Intern
ati
o
n
a
l
Journ
a
l of
Re
con
f
igur
able
and Embe
dded
Sys
t
ems
(I
JRES)
V
o
l.
4, N
o
. 3
,
N
o
v
e
m
b
er
2
015
, pp
. 21
3
~
21
8
I
S
SN
: 208
9-4
8
6
4
2
13
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJRES
Design and Implementation of
Four Bit Binary Shifter Circuit
Using Reversible Logic Approach
V
a
n
d
a
n
a
Sh
uk
la
*,
O.
P
.
S
i
ng
h*
,
G
.
R
.
M
i
sh
ra
*
,
R.
K
.
Tiwa
ri **
* Amity
School
of Engin
eerin
g
& T
echnolog
y
,
Amity
Univ
ersity
U
ttar
Pradesh,
Lucknow Camp
us, India
** Departm
e
n
t
o
f
P
h
y
s
i
c
s
and
El
ectron
i
cs
,
Dr. R
.
M
.
L.
Avadh Uni
v
ers
i
t
y
,
F
a
i
zaba
d
, Indi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ma
r 2, 2015
Rev
i
sed
Jun
19,
201
5
Accepte
d
J
u
l 12, 2015
Shifter circu
its
are th
e key
co
mponent
of arithmetic log
i
c un
it as well as
storage unit of an
y
digital computing de
vice. Designing these shifter cir
c
uits
using reversible logic approach lead
s
to cr
ea
te low power
l
o
ss digital
s
y
stems. Reversible cir
c
uit d
e
sig
n
appro
ach is no
wada
y
s
wide
l
y
a
pplic
able in
various discip
lines such as Nanot
echno
log
y
,
Low power CMOS design,
Optical computing etc. This pap
e
r pres
ents two
design approach
es for four
bit binar
y
com
b
ination
a
l shift
e
r
circui
t with th
e help of diffe
r
e
nt t
y
pes of
reversible logic gates. The pro
posed
optimized
design is si
mu
lated using
Modelsim tool and sy
n
t
hesis
e
d fo
r Xilinx Spartan 3E with Device
XC3S500E with 200 MHz fr
equ
e
ncy
.
Keyword:
Fou
r
b
it
co
m
b
i
n
atio
n
a
l sh
i
f
ter
Lo
w po
wer
de
si
gn
Rev
e
rsi
b
le Circu
it Desi
g
n
Rev
e
rsi
b
le Lo
gic Gates
Copyright ©
201
3 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Vanda
n
a Shukl
a,
Am
it
y
Scho
ol
of
En
gi
nee
r
i
n
g
& Tec
h
nol
ogy
,
Am
it
y
Uni
v
e
r
s
i
t
y
Ut
t
a
r Pra
d
e
s
h,
Luc
k
no
w C
a
m
pus,
I
ndi
a.
Em
a
il: v
a
n
d
a
nashu
k
l
aec0
5
@g
m
a
i
l
.co
m
1.
INTRODUCTION
M
i
nim
i
zati
on of
gene
rat
e
d
heat
fr
om
el
ect
r
o
n
i
c
devi
ce
s due t
o
t
h
e i
n
f
o
rm
at
i
on l
o
s
s
i
s
t
h
e key
m
o
tivation for researc
h
ers to work in the a
r
ea of reve
rs
ible circu
it d
e
sig
n
. R. La
nd
auer
(
196
1)
and
C. H.
Ben
e
tte (1
973
) h
a
s co
n
c
l
u
ded th
at red
e
sign
in
g
d
i
g
ital circuits u
s
in
g
rev
e
rsib
le lo
g
i
c g
a
tes id
eally
lead
s to
th
e
lo
ssless
d
i
g
ital d
e
v
i
ces [1
-3
].
Till n
o
w
rem
a
rk
ab
le wo
rk
h
a
s b
e
en
do
n
e
in th
e l
o
w power lo
ss co
m
b
in
atio
n
a
l circu
it
d
e
sig
n
s
using
reve
rsi
b
l
e
l
o
gi
c appr
oac
h
. A
m
ong t
h
ese co
m
b
i
n
at
i
onal
ci
rcui
t
s
, shi
f
t
e
r i
s
one o
f
t
h
e si
g
n
i
f
i
cant
ci
rc
ui
t
.
