2
2
qO
s
KO
O
O
(
7
)
)
(
1
/
1
2
2
2
2
O
qH
s
O
KH
O
H
O
H
(
8
)
The MAT
L
AB and
Simulin
k ba
sed
Fuel
cell sy
stem m
o
del d
e
velope
d in thi
s
pap
e
r
u
s
ing
the above eq
uation
s
is sho
w
n in Figu
re
1 and the out
put voltage waveform is
sh
own in Fig
u
re
2.
Figure 1. Simulink Mo
del o
f
the Fuel Cel
l
System
Figure 2. Output Voltage o
f
PEMFC
As se
en from
the grap
h, the fuel cell
system
take
s a few second
s t
o
rea
c
h lo
ad
deman
d
level, hence it has a little p
oor lo
ad follo
wing
cha
r
a
c
t
e
risti
c
. Thi
s
d
e
lay in load f
o
llowin
g
is m
a
inly
cau
s
e
d
by the reformer d
u
e
to gas p
r
ocessing respo
n
se.
Therefore, for grid con
n
e
c
ted ope
ration
a batte
ry or charg
ed ultra
-
cap
a
cito
r ca
n
be used
in conj
un
ction
with the fuel cell sy
stem to
m
eet the load requi
rem
e
n
t
during tra
n
si
ent perio
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4157 – 4
165
4160
UC
provides lowest cost
per
F
a
rad, extremely
high
cycling capability, and are
environ
menta
lly safe. Th
e
cap
a
cita
nce
of UCs may v
a
ry from
a fe
w Fa
ra
ds to
several th
ou
sa
nd
Fara
ds
per cell. Becau
s
e
of the above
mentione
d un
ique
cha
r
a
c
te
ristics,
UCs a
r
e utilized fo
r a
wide
ran
ge o
f
applications. The UC mo
del that
ha
s
been im
plem
ented in MAT
L
AB/Simulink is
sho
w
n in Fig
u
re 3 an
d its cha
r
a
c
teri
stics is sho
w
n in
Figure 4
Figure 3. UC
Model
Figure 4. UC
Cha
r
a
c
teri
stics
.
On simul
a
tin
g
the combin
ed Fuell Cell
– UC sy
st
em,
shown in Fig
u
re 5, the tra
n
sie
n
t o
f
the output vo
ltage is mu
ch
red
u
ced
wh
en comp
are
d
to
Fuel cell operating alo
ne
thu
s
e
n
ab
ling
this sy
stem to
take
up lo
ad
dynamically. Here t
he
outp
u
t voltage
sh
own i
n
Fig
u
re
6 is th
e o
u
tp
ut
of the boost converte
r co
nn
ected to the combine
d
syst
em.
Figure 5. Co
mbined F
uel
Cell – UC System
Figure 6. Output of the Co
mbined
System with Boost Co
nverter
2.2. Electroly
z
er Model
Electroly
z
ers are
devi
c
e
s
that
pro
d
u
c
e
pure hyd
r
oge
n a
n
d
oxygen to
meet the
requi
rem
ents of different use
r
s. Amo
ng the vari
o
u
s
types of el
ectroly
z
e
r
s,
PEM electrol
yzers
are very
sim
p
le and
com
pact. Besi
de
s they en
su
re high p
u
rity and efficie
n
c
y at high
cu
rre
n
t
den
sity levels. PEM electrolyze
r
s, u
s
e elect
r
omoti
v
e force to
brea
k the b
o
nd between
the
hydrog
en
and
oxygen
in th
e H2O
when
dc volta
g
e
is s
u
pp
lie
d
.
T
h
e
me
mbr
a
n
e
se
p
a
r
a
t
e
s
th
e H
2
from the O2. The ele
c
tro
c
h
e
mical
rea
c
ti
on of water el
ectroly
s
is i
s
g
i
ven by:
)
(
2
/
1
)
(
)
(
2
2
2
g
O
g
H
energy
electrical
O
H
(
9
)
Acco
rdi
ng to
Fara
day’s l
a
w, hydro
gen
prod
uctio
n
ra
te of an ele
c
t
r
olyze
r
cell i
s
dire
ctly
prop
ortio
nal to the electri
c
al curre
n
t
in the equivale
nt
electroly
z
e
r
circuit.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Fuel Cell –
Ul
tra Cap
a
cito
r
hyb
r
id syste
m
for Grid Co
nne
cted Appli
c
ation
s
(P.Vijaya
pri
y
a
)
4161
F
i
n
N
e
c
F
H
2
2
(
1
0
)
The ratio
be
tween the
a
c
tual an
d th
e theoretical
maximum amount of h
y
droge
n
prod
uced i
n
the ele
c
trol
yzer i
s
kn
o
w
n
as Fa
ra
day efficie
n
cy. Assumi
ng
that the
worki
n
g
temperature
of the electrol
yzer is
40
◦
C,
Farad
a
y efficiency is exp
r
e
s
sed by:
2
5
.
