TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 6111 ~ 6118
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.550
2
6111
Re
cei
v
ed
De
cem
ber 2
5
, 2013; Re
vi
sed
March 31, 20
14; Accepted
April 15, 201
4
Control Strategy of Three Phase PWM by Three Half
Bridge Topology Bidirectional DC/DC Converter and
Resonant
Dingzhen Li
1
*, Haizhe
n G
u
o
2
1
Nan
y
a
ng Institute of T
e
chnol
og
y,
Hen
an N
a
n
y
an
g, 473
00
4
,
China
2
Hena
n Mecha
n
ical
and El
ect
r
ical En
gin
eer
i
ng Co
lle
ge, He
nan
Xi
n
x
ia
ng,
453
00
0, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: lidin
gzh
e
n
e
d
u
@1
63.com
A
b
st
r
a
ct
T
h
is pap
er ana
lyses an
d co
mpares PW
M control st
rategy o
f
control and b
u
ffer type soft
sw
itchin
g
half br
idg
e
D
C
/
DC conv
erter. F
i
nal
ly, the so
ft sw
itchi
ng co
nditi
on
are a
n
a
ly
z
e
d,
an
d thi
s
article
gets t
h
e
reali
z
a
t
io
n of soft sw
itching cond
itions
of the
three
ha
lf brid
ge DC/D
C
con
v
erter and th
e i
n
flue
nce factor
s of
soft sw
itching
cond
itions
of t
he thr
ee
half
b
r
idg
e
DC/D
C
c
onverter. C
har
acteristics of r
e
son
ant co
nve
r
ter
can bo
ost an
d
buck, so the output vo
ltage
stable strateg
y
of variabl
e
frequ
ency co
ntrol is
more e
a
s
i
l
y
achi
eved. T
h
e
paper pr
esen
ts cont
rol strategy of three phas
e PW
M
by three ha
lf brid
ge topo
lo
g
y
bidir
e
ctio
nal D
C
/DC conv
erte
r and reso
na
nt.
Ke
y
w
ords
:
co
nverter, reson
a
n
t, PW
M, three half brid
ge
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Bidire
ctional
DC/
DC
conv
erter i
s
that
the
polarity
in the DC voltage to maintain
conve
r
ter
at
both en
ds of
the
ci
rcum
stances,
can
b
e
adju
s
ted
a
c
cordi
ng to t
he di
re
ction
of
energy nee
ds, to achieve
p
o
we
r DC
con
v
erter bi
-d
i
r
e
c
tional flo
w
.
Multi port bi
di
rectio
nal
DC/
DC
conve
r
ter e
n
able
s
multipl
e
power inte
rcon
ne
ct
ion
s
, the ene
rgy transmi
ssion b
e
twee
n multiple
dire
ction mult
ilevel powe
r
s [1]. The three half bridge
bi-di
r
e
c
tional
DC/
DC conv
erter i
s
a kin
d
o
f
three
po
rt co
nverter mo
de
l, the ma
gne
tic coupli
ng t
o
different p
o
we
r tog
e
the
r
, thro
ugh
th
e
pha
se shifted
control
simul
t
aneou
sly or
sep
a
rately to the load po
wer su
pply.
In the speed
cont
rol
syste
m
of thre
e-p
has
e AC
asy
n
ch
ron
o
u
s
m
o
tor, the th
re
e-ph
ase
asyn
chrono
u
s
moto
r exte
rnally with th
e
unified fo
rm,
so th
e invert
e
r
b
r
idge
with t
he
standa
rd
six
tube stru
ctu
r
e, soft switching thre
e-p
h
a
se inve
rter
is ea
sy to fo
rm the co
rre
spo
ndin
g
to the
circuit topology consi
s
te
ncy. According to the different auxiliary
resonant ci
rcuit to reali
z
e
soft
swit
chin
g topology, soft switchi
ng thre
e-ph
ase inve
rter ha
s two
categ
o
rie
s
: o
ne categ
o
ry is by
addin
g
a au
xiliary power swit
ching
d
e
vice
s,
auxiliary re
son
ant
inducta
nce
and snub
b
ed
cap
a
cito
r formed by the auxiliary re
so
nant circui
t i
n
hard
swit
ching inverte
r
and a DC po
wer
sup
p
ly, called
the inverter reso
nant DC li
nk.
Switchin
g po
wer
su
pply is the use
of mode
rn
ele
c
t
r
oni
c technol
ogy, the cont
rol switch
transi
s
to
r tu
rn-on
a
nd tu
rn off time
ra
tio, ma
intain
a
stabl
e o
u
t
put voltage
power suppli
e
s,
s
w
it
c
h
ing power
s
u
pply from the
general pu
lse width modulation (P
WM)
control IC and
MOSFET. Switchi
ng
and
linea
r p
o
we
r supply
co
mpared, two
co
sts are in
cre
a
si
ng
with
the
increa
se in
p
o
we
r outp
u
t, but two different gro
w
th ra
te. Power
co
sts in
a linea
r output p
o
wer
point, rathe
r
than switching
powe
r
su
ppl
y, the cost
of reversal. Wit
h
the develo
p
ment of po
wer
electroni
cs te
chn
o
logy a
n
d
innovation,
makin
g
swit
ching p
o
wer
supply technol
ogy in
con
s
ta
nt
innovation, in
cre
a
si
ng the
co
st of
reversal point move
to the low ou
tput powe
r
en
d, this provid
es
a broa
d devel
opment spa
c
e for the switchin
g po
wer
sup
p
ly.
Half brid
ge
DC/
DC
conv
erter h
a
s th
e advant
age
s of
simple
st
ru
cture, co
nvenient
control, very suitabl
e for small and med
i
um power
ap
plicatio
ns. Th
e hard switch
ing conve
r
ter
of
high fre
quen
cy swit
chin
g losse
s
, se
rio
u
sly affect its efficien
cy. Soft switchi
n
g techni
que
ca
n
redu
ce th
e switchi
ng lo
sses a
nd line E
M
I, improv
e the efficie
n
cy
and p
o
we
r d
ensity, increa
si
n
g
the switchi
n
g
freque
ncy
so as to
red
u
ce the c
onvert
e
r volum
e
an
d wei
ght. Th
e tradition
al
half
bridg
e
conve
r
ter ha
s
t
w
o kind
s of cont
rol
m
e
thod
s,
one i
s
symm
etrical
control
,
and
on
e i
s
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 611
1 –
6118
6112
asymmet
r
ic
complem
entary control. Thi
s
pap
er ma
i
n
l
y
analyze
s
the cont
rol stra
tegy of PWM to
achi
eve soft swit
chin
g hal
f bridge DC/DC conve
r
ter. The paper
pre
s
ent
s co
n
t
rol strategy
of
three ph
ase PWM by thre
e half bridg
e
topolo
g
y bidirection
a
l DC/DC
conve
r
ter and re
son
ant
.