These
sh
if
ter cir
c
u
its
ar
e
k
e
y co
m
p
on
en
ts of
an
y pro
cessing
or
stor
ag
e un
it.
Thi
s
pa
per
pre
s
ent
s
t
w
o
desi
gn a
p
p
r
oaches
for
fo
ur
bi
t
bi
nary
com
b
i
n
at
i
onal
shi
f
t
e
r c
i
rcui
t
usi
n
g
reve
rsi
b
l
e
l
o
gi
c gat
e
s. D
e
pe
n
d
i
n
g u
p
on t
h
e
m
i
nim
i
zat
i
on o
f
pe
rf
orm
a
nce param
e
t
e
rs t
h
e opt
i
m
i
zed desi
gn i
s
sim
u
l
a
t
e
d an
d
sy
nt
hesi
zed
f
o
r
f
u
rt
he
r l
o
w
l
o
s
s
desi
gn
co
nsi
d
erat
i
ons
.
Thi
s
pa
per
i
s
or
ga
ni
zed i
n
si
x sect
i
o
ns
. Sec
t
i
on
I a
n
d
II
p
r
o
v
i
d
es
t
h
e
i
n
t
r
o
d
u
ct
i
o
n
o
f
t
h
e w
o
r
k
a
n
d
basi
c co
nce
p
t
s
of re
ve
rsi
b
l
e
l
ogi
c res
p
ect
i
v
el
y
.
S
ection
III and IV elaborate
co
nv
ent
i
onal
ap
pr
oac
h
an
d
pr
o
pose
d
desi
g
n
s fo
r f
o
u
r
bi
t
bi
na
ry
s
h
i
f
t
e
r
c
i
rcui
t
res
p
ectively. Sectio
n V
g
i
v
e
s th
e
resu
lt and
an
alysis of the
pr
o
pose
d
w
o
r
k
. T
h
e
pape
r i
s
c
oncl
ude
d i
n
se
ct
i
on
VI
at
t
h
e
end
.
2.
BASIC CONCEPTS OF RE
VERSIBLE LOGIC
DESIGN
C
o
n
v
e
n
t
i
onal
l
ogi
c
gat
e
s a
r
e
co
nsi
d
e
r
ed
i
r
r
e
versi
b
l
e
d
u
e t
o
t
h
e
i
n
fo
rm
ati
on l
o
ss
fr
om
t
h
e de
vi
ce.
Rev
e
rsi
b
le lo
gic ap
pro
a
ch
targ
ets to
red
e
si
gn
th
e aim
e
d
d
i
g
ital circu
it u
s
in
g
rev
e
rsib
le
d
e
sign
en
tities [4-7
].
Th
ese
d
e
sign
en
tities are v
a
rio
u
s
av
ailab
l
e
rev
e
rsi
b
le log
i
c g
a
tes. Fo
llowi
n
g
sub
s
ection
s
d
e
scri
b
e
so
m
e
b
a
sic
t
e
rm
s of re
vers
i
b
l
e
ci
rcui
t
des
i
gn:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
64
I
J
RES Vo
l. 4
,
N
o
. 3
,
No
v
e
m
b
er
201
5
:
2
13–
2
18
21
4
A.
Rev
e
rsible Log
i
c Ga
tes
These a
r
e d
e
fi
ned a
s
(
N
,
N)
di
gi
t
a
l
l
ogi
c
g
a
t
e
s wi
t
h
o
n
e t
o
o
n
e m
a
ppi
n
g
bet
w
ee
n i
n
p
u
t
and
o
u
t
p
ut
b
its [8
-1
3
]
.
In
fo
r
m
atio
n
of
ou
tpu
t
b
its at an
y in
stan
ce pro
v
i
d
e
s th
e know
ledg
e
o
f
applied
in
pu
t
b
its. Ap
ar
t
fr
om
t
h
ese so
m
e
ot
her
cha
r
a
c
t
e
ri
st
i
c
s of
re
versi
b
l
e
l
o
gi
c
gat
e
s are
eq
ual
n
u
m
b
er o
f
i
n
p
u
t
an
d
o
u
t
p
ut
s
i
gnal
s
,
l
o
w fa
n
-
o
u
t
an
d any
out
put
bi
t
i
s
hi
gh
f
o
r
hal
f
t
h
e
num
ber
of t
o
t
a
l
i
nput
c
o
m
b
i
n
at
i
ons
p
o
ssi
bl
e.