75
09
.
0
exp
5
.
96
e
e
F
i
i
(
1
1
)
Acco
rdi
ng to the Equation (10
)
& (11), a simple ele
c
trolyze
r
mod
e
l is develop
ed usin
g
Simulink, whi
c
h is illustrated in Figure 7.
Figure 7. Simulink Mo
del o
f
Electrolyze
r
Figure 8. Electrolyzer O
u
tput
In this mod
e
l, the elect
r
oly
z
er
wo
rks o
n
t
he ope
rating
point 45 A–5
0
V. Therefo
r
e
,
the dc
bus of the
ele
c
trolyzer i
s
fixed at 400V a
nd eight
el
ect
r
olyze
r
unit
s
are u
s
e
d
in serie
s
(4
5 A–4
00
V) to produ
ce
the hydroge
n
.
The output
of the model is sh
own Figu
re 8.
2.3. H
y
drogen Storage
T
a
nk Model
The hydroge
n storage tan
k
model i
s
b
a
se
d on Eq
u
a
tion (12
)
an
d it directly calcul
ates
the tank p
r
e
s
sure u
s
ing th
e ratio of hyd
r
oge
n fl
ow to
the tank.
Th
e
prod
uced hy
drog
en i
s
sto
r
ed
in the tank, whose system
dynam
ics can
be expre
s
se
d as follo
ws:
b
H
b
H
bi
b
V
M
RT
N
z
P
P
2
2
(12)
The
Simulin
k model
of
the hydrog
en sto
r
age mo
d
e
l is depi
cted in F
i
gure
9. Neit
her the
comp
re
ssion
dynamics n
o
r the comp
ression en
erg
y
requirem
e
n
t
s are acco
u
n
ted for in our
cal
c
ulations. All
auxiliary
power
requirements
such as pumps
, valves, fan and com
p
ression
motors we
re i
gnored in the
dynamic m
o
d
e
l.
The
amo
unt of
hydrog
en moles co
nsu
m
ed
by
the
FC sy
stem i
s
propo
rtiona
l to th
e
power d
r
a
w
n
from the F
C
sy
stem. It is evid
e
n
t that the hydrogen
storage
tank p
r
e
s
su
re
decrea
s
e
s
wi
th time as m
o
re a
nd mo
re
hydroge
n ex
tracted from the sto
r
age ta
nk be
ca
use the
load increa
se
s.
The pressure variation
of stor
age hy
drog
en acco
rding to load i
s
illustrate
d in
Figure 10.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4157 – 4
165
4162
Figure 9. Simulink Mo
del o
f
Hydroge
n Storag
e
T
a
nk
Figure 10. Hy
drog
en
T
a
n
k
Pressu
re
V
a
r
i
a
t
ion
In the previous literatu
r
e,
the excess amo
unt of hydr
ogen
(amount of hydrogen
prod
uced by hydrog
en an
d the amount
consumed b
y
the
fuel cell) is store
d
in the tank and h
o
w
this stored hy
drogen i
s
used in
case of deficiency
is not illustrated
as ther
e i
s
no feedback path
from the sto
r
age tan
k
to the fuel cell
In this model, the hydrogen moles de
veloped
by the electrolyzer is stored in the
hydrog
en sto
r
age tan
k
, a
nd the fuel cell dra
w
s
the
nece
s
sary a
m
ount of hydroge
n from the
stora
ge ta
nk dire
ctly
.
The
hydro
gen
st
orag
e tan
k
subsy
s
tem
co
nverts th
e pressure ba
ck
to
hydrogen mol
e
s to be given to Fuel cell
. However
during the initial
transie
nt period till the Fuel
cell rea
c
h
e
s
90V
, the Electrolyze
r
dire
ctly supplie
s th
e hydroge
n moles to the Fuel cell be
cause
,
the pre
s
sure in hydrog
en t
ank
woul
d no
t be suf
f
icient
to deliver the req
u
ire
d
m
o
les to the F
uel
Cell.
The Sim
u
link mo
del o
f
the subsy
s
tem is shown in Figure 1
1
.