2. Rese
arch
on Three
Hal
f
Bridge To
p
o
log
y
Bidirectional DC/DC Conv
erter
PWM
Asymmetri
c
complem
entary pulse PWM
co
ntro
l
switch of the
control pul
se
asy
mmetry
is com
p
lem
e
ntary; the traditional a
s
ymmetrical hal
f bridg
e
co
nve
r
ter with thi
s
control strate
gy
has be
en wi
dely used in
small and
medium po
wer appli
c
atio
ns. The pri
m
ary side
swit
che
s
reali
z
ing ZVS
in 2 ways: Z
VS load cu
rrent and ex
cit
a
tion cu
rrent of ZVS.
Its a
d
vantage
s are:
two
swit
che
s
can
re
alize Z
VS; some
ca
n imp
r
ove the
pha
se
shifte
d full b
r
idg
e
converte
r ZVS
fo
r
the laggi
ng
arm
con
d
itio
n mea
s
u
r
e
s
can
also
b
e
used fo
r the a
s
ymmetrical h
a
lf bri
d
ge
converter; oscillation probl
em does not exist hard
switch; compared with
the phase
shifted full
bridg
e
co
nverter, loop free
energy.
Its disa
dvant
age
s are: voltage st
ress
of t
he switch
es a
nd
soft swit
chin
g co
ndition
s
inco
nsi
s
tent, tube is difficu
lt to achieve soft swit
ching
;
rectifier voltage stress is not consi
s
te
nt,
and the fun
c
tion of duty cycle, som
e
ap
plicatio
ns of
a rectifie
r voltage is ve
ry hi
gh, the device is
difficult to ch
oose; light load will lose the soft
ope
ni
ng the releva
nt conditio
n
s;
transfo
rme
r
DC
magneti
c
bia
s
, the he
avier loa
d
duty
ratio is
sm
a
ll, bias a
nd
more
se
riou
s; is not suita
b
le
appli
c
ation o
c
ca
sion in
put or wid
e
outpu
t voltage.
The m
a
in
ci
rcuit of th
e i
s
olation
of three
h
a
lf b
r
idg
e
DC/DC
co
nverter conta
i
ns t
w
o
combi
nation
of input stage
boost half bri
dge ci
rcuit, a
three wi
ndin
g
high freque
n
c
y transfo
rme
r
,
and an o
u
tpu
t
voltage fed half bridg
e
ci
rcuit [2]. The tran
sform
e
r fo
r the equival
e
nt model of the
main ci
rcuit to repla
c
e, an
d it is the pri
m
ary sid
e
eq
uivalent circui
t for refere
nce.
To achi
eve the output DC voltage
U0 re
gul
ato
r
, known as the pulse frequ
en
cy
modulatio
n (PFM) switchi
ng po
we
r su
pply. Since
t
he switching
freque
ncy i
s
not fixed, so
the
desi
gn of o
u
tput filter ci
rcuit is not e
a
sy to
achieve the
optimization.
Ch
ang
e TON; cha
nge
T,
pulse d
u
ty ra
tio adju
s
table
voltage m
o
d
e
called
PWPF way [3]. I
n
all
kin
d
s of
switchi
ng
po
wer
sup
p
ly, more
than three
kin
d
s of pul
se d
u
ty ratio control method wit
h
appli
c
ation.
Therefore, p
a
rallel
re
son
ant conve
r
ter does
n
o
t exist in light load voltage re
gulation
.
The main
ad
vantage
s of parall
e
l re
so
nant co
nv
ert
e
r: ca
n ope
n
load op
erati
on; due to the
indu
ctan
ce filter, filter capa
citor to
rippl
e
curre
n
t bea
r i
s
very
small,
suitabl
e for lo
w voltage, hi
gh
output cu
rren
t application
s
. A significan
t
disadvant
ag
e of parallel
resona
nt con
v
erter for lig
ht
load conditio
n
s
still gene
rates a lot of
wattles
power
. Becau
s
e of t
he pa
rallel
re
son
ant co
nve
r
ter,
parall
e
l
stru
cture i
s
betwee
n
load
resona
nt ca
pa
citor.
This
ma
ke
s e
v
en in n
o
-l
oa
d condition, t
h
e
input voltage
squa
re wave, impedan
ce
of serie
s
re
sonant cavity i
s
still sm
all. Even when t
h
e
output current is zero, no po
wer energy
will have cert
ain.
Symmetrical
PWM co
ntrol
ZVS half bridge conv
erte
r is propo
se
d in the literature, a
symmetri
c
al
PWM
control
ZVS half b
r
i
dge
co
nverte
r, as comp
ared
with the
convention
a
l h
a
lf
bridg
e
ci
rcuit, ZVS conve
r
ter
symmetri
c
al PWM
co
ntrol in
cre
a
sed co
mpo
s
e
d
of an auxil
iary
swit
ch and a
diode b
r
an
ch.
The main switch is not
onl
y in the symmetric
state, and the tube and
the auxiliary
swit
ch
can b
e
in the full loa
d
ran
ge i
s
ZV
S; the tube can al
so be i
m
plemente
d
Z
VS
wide l
oad
ra
n
ge, the a
dditi
onal lo
ss
cau
s
ed
by very
small.
The co
n
v
erter
d
e
vice
is
the stress o
f
small,
high
re
liability, whi
c
h is mo
re
suitable fo
r th
e
MOSFET
swi
t
ch, le
ss u
s
e
d
in
high
volt
age,
high p
o
wer
a
pplication
s
. As
sho
w
n i
n
Fi
gure
1, the
a
s
ymmetri
c
al
half bri
dge
co
nverter analy
s
i
s
of re
so
nant
mode
PQRDCL
ci
rcuit a
s
an
exampl
e, a
singl
e
ch
o
pping
mod
e
,
con
s
id
erin
g t
he
control proce
ss of wi
ndin
g
of
Lph1: V2 o
pene
d in PWM, V1.
The
satu
rate
d pu
sh
-pull
converte
r, swit
ch tu
be VT
1, VT2 m
u
st
choo
se th
e la
rger ICM.
Becau
s
e
wh
en the ma
gn
etic flux to saturation,
p
u
l
s
e tra
n
sfo
r
m
e
r eq
uivalent
inducta
nce
also
bega
n to decrea
s
e, the m
agneti
c
flux completely
sat
u
rated in
du
ctance is zero,
the switch tub
e
colle
ct
or cu
rr
ent
sur
ge.
Symmetrical
PWM control ZCS h
a
lf bridg
e
con
v
erter, on t
he si
de of t
r
adition
al
asymmet
r
ical
half bridge
ci
rcuit
transformer adds an
auxiliary swit
ch, a
resonant capacitor and a
resonance inductor in
seri
es
auxiliary branch.
T
he main
sw
itch i
s
not only in the symmet
r
ic
state, and
th
e co
nverte
r
can r
eali
z
e ZV
S. and symm
etrical
half b
r
i
dge Z
C
S of a
ll swit
che
s
an
d
diode
s in the whol
e load ra
nge, the auxiliary swit
ch
in each half cycl
e brea
k over
time, reson
a
n
t
with resona
nt ca
pa
citan
c
e
and th
e le
akage i
ndu
ctan
ce
of the t
r
an
sform
e
r f
o
r fu
ll load
ra
nge
all
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Control Strategy of Th
ree
Phase P
W
M
by
Th
ree
Half
Bridge Top
o
l
ogy… (Di
n
g
z
hen Li)
6113
the swit
che
s
ZCS ZVS an
d all the dio
des to cre
a
te
the conditio
n
s, overl
oadi
ng is difficult
to
achi
eve soft switchi
ng.