Fi
gu
re
1
sho
w
s
t
h
e
bl
oc
k
di
ag
ram
of a
t
y
pi
cal
(N,
N
)
reve
rsi
b
l
e
l
ogi
c gat
e
.
Fi
gu
re
1.
B
l
oc
k
di
ag
ram
of a
(N,
N
)
rev
e
rsi
b
l
e
l
ogi
c
gat
e
s
B.
E
xam
pl
es of S
o
me Re
versi
b
l
e
L
o
gi
c
G
a
tes
Till n
o
w
research
ers h
a
v
e
alread
y p
r
op
o
s
ed v
a
riou
s
rev
e
rsib
le lo
g
i
c g
a
tes su
ch
as
feynman
, to
ffo
li,
TKS,
VSMT
gate etc [1
4-20
]. An
y
rev
e
rsib
l
e
d
i
g
ital ci
rcu
it can
b
e
d
e
sign
ed
u
s
ing
th
e
co
m
b
in
atio
n
of th
ese
rev
e
rsib
le log
i
c g
a
tes. Tab
l
e 1
d
e
tails so
m
e
rev
e
rsib
le
l
o
gi
c gat
e
s wi
t
h
t
h
ei
r si
ze, bl
ock
dei
g
a
r
am
and
out
p
u
t
equat
i
o
ns
.
Tabl
e 1.
E
x
am
pl
es of som
e
reversi
b
l
e
l
o
gi
c gat
e
s
No. Na
m
e
Size
Block
Diagra
m
Outp
ut
Eq
uations
1 Fey
n
m
a
n
Gate
2×2
P
A
;
QA
⊕
B
;
2 T
K
S
Gate
3×3
P
A
.
C
B
.
C
;
QA
⊕
B
⊕
C
;
R
A
.
C
B
.
C
′
;
3 VSM
T
Gate
6×6
A =
E’.
(
A.F
’
+B.F
)
+
E.(C
.F’+
D.F
)
QA
⊕
B
⊕
C
;
RE
⊕
F
;
SC
⊕
D
;
TD
⊕
E
⊕
F
;
U
E
;
C.
Rev
e
rsible Ci
rcuit
Desig
n
An
y d
i
g
ital circu
it is red
e
sign
ed
u
s
ing
rev
e
rsib
le log
i
c g
a
tes with
an
aim fo
r i
d
eal rev
e
rsib
le circu
i
t
w
ith
no
pow
er
lo
ss [21
-
2
5
]
. D
e
sign
ed
r
e
ver
s
ib
le cir
c
u
it is ch
aracterized
with
ze
ro
garba
g
e output, zero
con
s
t
a
nt
i
n
p
u
t
,
n
o
feed
bac
k
a
n
d
m
i
nim
u
m
num
ber o
f
re
ve
rsib
le g
a
tes used
in th
e d
e
sign etc. Bu
t
in
pr
actica
l
aspects these
perform
a
nce pa
ram
e
ters are optim
ized to
pr
od
uce m
o
st
su
i
t
a
bl
e desi
g
n
s
o
l
u
t
i
o
n f
o
r t
h
e
aim
e
d
d
i
g
ital circu
it.
D.
Gar
b
age Ou
tput Sign
als
These a
r
e
desc
ri
be
d as t
h
e
un
desi
re
d
out
put
si
gnal
s
ge
nerat
e
d f
r
o
m
t
h
e de
si
gne
d
reve
rsi
b
l
e
ci
rc
ui
t
.
Th
ese sign
als co
n
t
ribu
te to
th
e in
form
atio
n
lo
ss wh
ich
l
eads
t
o
t
h
e p
o
we
r l
o
ss fr
om
t
h
e desi
gne
d de
vi
ce.