Figure 1
1
. Co
mplete Hyd
r
o
gen Stora
g
e
T
a
n
k
System
3. Results a
nd Analy
s
is
DC
output of
the Fuel
Ce
ll is co
nverte
d to
AC u
s
in
g a IGBT inv
e
rters by g
e
neratin
g
approp
riate g
a
te
si
gnal
s. To remove
h
a
rmo
n
ics
i
n
t
he
conve
r
ted
AC
sig
nal,
L
C
filter is u
s
ed.
The Simulin
k model of the compl
e
te sy
st
em is shown in Figure 12.
This
com
p
let
e
syste
m
is
desi
gne
d to
meet
the u
p
to 2
kW l
oad
only. Wh
en
the load
excee
d
s m
o
re than 2
k
W,
control ci
rcuit make
s g
r
id a
u
tomatically
switch
ed O
N
a
n
d both
syste
m
and
grid
satisfies the
dem
a
nd. In
control
circuit, the l
o
ad
side
po
we
r is comp
are
d
with
refe
ren
c
e
2kW. Whe
n
the relatio
nal operator inp
u
t
is 1 then
the signal i
s
given to the circuit brea
ker
while
all other time
s there
are n
o
sign
al to the circuit brea
ker.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Fuel Cell –
Ul
tra Cap
a
cito
r
hyb
r
id syste
m
for Grid Co
nne
cted Appli
c
ation
s
(P.Vijaya
pri
y
a
)
4163
Figure 12. Co
mplete Simuli
nk Mod
e
l of the Prop
osed
System
Initially upto 0
.
1 se
c, a loa
d
of 2 kW is
ad
ded a
nd the
Fuel Cell is
supplying th
e required
load po
we
r.
At 0.1 sec an
other
loa
d
of 2.5Kw is ad
d
e
d and he
nce
the Grid also
supplie
s po
wer
to the loa
d
al
ong
with the
Fuel
cell
syst
em. Figu
re 1
3
, sho
w
s the
waveform of
voltage an
d t
h
e
curre
n
t of the load. As see
n
clea
rly, t
he load current h
a
s in
cre
a
sed
at 0.1 sec.
Figure 14
sh
ows the
gri
d
curre
n
t. It is e
v
ident from th
e Figu
re
14 t
hat, upto 0.
1
se
c, gri
d
curre
n
t is zero or no p
o
we
r is d
r
awn fro
m
the grid
a
s
the Fuel cell power i
s
suffi
cient to meet
the
load.
Whe
n
the load is increa
sed at 0.1 sec beyond
the cap
a
city of the Fuel cell, then the
requi
re
d addit
i
onal po
we
r is taken from th
e grid a
s
evid
ent from Figu
re 14.
Figure 13. Lo
ad Voltage a
nd Loa
d Cu
rrent
Figure 14. Gri
d
Curre
n
t
4. Conclusio
n
The
dynami
c
model
of F
u
el Cell h
a
s b
een
develo
p
ed a
nd it i
s
observed
tha
t
due to
inherent prop
erty of fuel cell,
there i
s
a
delay in out
put voltage.
To avoid thi
s
probl
e
m cha
r
ged
Ultra Capa
cit
o
r is conn
ect
ed in parallel
with t
he FC Stack. Elect
r
olyzer a
nd Hydroge
n Storage
tank
we
re
also mod
e
led
which
is re
sp
o
n
sibl
e to
su
p
p
ly the hyd
r
o
g
en fu
el to fu
el cell a
s
per
load
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4157 – 4
165
4164
variation a
n
d
stora
ge of
hydrog
en d
u
r
ing
su
rp
lu
s
gene
ration.
Unli
ke the E
l
ectroly
z
e
r
a
n
d
Hydro
gen
st
orag
e tan
k
model
s
rep
o
rted in th
e
lit
eratu
r
e, for few
se
co
nd
s
until the
syst
em
voltage rea
c
h
e
s th
e thresh
old limit, the
electrolyz
e
r
d
i
rectly sup
p
li
es hydro
gen
moles
requi
red
by the Fuel
Cell and th
e remai
n
ing
is sto
r
ed in
the hydrog
e
n
tank, whil
e after that, the
electrolyze
r
stores all the
gene
rated
hydrog
en m
o
le
s in the tan
k
a
nd the
storag
e tank suppli
e
s
the re
qui
red
hydrog
en
mo
les to
the fu
e
l
cell. A
s
the
system i
s
Gri
d
conn
ecte
d, wh
en th
e lo
ad
deman
d is m
o
re th
an the
capa
city of the
Fuel
ce
ll
syst
em, then the
exce
ss
po
we
r is d
e
livere
d
b
y
the Grid thu
s
ensurin
g co
ntinuity of suppl
y to the load.