The wo
rk prin
ciple of the three half bri
d
g
e
bi
dire
ction
a
l
DC/DC co
nverters in the p
o
sitive
dire
ction m
o
d
e
, and the
co
mmutation p
r
oce
s
s an
d si
ngle in
put ZV
S double
bidi
rectio
nal
DC/
DC
converter i
s
similar. Switch t
he device off, which
will
be in the
cu
rrent transfer t
o
the cl
amping
cap
a
cito
r corresp
ondi
ng wi
th the lea
k
ag
e indu
ctan
ce
of the tran
sfo
r
mer
re
so
nan
ce, charge a
n
d
discha
rge
an
d the
swit
ch
tube i
s
con
necte
d with
the two
on t
he same
bri
dge a
r
m
of the
clampi
ng cap
a
citor voltag
e
respe
c
tively, linear ri
se
a
nd fall, in order to a
c
hiev
e ze
ro voltag
e
swit
ching off. Realization
of zero voltage switch, the
swit
ch
has been
applied i
s
positive dri
v
ing
sign
al tube o
pene
d in anti parall
e
l diod
e
cond
uctio
n
.
Switch
V1 to
the ri
ght of th
e da
sh
ed
box
V6, dio
de V
D
1
~ VD6
to
form a
contro
l ci
rcuit
asymmet
r
y half bridge SRM phase win
d
ing
s
, each p
hase switch i
s
co
nne
cted i
n
parall
e
l with a
buf
f
e
r
cap
a
cit
o
r f
r
o
m
C
1
t
o
C6.
E
a
ch p
h
a
se
s
w
it
ch
p
a
rallel
ca
pa
ci
t
ance,
m
u
t
a
t
i
on f
o
r
ca
pa
ci
t
o
r
voltage can
not, so they
at any time
off are
ze
ro
voltage soft swit
chin
g. Insert th
e PQRDCL
circuit i
s
d
e
si
gned
for th
e
pha
se
switch
ope
ning
pro
v
ides
ze
ro vo
ltage g
ap, th
e re
qui
reme
n
t
s of
the ci
rcuit is
must e
n
sure
that the
circu
i
t ca
n
be
co
ntrolled
reso
nant at
any t
i
me, and
is
no
t
influen
ced
by
the p
h
a
s
e
switch
statu
s
effects,
the
b
u
s volta
ge
zero
cro
ssi
ng
time is ea
sy
to
control, conv
enient control
strategy
with
phase switch
synch
r
oni
zati
on.
Switch po
we
r supply is co
mposed of the following f
our ba
si
c links, which a
r
e powe
r
conve
r
ter
wit
h
DC/DC con
v
erter, is the
core of t
he
switchi
ng p
o
wer
sup
p
ly; the driver i
s
p
a
rt
of
swit
ch sign
al amplificatio
n, sha
p
ing and
amplifyi
ng, th
e switch si
gn
als from the
signal
sou
r
ce,
in
orde
r to
ada
p
t
to the
switch tube
drivin
g
req
u
ir
e
m
ent
s;
si
gnal so
urce gen
er
ate
s
co
ntrol
sig
n
a
l
s,
gene
rated
by
it.
Or self
ex
citation circuit
,
can be a
P
W
M sign
al,
a
nd can also be
PFM or other
sign
als; a co
mpari
s
o
n
am
plifier for a gi
ven
signal a
n
d
the output feedba
ck sig
nal com
pari
s
on
operation, a
m
plitude,
con
t
rol switch
signal frequ
en
cy, wavefo
rm
, the drive
r
t
o
co
ntrol t
he
duty
ratio
of the
p
o
we
r d
e
vice
s, to sta
b
ilize
the out
p
u
t vo
ltage valu
e o
f
the obj
ectiv
e
. In ad
dition
,
swit
chin
g po
wer supply
a
nd a
u
xiliary
circuit, in
cl
ud
ing
starting
circuit, ove
r
current a
nd o
v
er
voltage prote
c
tion, input filter, output
sa
mpling, functi
on instructio
n
s
.
The ab
ove a
nalysi
s
and
compa
r
ison of
the se
ri
e
s
re
son
ant co
nve
r
ter, pa
rallel
reso
nant
conve
r
ter a
n
d
the basi
c
p
r
inci
ple of se
ries pa
ralle
l re
son
ant co
nve
r
ter, so they
are not suita
b
le
for ope
ratio
n
in the conditi
on of wi
de vo
ltage ra
nge i
n
put. High i
n
p
u
t voltage correspon
ding to
a
high
workin
g
freque
ncy
will bring th
e condu
ction
an
d
switchi
ng l
o
ss is ve
ry h
i
gh. In ord
e
r
to
obtain th
e
co
nverter mo
re
efficient, n
e
ed to fin
d
the
right
topolo
g
y
. LLC
re
son
ant converte
r is
suitabl
e to work
over a
wide input volt
age rang
e
soft switching
topology. In fact it ha
s be
en
arou
nd
for
a
long tim
e
, bu
t due
to its chara
c
te
ri
sti
c
s of mi
sun
derstandi
ng,
ref
e
r to
the
se
ri
e
s
resona
nt con
v
erter [4]. In rece
nt years,
peopl
e found
that it also has supe
rior
chara
c
te
risti
c
s of
some t
r
aditio
nal re
so
nant
conve
r
ter
do
es n
o
t hav
e,
su
ch a
s
a
wi
de ra
nge
of input voltage,
the
freque
ncy a
d
j
u
stment
rang
e of small, si
mple
topol
og
y, easy to implement inte
g
r
ated ma
gnet
ic,
as is
sho
w
n b
y
Equation (1
).
2
)
2(
2
2
2
2
L
B
L
B
L
B
i
Z
n
Z
Z
n
Z
Z
n
Z
Z
(1)
W
h
er
e Z
i
an
d Z
B
a
r
e Sym
m
etrical P
W
M control
Z
C
S half b
r
idg
e
conve
r
ter,
n i
s
the
si
de
of traditional
asymmet
r
ical
half bridge
circuit tr
a
n
sfo
r
mer ad
ds an
auxiliary swi
t
ch, a resona
nt
capacitor and a resonan
ce
inductor in series au
xiliary branch. The main switch i
s
not only in the
symmetri
c
st
ate, and the conve
r
ter
ca
n reali
z
e
ZV
S. and symmetrical half bridg
e
ZCS
of all
swit
che
s
an
d
diode
s in the
whole lo
ad range, the
au
xiliary switch in each half cycle bre
a
k ov
er
time, reso
nan
t with resona
nt capa
citan
c
e and the le
a
k
ag
e indu
cta
n
ce of the tra
n
sformer fo
r full
load rang
e all
the switch
es ZCS ZVS an
d all the
di
od
es to
create t
he conditio
n
s, overloadi
ng
is
diffic
u
lt to ac
hieve s
o
ft s
w
it
c
h
ing.
In the forwa
r
d (Boo
st) mo
de, a com
p
le
te sw
it
ch cy
cle acco
rdin
g to the con
d
ition of
different
can
be divide
d int
o
t0 to
T19
a
total
of 1
9
i
n
tervals.