Th
us
gar
b
a
g
e
out
put
si
g
n
al
s are
re
q
u
i
r
e
d
t
o
be
m
i
n
i
m
i
zed from
re
versi
b
l
e
ci
rc
ui
t
desi
gns
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RES I
S
SN
:
208
9-4
8
6
4
Design
an
d Imp
l
emen
ta
tion
of Fou
r
Bit Bi
n
a
ry Sh
ifter Circu
it Usi
n
g Reversib
l
e Lo
g
i
c …
(
V
an
da
n
a
Sh
uk
l
a
)
21
5
3.
C
O
N
V
E
N
T
IONA
L FOUR BIT BINA
RY
C
O
M
B
I
NATIONA
L SHIFTER
CIRCU
IT
D
E
SIGN
A sh
ifter circuit p
e
rform
s
sh
iftin
g of
app
lied
b
its in bo
th
d
i
rection
s
i.e. l
e
ft and righ
t
[2
6-2
8
]
.
Here
we
requ
ire
fo
ur
4
:
1
m
u
ltip
lex
e
r circu
its to
perfo
r
m
th
e d
e
si
red sh
i
f
t op
erat
io
n
s
as sho
w
n
i
n
tab
l
e
2
b
e
l
o
w.
Tabl
e 2. Fu
nct
i
o
n
t
a
bl
e of
shi
f
t
e
r
S. No.
S
1
S
0
Functions
perfor
m
e
d
1 0
0
O
←
F
2 0
1
O
←
Shr
F
3 1
0
O
←
Shl
F
4 1
1
O
←
0
To
desi
g
n
t
h
i
s
fo
ur
bi
t
shi
f
t
e
r
con
v
e
n
t
i
onal
l
ogi
c
gat
e
s are
use
d
f
o
r t
h
e de
si
gn a
n
d i
m
pl
em
ent
a
t
i
on i
n
con
v
e
n
t
i
onal
a
p
p
r
oach
o
f
di
gi
t
a
l
ci
rcui
t
desi
gn
.
Th
is sh
ifter circu
it is v
e
ry usefu
l
in
arithmetical
,
lo
g
i
cal an
d
sto
r
ag
e
ap
p
lication
s
.
Utility
o
f
th
is
sh
ifter
circu
it
in
th
ese
field
s
d
e
m
a
n
d
s
th
e rev
e
rsib
le
d
e
sig
n
of sh
ifter for t
h
e gen
e
ratio
n of low lo
ss
processi
ng syste
m
s.
4.
PROP
OSE
D
DESIG
N
S F
O
R FO
U
R
BIT BINA
RY
CO
MBIN
ATI
O
N
A
L SHIF
TER CI
RC
U
I
T
USING RE
VERSIBLE
LOGIC APPROACH
Here
we ha
ve
desi
g
n
e
d
t
h
e ai
m
e
d fo
ur
bi
t
bi
nary
com
b
i
n
at
i
onal
s
h
i
f
t
e
r ci
r
c
ui
t
t
h
ro
u
gh t
w
o
di
ff
ere
n
t
app
r
oaches
as
di
scuss
e
d
i
n
t
h
e su
bse
que
nt
s
ubs
ect
i
ons
.
A.
Design
1
In
itially TKS
g
a
te was con
s
i
d
ered
as th
e m
o
st su
ita
b
l
e rev
e
rsi
b
le log
i
c
g
a
te to
d
e
si
g
n
m
u
l
tip
lex
e
r
circu
its u
s
i
n
g
rev
e
rsib
le log
i
c ap
pro
ach. So
th
is
d
e
sign
ap
pro
ach
for
fo
ur
b
it b
i
n
a
ry sh
ifter circu
it
u
tilizes
onl
y
T
K
S
gat
e
s as s
h
o
w
n i
n
f
i
gu
re
2
bel
o
w.
Fig
u
re
2
.
Propo
sed
d
e
sign
1
fo
r fo
ur
b
it b
i
n
a
ry co
m
b
in
atio
nal sh
ifter circu
it u
s
ing
rev
e
rsi
b
le log
i
c gates
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
64
I
J
RES Vo
l. 4
,
N
o
. 3
,
No
v
e
m
b
er
201
5
:
2
13–
2
18
21
6
Thi
s
desi
g
n
re
qui
res
a
t
o
t
a
l
o
f
12
TK
S gat
e
s
w
h
i
c
h ge
nerat
e
2
4
gar
b
a
g
e o
u
t
p
ut
si
g
n
al
s.