Table 1. Ope
r
ational Para
meters of PEMFC–Ele
ctrol
y
zer Mo
del
Parameters
S
y
mbol
Value
Unit
DC output voltag
e of FC
sy
stem
Vcell
-
V
Nernst instantan
eous voltage
E
-
V
No load voltage
Eo
0.6
V
Activation over voltage
η
ac
t
-
V
Ohmic over voltage
η
ohm
ic
-
V
Voltage loss due to mass
transfer & conce
n
tration loss
η
tr
ans
-
V
Slope of Tapel line
B
0.04777
A
-
1
Constant to simulate ohmic
loss
C 0.0136
V
Internal resistance of FC
R
0.00303
Ω
F
uel cell sy
stem
cur
r
ent
I
fc
-
A
Constants derived from
expe
riments
m, n
-
-
Number of se
ries fuel cells
instack
No
80
-
Universal gas constant
R
8314.47
(JKmolK)
-
1
Absolute temper
ature
T
343
K
Farada
y’s constant
F
96484.6
CKmol
-
1
H
y
dr
ogen pa
rtial pressure
ρ
H
2
-
atm
Oxygen
partial pr
essure
ρ
O
2
-
atm
Water partial pr
e
ssure
ρ
H
2
O -
atm
H
y
dr
ogen value
molar
constant
KH
2
4.22e-
5
Kmol (atm s)-
1
H
y
dr
ogen time c
onstant
τ
H2
3.37
S
H
y
dr
ogen flo
w
th
at reacts
qH
2
Kmol
s
-
1
Modeling constant
Kr
1.8449e
-
6
Kmol(SA)
-
1
Stack cur
r
ent
I
A
Oxygen
value molar
constant
KO
2
2.11e-
5
Kmol (atm s)-
1
Oxygen
time constant
τ
O2
6.74
S
Input molar flo
w
of oxygen
qO
2
Kmol
s
-
1
Water value molar constant
KH
2
O 7.716e
-
6
Kmol (atm s)-
1
Water time constant
τ
H2O
18.418
S
Molar flo
w
rate
of
w
a
ter
qH
2
O -
Kmol
s
-
1
Produced h
y
drog
en moles per se
cond
NH
2
-
Mol
s
-
1
Farada
y efficiency
η
F
-
-
Number of
electr
oly
z
e
r
cells in ser
i
es
n
c
8
-
Electroly
z
er cu
rr
ent
i
e
-
A
Pressure of tank
Pb
-
Pa
Initial pressure of tank
Pbi
-
Pa
Compr
e
ssibility
factor
as a function of pr
essur
e
Z
-
-
Molar mass of h
y
drogen
MH
2
2.016
Kgkmol
-
1
Volume of tank
Vb
1
m
3
Referen
ces
[1]
Chiar
a
Bocc
al
etti, Gerardo
Duni, Gia
n
l
u
c
a
F
abbri,
Ezi
o
Santin
i. Simu
latio
n
Mod
e
ls
of F
uel Ce
ll
S
y
stems
. ICEM. Electrical Machines
. Ch
ani
a, Greece. 200
6: 283-2
89.
[2]
Lee JH, La
lk T
R
. Model
ing F
u
el Cel
l
stack Systems.
Jour
na
l of Pow
e
r Sources.
1998; 7
3
: 229-2
41.
[3]
Ro
w
e
A, Li
X. Mathematica
l
modeli
ng
of p
r
oton e
x
ch
ang
e membran
e
fuel cel
l
s.
Jour
nal of Pow
e
r
Sources
. 20
01;
102: 82-9
6
.
[4]
Lu-Yi
ng
Chi
u
,
Bill
Dio
ng,
Ran
dall
S Gemm
e
n
. An Impr
oved
Small-S
i
g
nal
Mode
l of
D
y
na
mic Beh
a
vi
ou
r
of PEM F
uel Cells.
EEE Transactions on Industry Applic
ations
. 2004; 4
0
.
[5]
Caish
e
n
g
W
a
n
g
, M Hashem
Nehrir, Steve
n
R Sha
w
. D
y
n
a
mic Mode
ls a
nd Mod
e
l Val
i
d
a
tion for PEM
Fuel Ce
lls Usi
n
g Electrica
l
Cir
cuits.