The
st
ea
dy state
co
rrespon
di
ng
here
befo
r
e
a
s
suming
T1 ti
me to
swit
ch
S1 is
sw
itch
e
d
on, the
swit
ch tu
be S5
a
nd the S
3
an
ti
parall
e
l diod
e
D5, D3 by forwa
r
d bi
as a
n
d
con
d
u
c
tion.
A serie
s
of princi
ple of switching is p
o
w
er
sup
p
ly
box
.
P
o
wer s
w
it
ch t
r
a
n
si
st
or V
T
is
con
n
e
c
ted i
n
se
rie
s
b
e
tween th
e in
pu
t and
output.
Wh
en i
n
n
o
r
mal
wo
rk,
p
o
we
r
swit
chi
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 611
1 –
6118
6114
transi
s
to
r VT
control pul
se
is pe
riodi
cally
pass,
by alte
rnating
betwe
en in the
gui
de drive
in th
e
swit
ch bet
we
en input an
d output, so th
at the cl
osed
cycle an
d di
sconn
ecte
d. DC in
put voltage
instability of the po
wer
swi
t
ching tra
n
si
stor VT
output
for the perio
dic pul
se volt
age, and the
n
after filterin
g,
can
be
sm
oot
h DC
output v
o
ltage
U0
. Pu
lse
U0
and
p
o
we
r
swit
chin
g tran
si
stor VT
is relate
d to space than D.
In the commo
n switch
ci
rcu
i
t, the swit
ch
SRM t
he
sign
al of roto
r p
o
s
ition i
s
controlled by
the lo
we
r fre
quen
cy, the
publi
c
swit
ch
Vc
co
ntrolle
d by th
e P
W
M si
gnal
of
high f
r
eq
uen
cy.
Becau
s
e th
e
burd
en of the
publi
c
switch
is he
avy, in orde
r to redu
ce the bu
rde
n
of publi
c
swit
ch,
to avoid the motor wi
ndin
g
stre
am co
n
t
inued thro
ug
h the publi
c
swit
ch, Vc co
ntrol sig
nal t
he
final by e
a
ch
pha
se
switch control
sig
nal a
nd
th
e PWM sign
al according
to the
initial sp
eed
requi
re
d to p
r
odu
ce
CO
ge
neratio
n. Thi
s
en
sures that
only the
pha
se
switch
pu
blic
switch
ca
n
be cond
ucte
d
durin
g the p
e
riod,
so the
publi
c
sw
itch topology
of
e
a
ch pha
se wi
nding only
two
contin
ued flo
w
path [5].
i
i
i
B
Z
n
Z
n
R
R
u
u
2
2
2
2
(2)
In the Eq
uati
on (2) where
u is PWM
si
g
nal of
high
fre
quen
cy, R is tradition
al h
a
lf brid
ge
resona
nt con
v
erter; n
B
i
s
compo
s
ed
of t
w
o p
a
rt
s of th
e inve
rte
r
a
n
d
the
re
ctifier. The
se
rie
s
a
nd
parall
e
l reson
ant ci
rcuit m
a
inly co
ntain
s
o
n
ly t
he inv
e
rter re
so
nan
t conve
r
ter p
a
rt. The
re
ctifier
part half bri
d
g
e
resona
nt co
nverter i
s
usu
a
lly full
wave rectifie
r; a se
con
dary cent
er tap full wa
ve
rectifie
r struct
ure is
widely
use
d
in
the topology with i
s
olated tran
sfo
r
mer.
Half b
r
idge
ci
rcuit i
s
d
e
fine
d as t
w
o
swit
che
s
off the
b
r
idge
ci
rcuit, half brid
ge
co
nverter
circuit. Strea
m
lined b
r
idg
e
circuit ph
ase
windin
g
fre
e
w
he
eling p
a
th, only two switch
es
per
p
hase
windi
ng on
simultan
eou
s condu
ction
to winding
p
o
we
r su
pply, so that each arm swit
ch
respe
c
tively and the two on
e arm
(o
r swit
ch
with ea
ch
arm
swit
ch a
r
e re
spe
c
tively matche
d wit
h
the two
arm
swit
ch) control of two ph
a
s
e
win
d
i
ng,
can a
c
hi
eve time divisi
on
multiplexing
each
swit
ch, the
switch
to halve
the nu
mbe
r
.
But each of t
he two
switch
co
ntrol m
e
th
od of o
ne
ph
ase
windi
ng
cont
rol mod
e
an
d
asymmet
r
ical
half bri
dge
to
pology i
s
sa
me, co
mmuta
tion process
and
the cho
ppin
g
pro
c
e
ss
conti
nued flo
w
rul
e
s simil
a
r to it.
The co
ntrol
strategy of the half bridge al
so
kno
w
n as
dual a
c
tive bridge [6]. The control
strategy
and
the tradition
al ph
ase-shif
t full br
i
dge
topology
simi
lar, differen
c
e is ph
ase t
w
o
bridg
e
arm
s
on ea
ch si
de
of the distribu
tion trans
f
o
rmer. Thi
s
top
o
logy, the lea
k
ag
e indu
cta
n
ce
of the transf
o
rme
r
is the
interme
d
iate
energy
stora
ge eleme
n
t. Each
side of
the half brid
ge
gene
rate
s a 50% duty cycle Fang Bo, to control
the transfo
rme
r
l
eakage ind
u
ctance e
nergy by
pha
se shift betwe
en
the
two brid
ge output
regul
a
t
i
ons to
re
gu
late the o
u
tp
ut voltage. S
o
ft
swit
chin
g full
load rang
e of
this topol
ogy
can
be o
u
tpu
t
at the sam
e
time, but also
can
obtain th
e
synchro
nou
s
rectifie
r. Its disadv
a
n
tage
s
are: ene
rgy is very large, la
rge outp
u
t cu
rre
nt ripple.
The th
ree
h
a
lf brid
ge
DC/DC
conve
r
ter in
Boo
s
t and
Bu
ck two
kin
d
s of
mode
of
operation, lo
w sid
e
and hi
gh sid
e
switch voltage and
current wave
forms. In Boo
s
t mode, the l
o
w
side
swit
ch tube S5 as an example, i
n
the
S5 off,
leakage
current Ir56 reaches the m
a
ximum
value a
nd
greater than
th
at of Id
c2, Id
s5
<0, S5
ant
i pa
rallel
dio
de
con
d
u
c
tio
n
, S5 off
wh
en
Vds5
=0,
reali
z
e
s
zero volt
age
switchin
g
.
In the S5
b
e
fore
co
ndu
ct
ing, reve
rse I
d
s5
le
ss than
0,
the anti parall
e
l diode free
whe
e
ling
swit
ch tube, an
d i
n
the t time, Ids5 from dio
de co
mmutati
on
to swit
ch S5,
reali
z
e
s
zero
voltage turn-on of t
he S5.
Similarly, in the Boo
s
t an
d
Buck two
kin
d
s
of work mod
e
,
the low sid
e
switche
s
tub
e
S1, S2, S5, S6 and high
side
swit
ch tu
be S3; S4 ca
n
achi
eve ze
ro
voltage turn
-o
n and turn off
(ZVS).