B.
Design
2
Thi
s
desi
g
n
e
m
pl
oy
s onl
y
f
o
u
r
VSM
T
ga
t
e
s t
o
desi
g
n
t
h
e ai
m
e
d shi
f
t
e
r ci
rc
ui
t
usi
n
g
reve
rsi
b
l
e
app
r
oach
. T
o
t
a
l
gar
b
a
g
e
gene
rat
i
o
n
f
r
om
t
h
i
s
desi
gn
ap
p
r
o
ach i
s
1
7
as
sh
ow
n i
n
fi
g
u
re
3
bel
o
w.
Fig
u
re
3
.
Propo
sed
d
e
sign
2
fo
r fo
ur
b
it b
i
n
a
ry co
m
b
in
atio
nal sh
ifter circu
it u
s
ing
rev
e
rsi
b
le log
i
c gates
5.
RESULT A
N
D
AN
ALY
S
IS
As di
scuss
e
d
e
a
rl
i
e
r
t
h
e
t
w
o pr
o
pose
d
desi
g
n
s fo
r
f
o
ur bi
t
bi
na
ry
com
b
i
n
at
i
onal
shi
f
t
e
r ci
rcui
t
usi
n
g
reve
rsible logi
c are com
p
are
d
on s
o
m
e
selected pe
rfor
m
a
n
ce p
a
ram
e
ters su
ch
as to
tal n
u
m
b
e
r
o
f
reversib
le
gat
e
s use
d
i
n
t
h
e desi
gn a
n
d t
o
t
a
l
garba
g
e
o
u
t
p
ut
si
gnal
s
g
e
nerat
e
d. T
h
e
com
p
ari
s
on t
a
bl
e fo
r t
h
ese
d
e
si
gns
are s
h
own in table 3 and a
f
ter
that figure
4 sho
w
s th
e co
m
p
arison
ch
art
o
f
th
e sam
e
.
Tabl
e
3. C
o
m
p
ari
s
o
n
Ta
bl
e
S. N
O
.
Design
Total reversible g
a
tes
Garbage output
1 Design
1
12
24
2 Design
2
4
17
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RES I
S
SN
:
208
9-4
8
6
4
Design
an
d Imp
l
emen
ta
tion
of Fou
r
Bit Bi
n
a
ry Sh
ifter Circu
it Usi
n
g Reversib
l
e Lo
g
i
c …
(
V
an
da
n
a
Sh
uk
l
a
)
21
7
Fi
gu
re
4.
C
o
m
p
ari
s
on
cha
r
t
From
ab
ove
co
m
p
ari
s
on
we c
a
n c
oncl
u
de t
h
at
desi
g
n
2 i
s
m
o
re opt
i
m
i
z
ed
desi
g
n
fo
r
f
o
ur
bi
t
bi
na
ry
com
b
i
n
at
i
onal
shi
f
t
e
r ci
rc
ui
t
usi
n
g re
ver
s
i
b
l
e
l
ogi
c ap
pr
oa
ch de
pe
ndi
ng
up
o
n
t
h
e co
ns
i
d
ere
d
pe
rf
orm
a
nce
p
a
ram
e
ters. This d
e
sign
is si
m
u
la
ted
u
s
i
n
g
Mo
d
e
lsim
to
o
l
and
syn
t
h
e
sised
for Xilinx
Spartan
3
E
with
Dev
i
ce
XC
3S
5
0
0
E
wi
t
h
2
0
0
M
H
z
fre
que
ncy
.
Fi
gu
re
5 gi
ves t
h
e si
m
u
l
a
t
e
d wave
f
o
rm
of t
h
e
pr
o
pos
ed
desi
g
n
2
usi
n
g
VSM
T
gat
e
s a
s
sh
ow
n i
n
fi
g
u
re
5. T
h
e
des
i
gne
d re
ver
s
i
b
l
e
ci
rcui
t
co
nf
o
r
m
s
t
o
t
h
e fu
n
c
t
i
on t
a
bl
e
of
aim
e
d
sh
ifter circu
it as shown in
tab
l
e 2
.