IEEE Tra
n
sactions on E
nergy Convers
i
on
. 200
5; 20(2)
: 442-45
1.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Fuel Cell –
Ul
tra Cap
a
cito
r
hyb
r
id syste
m
for Grid Co
nne
cted Appli
c
ation
s
(P.Vijaya
pri
y
a
)
4165
[6] Yanch
e
n
g
Xi
a
o
,
Kod
j
oA
gbos
sou.
Interface
Desig
n
and
S
o
ftw
are Deve
l
o
p
m
e
n
t for P
E
M F
uel
Cel
l
Mode
lin
g b
a
se
d on
Matla
b
/ S
i
muli
nk Env
i
ro
nment.
W
o
rld
Con
g
ress on Soft
w
a
re
E
ngi
neer
ing. 200
9:
318-
322.
[7] Dall
iaMors
i
Al
i
.
A Simplifi
e
d
Dyna
mic Si
mu
lati
on Mo
d
e
l (pr
o
totype)
for a Stan
d-
Alon
e Po
lyme
r
Electrolyte Me
mbr
a
n
e
(PEM) F
uel Cel
l
Stack
. IEEE Po
w
e
r
S
y
stem Co
nfe
r
ence, MEPCO
N
200
8: 480-
485.
[8]
H Gorgun. D
y
namic mod
e
li
n
g
of a prot
on exc
h
a
n
g
e
membran
e
(PEM) electrol
yzer.
Int. J.
Hydroge
n
Energy
. 20
06;
31(1): 29-
38.
[9]
Alej
andr
o J del
Real, Alic
ia Ar
ce, Carlos Bor
dons. Dev
e
l
o
p
m
ent and
e
x
pe
rimental v
a
li
dat
ion of a PE
M
fuel cel
l
d
y
n
a
mic mode
l.
Journ
a
l of Pow
e
r Sources
. 200
7; 1
73: 310
–3
24.
[10] A Kirubak
aran,
Shaile
ndr
a Jai
n
, RK Nema.
T
he
PEM F
uel Cell S
y
stem
w
i
th DC/DC Boo
s
t Converter
:
Desig
n
, Mo
del
i
ng a
nd
Simu
la
tion.
Intern
atio
nal J
our
nal
of
Rece
nt T
r
ends
in E
ngi
ne
erin
g
. 20
09; 3(
1):
157-
161.
[11]
MY El- Sharkh,
A Rahman, MS Alam, AA Sakla, PC
B
y
r
ne,
T
T
homas.Anal
ysis
of Active a
nd Re
activ
e
Po
w
e
r
Contro
l
of a Stan
d-Alo
ne PEM F
u
el
Cell
Po
w
e
r Pl
a
n
t.
IEEE Transactions
on P
o
wer System
s
.
200
4; 19(4): 20
22–
20
28.
[12]
Shai
len
d
ra J
a
i
n
, Jin Ji
ang,
Xi
nh
ong
Hu
an
g, Srdj
a
n
Stev
and
ic. Mode
li
n
g
of F
uel-
C
el
l-
Based P
o
w
e
r
Supp
l
y
S
y
ste
m
for Grid Int
e
rface.
IEEE
Transactions on Industry Applications
.
201
2; 48(
4): 11
42
-
115
3.
[13]
Soed
ib
yo,
Sur
y
o
a
tmoj
o H,
R
oba
ndi
I, Asha
ri M.
Op
ti
ma
l
d
e
s
ig
n
o
f
fu
el
-ce
l
l
,
w
i
nd
an
d mi
cro
-
hy
dro
h
y
bri
d
s
y
stem
usin
g ge
netic a
l
gorit
hm.
Te
l
k
om
ni
ka
. 10(
4): 695-7
02.
[14]
M Uzunoglu, MS Alam. Dy
namic Modeling,
Desi
gn, and Simulation of a Co
mbined PEM Fuel Cell and
Ultra-cap
acitor
S
y
stem
for
Stand-
Al
on
e Resid
enti
a
l
A
p
plicati
ons.
IEE
E
T
r
ansacti
on
s on
Ener
g
y
Conv
ersio
n
. 20
06; 21(3): 7
67-
774.
[15]
F
uel Ce
ll Ha
n
d
book (S
even
th Edition) B
y
EG
&G
T
e
chnical Servic
es, Inc. Under
Con
t
ract No.DE
-
AM26-9
9
F
T
40575 U.S. Dep
a
r
tment of Energ
y
. 2
004.
Evaluation Warning : The document was created with Spire.PDF for Python.