Acco
rdi
ng to
the win
d
ing
current control PW
M d
u
ty cycle, the com
b
ination
of 6
stude
nt
su
ccess rate conve
r
ter re
q
u
ired
drivin
g sign
al,
co
ntro
ls the
po
wer
swit
chin
g; re
sonant tem
poral
logic
and
driv
ing mo
dule
a
c
cordi
ng to
th
e drivin
g
sign
al from th
e p
hase
swit
ch
signal g
ene
rati
ng
circuit of PQ
RDCL
cont
rol
logic a
nd th
e drive
r
mod
u
le re
quired f
o
r the resona
nt circuit, co
n
t
rol
action.
From
a l
o
w voltage
DC
co
nversi
on
high
voltage
AC
must
boo
st
schem
e
de
sig
n
. In th
e
power
sup
p
ly desi
gn after
con
s
id
erin
g variou
s b
o
o
s
t scheme f
r
om
different an
gl
es. The
different
positio
n by the boo
st, mainly con
s
ide
r
i
ng the
pre b
oost an
d po
st boost two
method
s. Th
e so-
calle
d p
r
e
bo
ost, that
will
boo
st in
befo
r
e th
e firs
t inv
e
rter,
12V l
o
w voltag
e
DC input
for
DC-DC
conve
r
si
on, to the req
u
ire
d
high DC voltage,
the hi
gh voltage DC as the
sub
s
eq
uent inverte
r
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Control Strategy of Th
ree
Phase P
W
M
by
Th
ree
Half
Bridge Top
o
l
ogy… (Di
n
g
z
hen Li)
6115
circuit, the
hi
gh voltag
e
DC inve
rter,
di
rect
vo
ltage sinu
soi
dal
alt
e
rnatin
g cu
rrent
ne
ede
d by
filtering wave
. The so
-called po
st boo
st, that w
ill boost after inve
rter, filter, su
ch that 12V l
o
w
voltage DC p
o
we
r of thermoele
c
tri
c
ge
nerato
r
in
p
u
t of inverter, filter, get the low voltage A
C
,
then AC boo
st signal
s on the de
sire
d AC output.
3. Half Brid
ge Reso
nan
t
Conv
erter and Quasi Parallel Reso
nant
w
i
th S
w
i
t
ching P
o
w
e
r
Supply
In this paper,
the auxiliary
res
onant ci
rcuit in the inv
e
rter
bridge output
hard switchi
ng
inverter te
rmi
nal, calle
d th
e re
son
ant p
o
le inve
rte
r
. But in the switched
relu
cta
n
ce m
o
tor
sp
eed
regul
ating
sy
stem, be
ca
use the type
s a
nd forms
of
a
variety of S
R
M dive
rsity,
po
wer conve
r
ter
corre
s
p
ondin
g
is all
kind
s
of, so, in view of unive
rsa
lity, extremely similar
reso
nant inverte
r
that
is inserted i
n
to the auxiliary
resonant network between the
converter and the motor is
unde
sirable [
7
]. Further
studie
s
sh
owed
tha
t, in various form
s of SRD p
o
wer ci
rcuit.
TL494 i
s
a fixed freque
n
c
y pulse wid
t
h modulatio
n circuit, buil
t
-in linea
r sa
w tooth
oscillator, th
e
oscillation
freque
ncy
can
be a
d
ju
st
ed by
an extern
al
re
si
stan
ce and a capa
cit
o
r,
the outp
u
t p
u
lse
wi
dth i
s
thro
ugh
po
si
tive sa
w toot
h voltage
ca
pacita
n
ce o
n
the
CT
and
the
other t
w
o
con
t
rol si
gnal
s a
r
e co
mpa
r
ed t
o
achiev
e. P
o
we
r outp
u
t tube Q
1
an
d
Q2 is
co
ntroll
ed
by gate.
Whe
n
the inp
u
t voltage is low, and it is
the converte
r frequ
ency n
ears the re
so
nan
ce
freque
ncy.
When th
e in
put
voltage i
s
i
n
cre
a
sed,
in
o
r
de
r to
ke
ep
the outp
u
t vo
ltage
con
s
tan
t
,
conve
r
ter
wo
rkin
g freq
uen
cy to stay away from
the
resonan
ce f
r
equ
en
cy is increa
sed in t
h
e
dire
ction of. But the impedan
ce reso
n
a
tor is al
so
accomp
anie
d
by an incre
a
se in o
p
e
r
a
t
ing
freque
ncy in
crea
se
s. This
mean
s more energy
to non power sto
r
ed in the re
sonator, an
d n
o
t
delivere
d
to t
he
conve
r
ter
output. Here
mentione
d n
o
po
wer en
erg
y
can
be
defi
ned
switch
b
a
ck
to that part
of the en
ergy i
nput po
we
r
cycle fo
r ea
ch.
Each switch
cycle
fe
edb
a
ck more
e
nergy
to the in
put e
nd of th
e
swi
t
ching
devi
c
e
,
power t
r
an
smissi
on i
n
th
e total am
ou
nt is l
a
rg
er,
can
cau
s
e hi
ghe
r con
d
u
c
tion lo
ss.
Therefo
r
e,
when th
e in
put
voltage
ra
ng
e is
la
rge,
hi
gh in
put volt
age
co
rrespo
nding
to
low efficie
n
cy. The main
advantage
s of seri
es
reso
nant
con
v
erter for: th
e use of se
rie
s
cap
a
cito
r, iso
l
ation of the DC
comp
one
nt, avoidi
ng the tran
sform
e
r satu
ratio
n
; current thro
ug
h
the switching
devices an
d
de
cre
a
ses
with the
de
crease of l
oad
curre
n
t, so
in
the
whol
e lo
ad
rang
e ca
n get
the win.
At the same
time can ma
ke the UCr
≥
Ud to c
o
mplete the res
o
nant c
h
arging
for Cr.
V
i
sible,
t
h
e
si
ze
of
I
1
i
s
clo
s
ely
r
e
lat
e
d
wit
h
the
moto
r wi
ndin
g
cu
rrent, load
current re
qui
rem
ent
of the I1 val
ue
shoul
d b
e
gre
a
ter th
an
the ph
ase
switchi
ng tran
sient valu
e a
nd
set a
s
ide
to
cha
r
ge
ca
pa
citor
Cr ma
rg
in, but I1 is the lead
switching auxilia
ry resona
nt circuit co
ndu
cti
o
n
loss increase,
but
also makes th
e
Lr capacity and loss increase,
in Lr.
The case will
m
a
ke
the
∆
T1 in
cre
a
ses,
the hig
h
e
s
t frequ
en
cy of
dire
ct ex
pe
nse. The
r
efore, the si
ze
of the I1 n
eed
s
to
con
s
id
er the
frequ
en
cy of
main
swit
chin
g device,
the
motor
cap
a
cit
y
requi
reme
n
t
s (curre
nt) a
nd
resona
nt circuit efficiency factors. In order to
simplif
y the control,
I1 can take a value great
er
than the current maximu
m value, to be re
so
nant
after the co
mpletion of the exce
ss e
nergy
feedba
ck po
wer a
nd tra
n
smitted to the motor wi
ndin
g
s.