Fi
gu
re
5.
Si
m
u
l
a
t
e
d wa
vef
o
r
m
of t
h
e
pr
op
o
s
ed
fo
u
r
bi
t
shi
f
t
e
r ci
r
u
i
t
usi
n
g
reve
rsi
b
l
e
l
o
gi
c ap
p
r
oac
h
6.
CO
NCL
USI
O
N
Thi
s
pa
per
p
r
e
s
ent
s
t
w
o
desi
gn
a
p
p
r
oac
h
es
fo
r
fo
ur
b
it com
b
in
atio
n
a
l shifter circu
it u
s
i
n
g rev
e
rsib
le
l
ogi
c ap
pr
oac
h
. Th
ese desi
gns a
r
e o
p
t
i
m
i
zed on s
o
m
e
selected perform
a
nce para
meters such a
s
total
reve
rsi
b
l
e
gat
e
s an
d
ga
rba
g
e
out
put
si
g
n
al
s.
The
o
p
t
i
m
i
zed
desi
gn
u
s
es
o
n
l
y
f
o
u
r
VSM
T
gat
e
s
an
d
ge
nerat
e
s
1
7
g
a
rb
ag
e
o
u
t
p
u
t
s. Th
is
d
e
si
g
n
is sim
u
lated
u
s
ing
Mod
e
lSi
m
si
m
u
la
to
r an
d
syn
t
h
e
sized for Xilinx
so
ft
ware.
Fut
u
re sc
o
p
e f
o
r t
h
i
s
w
o
r
k
m
a
y
be con
s
i
d
ered a
s
t
h
e
o
p
t
im
i
zat
i
on o
f
vari
ous
pe
rf
or
m
a
nce par
a
m
e
t
e
rs t
o
im
pro
v
e t
h
e ef
fi
ci
ency
of
di
g
i
t
a
l
sy
st
em
s w
i
t
h
t
h
e desi
g
n
of
ot
her l
o
w
p
o
we
r l
o
ss
pr
oc
essi
ng a
nd st
o
r
age
d
i
g
ital system
s
.
ACKNOWLE
DGE
M
ENTS
Au
t
h
ors are than
kfu
l
to
Mr.
Aseem
Ch
au
han
(A
d
d
ition
a
l Presid
en
t RBEF, Ch
an
cellor AUR
), Maj.
Gene
ral
K.
K.
O
h
ri,
A
V
SM
(Retd.
),
Pr
o
V
i
ce Chancello
r
,
A
U
U
P,
L
u
ck
no
w Cam
pus,
W
i
n
g
C
d
(D
r)
A
n
il
Kum
a
r Tiwa
ri (
D
irecto
r
,
AS
ET) a
n
d Bri
g
.
Um
esh K.
Ch
op
ra
(Di
r
ecto
r
,
A
IIT
, &
Co
-o
rdi
n
ator
,
ASE
T
)
f
o
r
th
eir co
op
eratio
n, m
o
tiv
atio
n
an
d su
gg
estiv
e gu
id
an
ce.
REFERE
NC
ES
[1]
R. Land
auer
, “Irreversibilit
y
and
Heat Gener
a
tio
n
in the Computation
a
l Process”,
IBM Journal of
Research
and
Developmen
t
, 5,
pp. 183-
191, 19
61.
[2]
G.E. Moore, “Cramming more co
m
pounds onto in
tegrated
cir
c
uits
”,
El
ecr
onics
, V
o
l. 38
, No
. 8
,
Ap
ril 19
, 1965
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
64
I
J
RES Vo
l. 4
,
N
o
. 3
,
No
v
e
m
b
er
201
5
:
2
13–
2
18
21
8
[3]
C.H. B
e
nnett, “Logical Rev
e
rs
ibil
ilt
y o
f
Com
putat
ion”,
IBM J
.
Res
e
arch and Devel
opment
, pp. 525-
532, November
1973.
[4]
Majid Haghparast, Keivan Navi, “A N
ovel Fault Tolerant Rev
e
r
s
ible Gate
for Nanotechnolog
y
Based S
y
stems”,
American Journal
of
Applied
Sciences
, Vol. 5, (5
), pp
. 519-523
, 2
008.