The
DC/
DC converte
r h
a
s
a variety of
ci
rcuit,
whe
r
ei
n
the
cont
rol
waveform i
s
a
squ
a
re
wave PWM
conve
r
ter a
n
d
wo
rki
ng fo
rm re
so
nant
conve
r
ter u
s
i
ng qua
si
sin
e
wave i
s
m
o
re
comm
on. Co
mpared
with l
i
near
po
we
r supply, tran
sie
n
t tran
sform
a
tion input m
o
re p
e
rfo
r
man
c
e
in the output
, improve th
e swit
chin
g frequ
en
cy
at the sam
e
time, beca
u
se o
f
the frequen
cy
cha
r
a
c
teri
stic of feed
ba
ck
amplifier is i
m
prove
d
,
t
h
e
t
r
an
sient
s
w
i
t
ching
po
we
r
sup
p
ly
re
sp
o
n
se
index can al
so be improve
d
. Determini
n
g the cha
r
a
c
teristi
cs of the
transie
nt respon
se is loa
d
transfo
rmatio
n mainly by t
he outp
u
t LC filter.
So ca
n
improve th
e
swit
chin
g fre
quen
cy, re
du
ce
the output LC filter to impro
v
e the
transie
nt resp
on
se chara
c
te
risti
c
s.
Although
call
ed pa
rallel reso
nant con
v
erter, t
he re
son
ant cavity is still co
nn
ected i
n
seri
es, b
u
t the relatio
n
shi
p
betwee
n
pa
rallel load
re
sonant capa
cit
o
r. More precisely for pa
ral
l
el
load
se
rie
s
a
r
e
re
sona
nt converte
r o
u
tp
ut [8]. D
ue t
o
the top
o
log
y
of the p
r
im
ary si
de
of the
transfo
rme
r
i
s
con
n
e
c
ted i
n
pa
rallel
wit
h
a
cap
a
cito
r, transfo
rme
r
se
co
nda
ry to an i
n
cre
a
se in
the output ind
u
ctor,
so a
s
to achi
eve the
impedan
ce
matchin
g
.
Forward circuit
prin
ciple
diagram
a
s
shown
in Fi
gu
re 3, the
wo
rkin
g p
r
o
c
e
s
s of the
electri
c
circui
t are a
s
follo
ws: the VT
switch i
s
o
pen
ed, the volta
ge tran
sfo
r
m
e
r wi
ndin
g
N1 at
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 611
1 –
6118
6116
end
s
of
the positive and
negative
volt
age N2, win
d
i
ng a
nd
co
up
ling i
s
p
o
sitiv
e
an
d n
egati
v
e.
Therefore, V
1
is
in on s
t
ate, off s
t
ate current
V2, induc
tance L inc
r
eas
e
gradually; VT off, the
induc
t
anc
e
L
flow continued thro
ugh the V2, V1 off. V
T
off exc
i
ti
ng
c
u
rrent of a trans
former wit
h
N3 win
d
ing a
nd V3 flows b
a
ck to powe
r
.
Figure 3 is in
the mode of GS domain computing mo
del
of PQRD
CL
c
i
rcuit.
Figure 3. Forward Ci
rcuit Princi
ple
and PQRDCL Circuit
Dia
g
ra
m
Half bri
dge
reso
nant conv
erter to
polog
y is a
se
rie
s
parall
e
l re
so
nant cavity st
ructu
r
e,
whi
c
h
con
s
i
s
ts of th
ree
re
sonant el
eme
n
t
s, the in
tri
n
si
c resona
nce frequ
en
cy (i.e.
DC gai
n is th
e
bigge
st chan
ge alo
ng
with
the chang
e
of load p
o
in
t) [9]. Therefo
r
e, whe
n
the l
oad i
s
in
crea
sed
from
ze
ro to
i
n
finity in the
pro
c
e
s
s (i.e.
the
full lo
ad
range
), LL
C e
x
igent re
so
na
nt freq
uen
cy
of
two boun
da
ri
es: first, whe
n
the load is zero, se
co
n
d
a
ry sho
r
t circuit equivalent
transfo
rme
r
, the
cha
r
a
c
t
e
ri
st
ic
f
r
equ
en
cy
r
e
son
ant
cap
a
c
i
t
o
r C
r
re
son
a
n
t
indu
ct
an
ce
L
r
seri
es
re
sonant cavity
for
the maximum
LLC eig
en
reso
nant freq
uen
cy se
co
n
d
, the; wh
en
the load
is i
n
finite, equival
ent
transfo
rme
r
se
con
dary o
pen
circuit,
resona
nt ca
pacito
r
Cr a
nd the in
du
ctor
(L
r +
Lm
)
cha
r
a
c
teri
stic frequ
ency
se
ries re
so
nant
to its
minimu
m value. Experime
n
ts
sho
w
that when t
h
e
half bri
dge
switchi
ng freq
uen
cy in the
nea
r reson
ant freq
uen
cy chan
ge,
will sho
w
som
e
c
h
arac
teris
t
ics
of very attrac
tive.
Conve
r
ter
pri
m
ary by thre
e eleme
n
t voltage fed
serie
s
pa
rall
el re
sona
nt st
ructu
r
e,
se
con
dary a
d
opts the
ce
nt
er tap
of the
full wave
re
ctifier topolo
g
y, with full loa
d
ran
ge of
ze
ro
voltage
swit
ching
ch
ara
c
t
e
risti
cs. It h
a
s
a
DC vo
lta
ge
g
a
in cha
r
acteri
stics be
tter,
improve
the
traditional
se
ries re
so
nant
conve
r
ter in
put vo
ltage
range i
s
narrow, wi
de fre
quen
cy rang
e,
disa
dvantag
e
s
of light load
adjustm
ent chara
c
te
ri
sti
c
s etc. Comp
ared with the traditional p
a
ra
llel
resona
nt con
v
erter,
whi
c
h
eleme
n
t is fewe
r, light
l
o
ad effici
en
cy is
high
er, i
s
a
kind
of
soft
swit
chin
g re
sonant convert
e
r topolo
g
y is simple an
d p
r
acti
cal.
4. Con
t
rol S
t
rateg
y
of T
h
ree Pha
se
PWM b
y
Three
Half
Bri
dge Top
olo
g
y
Bidirectional
DC/
DC
Conv
erter a
nd Re
sonan
t
The
wo
rk p
r
i
n
cipl
e of
the t
h
ree
h
a
lf b
r
id
ge bi
dire
ction
a
l DC/DC co
nverter in
the
forward
mode an
d commutation
pro
c
e
ss a
n
d
single inp
u
t dual ZVS half bridge
DC/DC co
nverter is
simila
r, but th
e soft switchi
ng condition
and the i
n
flu
enci
ng fa
ctors of soft swit
chin
g an
d sin
g
le
input dual
ZVS half bridg
e
DC/
DC
co
nverter. Th
eref
o
r
e, the conditi
on of soft
swi
t
ching
of thre
e
half bridg
e
bi-dire
c
tional
DC/DC co
nvert
e
rs i
s
very m
eanin
g
ful.
Output power output po
wer main
swit
ch for
power
supply is an
aux
iliary power
supply,
power line o
u
tput stage t
w
o times bi
g
ger. It w
ill be a DC inp
u
t voltage 220V
AC input directly
rectifying, filtering i
s
a
bout
300V, after t
he switch
to
adju
s
t the switching
reg
u
la
tor to adj
ust t
he
link in the
pip
e
, the switch
transfo
rme
r
,
voltage re
gul
ator control ci
rcuit,
pul
se g
enerating circuit
for DC volta
ge of abo
ut 300V to DC-DC
conv
e
r
te
r, the DC voltage sta
b
le
output vario
u
s
requi
re
d. Mai
n
switch fo
r
power
su
pply
mainly p
r
ovi
des DC volta
ge 1
10
~
14
5V load
ci
rcu
i
t.
Remote
cont
rol
stand
by functio
n
i
s
re
alize
d
by
con
t
rolling th
e m
a
in
swit
ch p
o
wer supply, t
he
main po
wer
switch on
ce to
stop wo
rki
n
g
;
the
corre
sp
ondin
g
power amplifier sta
ge will also st
op
work
ing, s
o
the main load los
t
DC power s
u
pply [10].
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Control Strategy of Th
ree
Phase P
W
M
by
Th
ree
Half
Bridge Top
o
l
ogy… (Di
n
g
z
hen Li)
6117
The serie
s
p
a
rallel
re
son
a
n
t conve
r
ter reso
nant cavity can be
reg
a
rde
d
a
s
a complex
seri
es resona
nt cavity a
nd
parall
e
l
re
son
ant ca
vity. Similar
and
pa
rallel
re
sona
nt co
nverte
r
an
d
it is in orde
r to impeda
nce matchin
g
, a need to incr
ea
se the outp
u
t filter inducto
r.
Series p
a
rall
el
resona
nt con
v
erter ha
s the advantage
s of seri
es reso
nant con
v
erter an
d parallel reson
a
n
t
conve
r
ter. Co
mpared with
the parall
e
l reso
nant c
onv
erter, in
cre
a
sed by the Lr
and Cs serie
s
resona
nt cav
i
ty in serie
s
with the lo
ad current
l
oop, effectiv
ely limits the
rea
c
tive en
ergy
gene
ration;
compa
r
ed
with the serie
s
resona
nt
co
nverter, the
parall
e
l capa
citan
c
e
Cp, an
d
make
s th
e serie
s
pa
rall
el
re
sona
nt co
nverter i
n
th
e no
-load
co
ndition
can
well reali
z
e t
he
adju
s
tment of output voltage.
Acco
rdi
ng to
the definition
of cont
rol type
soft swit
ching h
a
lf brid
ge DC/DC
co
nverter,
and
summa
ri
ze
s the vari
e
t
y of control
type so
ft switchin
g half b
r
i
dge
DC/DC
conve
r
ter P
W
M
control strate
gy and the snubb
ed type soft swit
ch
in
g half brid
ge
DC/DC conv
erter
symmet
r
ic
PWM cont
rol
strategy.
T
he cont
rol st
rategy
of
PWM are
an
a
l
yzed and
compa
r
ed, wh
ich
provide
s
the
basi
s
for
cho
o
sin
g
the sp
e
c
ific ap
plications.
Thro
ugh th
e
analysi
s
of th
e wo
rk in th
e
Boost a
nd Bu
ck two
kin
d
s
of mode
of o
peratio
n
prin
ciple of the three half b
r
idge
DC/
DC
conve
r
ter,
th
e reali
z
ation
of soft switching con
d
ition
s
of
the three
hal
f brid
ge
DC/DC conve
r
te
r, an
d the
soft switchin
g
co
ndition
a
r
e
analyze
d
,
the
inf
l
uen
ce f
a
ct
ors of
sof
t
swi
t
ching
con
d
it
ions
of the three half brid
ge
DC/DC conv
erter.
Saturation
type
conve
r
ter is th
e out
pu
t of the p
u
lse tran
sfo
r
me
r magn
etic
sa
turation
phen
omen
on
that the switch tube by
g
u
ide is chan
g
ed into the globe, so that two switch pu
sh-
pull
tube wheel c
i
rc
ulation/off.
Puls
e trans
form
er f
o
r
c
onverting the output
power,
c
r
oss-
se
ctional a
r
e
a
of core be
come large
r
, and to ac
hieve
greate
r
flux requir
ed
for saturation of
the
magneti
z
atio
n current, the
switchin
g lo
ss. So in
t
he d
e
sig
n
of
satu
ration type tra
n
sformer, t
r
y
to
cho
o
se pipe
workin
g state
switch at the start
of the
magnetizatio
n curve of p
u
lse tra
n
sfo
r
mer
into the saturated state at
the beginnin
g
of, firs
t of
all let into th
e saturated zone switch, the
swit
ch
circuit
to redu
ce
th
e switch flip
s, larg
e
curre
n
t tran
sforme
r ma
gneti
c
saturation
in l
a
ter
gro
w
th, redu
ce th
e
swit
ch
ing lo
ss. But
both
the
de
sign
an
d d
e
b
uggin
g
, to m
a
intain th
e
cl
ose
relations
h
ip is
very
diffic
u
lt. So this
k
i
nd of
tra
n
s
f
or
ma
tio
n
is o
fte
n
us
ed
d
oub
le
tr
an
s
f
or
me
r
c
i
rc
uit form.
The main di
sadvantag
e of serie
s
reson
ant c
onve
r
ter for light load
conditio
n
s th
e output
voltage can n
o
t adjust the main dra
w
b
a
ck: pa
ralle
l re
son
ant conve
r
ter for light l
oad condition
s
the converter resonant
current i
s
still large,
resulting in li
ght l
oad efficiency
. While
the use
of
three resona
nt compo
nen
ts resona
nt cavity of
the serie
s
pa
rallel
reso
nant co
nverter, sho
w
ed
more ex
celle
nt than LC re
son
ant cavity.
The traditio
n
a
l LC serie
s
or pa
rallel two elem
ent re
son
a
tor topol
ogy has its d
e
fects, so
on this ba
si
s derived fro
m
the LLC t
y
pe three el
e
m
ent cavity of the seri
es parallel
re
so
nant
conve
r
ter top
o
logy. Its ma
in feature i
s
the c
onverte
r re
son
ant fre
quen
cy
will chang
e
with the
cha
nge of loa
d
, but also ca
n achi
eve ze
ro voltage switchin
g over a
wide fre
que
n
c
y rang
e.
Prope
rties
ca
n bo
ost type
LLC half
bri
d
ge
re
sona
nt
conve
r
ter an
d bu
ck,
so th
e outp
u
t
voltage sta
b
l
e
strate
gy of variable f
r
equ
ency
contro
l i
s
mo
re e
a
sily
achi
eved. Th
e three
elem
ent
seri
es pa
ralle
l re
son
ant to
pology a
nd t
he two ele
m
ent serie
s
re
son
ant top
o
lo
gy is
simila
r,
but
with a voltage
adjustme
n
t range
wide, soft
switchi
ng
cha
r
a
c
teri
stics is bette
r.
5. Conclusio
n
The pape
r prese
n
ts co
ntro
l
strategy
of
t
h
re
e
ph
ase P
W
M
by thre
e
half b
r
idge
to
pology
bidire
ction
a
l DC/
DC conv
erter an
d re
sonant. Buffer
type soft switchin
g cont
rol strategy of PWM
is symmetry control
h
a
lf bridg
e
conve
r
ter co
re
bidi
rectio
nal m
a
gnetizati
on, utilization rat
e
is
high, an
d the
r
e is no bi
as. Conveni
ent
cont
rols
ca
n
linear
co
ntro
l cha
r
a
c
teri
sti
c
. Power tub
e
voltage st
re
ss i
s
lo
w, suita
b
le for high
in
put vo
ltage
a
pplication
s
, b
u
t the half
bri
dge
conve
r
te
r is
difficult to achieve soft switching; it is
difficult
to improve the effi
cien
cy of the
conve
r
ter. T
h
e
three h
a
lf bri
dge
DC/DC
converte
r, an i
nput ci
rcui
t soft switching
con
d
ition
s
are affected by
the
control vari
ab
le of anoth
e
r i
n
the inp
u
t st
age, a
c
cordin
g to the m
u
tu
al influen
ce
b
e
twee
n the t
w
o
input level co
nverter
circuit
control va
ria
b
le
s, re
asona
ble sel
e
ctio
n of phase shift
value.
Self-excited swit
chin
g
po
wer su
pply
u
s
ing
a
switch
ing tran
si
stor and hig
h
freque
ncy
pulse tran
sformer in p
o
we
r
sup
p
ly circuit
form a
po
sitive feedba
ck lo
op, and it is to com
p
lete th
e
self-ex
c
ited
o
scill
ation, the
swit
chin
g po
wer s
upply o
u
tput DC volt
age. In the
d
i
splay of P
W
M
swit
chin
g
po
wer su
pply equipm
ent,
self-ex
c
it
ed oscillation
freque
ncy syn
c
hroni
zation
in
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 611
1 –
6118
6118
freque
ncy
pul
se, eve
n
if th
e failure of li
n
e
sca
nni
ng
ci
rcuit, p
o
wer supply
circuit
can
still mainta
in
self-ex
c
ited o
scill
ation an
d
the DC
out
put volt
age. The fly back swit
ching
p
o
we
r supply,
the
swit
ch
m
ode power supply
must
have an oscillator; t
he
switch pu
l
s
e to
control t
he
switch tube is
use
d
to, switching po
we
r supply, the output DC voltag
e.
Becau
s
e
the
voltage
cha
r
acteri
stics
of LLC
half
bri
dge
re
son
ant
co
nverte
r ca
n boo
st
and
bu
ck,
an
d it is compa
r
ed
with th
e
seri
es re
sona
nt co
nverte
r
whi
c
h
ca
n wi
thstand
a
wi
de
input voltag
e
rang
e a
n
d
th
e smalle
r the
freque
ncy
adj
ustment
ra
ng
e. Experim
en
ts sho
w
that
the
freque
ncy i
s
nea
r the
hi
ghe
st converter efficie
n
cy.
So will
u
s
u
a
lly be
rated
input
co
nve
r
ter
workin
g frequ
ency volta
ge
con
d
ition
s
set
in the
vicini
ty
of the
re
so
na
nt freq
uen
cy
of FR,
and
it i
s
to achieve hi
gh efficien
cy.
Referen
ces
[1]
IONel Da
n Jit
a
ru, A 3KW
s
w
itc
h
in
g D
C
-D
C conv
erter,
New
Orleans,
LA, USA
. Pr
ocee
din
g
s of
IEEEAPEC. 2000; 86-9
2
.
[2]
Ahmad
Sau
d
i
Samosir. Sim
u
l
a
tion
an
d Impl
ementat
i
on
of Interle
a
ved
Bo
o
s
t DCDC
Co
nv
erter for Fu
e
l
Cell A
ppl
icatio
n.
T
E
LKOMNIKA Indon
esia
n Journ
a
l
of Elec
trical Eng
i
ne
eri
n
g
. 201
1; 1(2): 168-
174.
[3]
Z
heng Z
h
o
ngj
iu, Li Guofe
n
g
,
W
ang Ning
h
u
i. Re
se
arch
on Co
ntrol Strateg
y
of T
h
ree-ph
ase Hi
g
h
Po
w
e
r Factor
PWM Rectifier,
JDCTA
. 2011;
5(8): 365~
37
3.
[4]
Lei
Yan
g
, C
h
a
o
lo
ng S
h
a
n
, Y
u
jie
Xi
ao. D
ual
Ran
dom
ized
Displ
acem
ent
Z
e
ro Vector
Pu
lse Mo
du
latio
n
for T
h
ree-ph
as
e
Conv
erters.
AISS
. 2012; 4(
16): 471- 4
7
8
[5]
Z
hang
JM, Z
h
a
ng F
,
Xie
XG, et al.
A
nove
l
Z
VS DC/DC c
o
n
v
erter for h
i
gh
pow
er a
ppl
icati
ons.
Da
ll
as,
USA: Proceedings of IEEE-APEC.
2002; 6
3
5
-64
0
.
[6]
Guoqi
an
g C
h
e
n
, Min
g
ju
n Z
h
a
ng, Ju
n
w
e
i
Z
h
ao. H
a
rmo
n
i
c
Distortio
n F
a
ct
or of A
H
y
br
id
Space
Vector
PW
M Based
o
n
Ra
nd
om Z
e
r
o
-vector D
i
stri
butio
n a
nd
Ra
ndom P
u
ls
e P
o
sitio
n
.
AISS.
201
2; 4(1
6
):
242~
2
50.
[7]
Han Y
ang. A
Peda
gog
ica
l
Appro
a
ch for
Model
in
g an
d Simul
a
tio
n
of S
w
itc
h
i
ng
Mode D
CDC
Conv
erters for Po
w
e
r El
ectron
ics Cours
e
.
T
E
LKOMNIKA Indon
esia
n Jo
urnal of El
ectrical
Engin
eer
in
g
.
201
2; 10(6): 13
19-1
326.
[8]
Hon
g
Ma
o, Ja
ber A
bu-Qah
o
uq, L
uo S
h
i
guo
, et al. Z
e
ro
vol
t
age-s
w
i
c
hi
ng
half-bri
d
g
e
D
C
-
DC co
nverte
r
w
i
t
h
mod
i
fied P
W
M control method.
IEEE Trans on PE
. 200
4; 19(4): 94
7-9
58.
[9]
Che
n
Guo, T
i
ng
Li, Yo
ng Z
han
g. Num
e
ric
a
l a
n
d
E
x
per
i
m
ental
Stud
y
of a Micr
o-stri
p Res
o
n
a
tor
Moisture Sensor.
AISS
. 2012; 4(19): 591-
60
0.
[10]
Hon
g
Mao, Ja
ber Ab
u-Qa
h
o
uq, Shi
g
u
o
Lu
o, et al.
A
m
o
d
ifie
d Z
VS hal
f-bridg
e
DC-D
C
conv
erter
.
Anah
ei
m, Cal,
USA.
Proceed
i
ngs of IEEE-APEC. 2004; 1
4
36-1
441.
Evaluation Warning : The document was created with Spire.PDF for Python.