[5]
M. Morrison, N
.
Rang
anath
a
n,
“A novel optimization
method
for reversib
le
lo
gic circu
it minimization
”
,
IE
EE
Computer Society Annua
l S
y
mposium on VLSI (
I
SVLSI)
, pp. 182-1
87, 2013
.
[6]
Himanshu Thapliy
a
l and Nag
a
rajan Ranga
n
a
than
,
“
D
es
ign of Efficien
t Revers
ib
le Binar
y
Subtractors Based on A
New Reversible
Gate”,
I
EEE Co
mputer Society
Annual S
y
mposium on VLSI
, pp.
229-234, 2009
.
[7]
Lihui Ni,
Zhijin
Guan, Xiao
y
u
D
a
i and Wenju
a
n
Li, “Usi
ng New Designed NLG Gate for
th
e Realization of Four-
Bit Revers
ib
le
Num
e
rical Com
p
arator
”,
Intern
ational Conference on Educ
a
t
ional and Netw
ork Technology
(
I
CENT-2010
)
,
IEEE
, pp
. 254-25
8, 2010
.
[8]
Himanshu Thapliy
al
and M.B
Srinivas,
“A New
Reversible TSG
Gate
and Its Ap
plication For D
e
signing Efficient
Adder Circuits
”, 7th
Internatio
nal Symposium on
Representa
tions and Meth
odology of Fu
ture Computing
Technologies (
R
M 2005)
, Tok
y
o
,
Japan, September 5-6
,
2005
.
[9]
T.
Toffoli, “Reversible Computing”,
Tech memo MIT/
LCS/ TM-
151, MIT Lab
fo
r
Computer Science, 1980.
[10]
E. Fredk
i
n
and
T. Toffo
li, “Conservativ
e Log
i
c”,
I
n
t’l
J.
Theoreti
c
a
l Ph
ysics
, Vol.
21, pp
. 219-
253
, 1982
.
[11]
R. Fey
n
man, “Quantum
M
ech
ani
cal
Com
puters
,
”
Optics News
, Vo
l. 11
, pp
. 11–20
,
1985.
[12]
P
e
res
,
“
R
evers
i
b
l
e
Logic
and
Qu
antum
Com
puter
s
”
,
Ph
ys
ica
l
r
e
vi
ew A
, 32
: 3266-
3276, 1985
.
[13]
Diganta Sengup
ta, Mah
a
muda Sultana, At
al C
h
audhuri, “Realization of a N
ovel Reversible S
C
G Gate and its
Application for
Designing Par
a
llel A
dder
/
Subtractor and
Match Log
i
c”,
In
ternational Journ
a
l of Computer
Applica
tions
, Vol 31, No. 9, pp. 3
0
-35, Octob
e
r 20
11.
[14]
Vandana Shukla, O.P. Si
ngh, G.R. Mishra, R
.
K.
Tiwari, “Design of a
4-bit 2’s Co
mplement Rever
s
ible Cir
c
uit fo
r
Arithm
e
tic
Log
i
c Unit
Appli
c
ations”
,
The I
n
ternational C
onference on
Communication, Computing a
nd
Information Technology (
I
CCCMIT)
,
Special Issue of
International Journal of
Computer Applications
, pp. 1-
5,
2012.
[15]
Lavan
y
a Thunu
guntla, Bindu
Madhavi K,
Pu
llaiah T, “Designing of Effici
ent Onlin
e Tes
t
able Reversib
le
Multiplex
e
rs an
d DeMultiplex
e
r
s
with New Reversible Gat
e
”
,
In
ternational Journal
of
Engineering Research and
Applica
tions (
I
J
ERA)
, Vol. 2
,
Iss
u
e 2, pp. 183-19
1, Mar-Apr 2012
.
[16]
Md. Mahfuzzr
ez
a, Rak
i
bul Islam
,
Md. Bel
a
ye
t Al
i, “
O
ptim
ized D
e
sign of High Pe
rform
ance Rev
e
r
s
ible Multip
lier
Using BME and MHNG
Reversible Gat
e
”
,
American Internatio
nal Journal of
Re
search in Science, Technolog
y,
Engineering &
Mathematics
, IA
SIR USA, Vol. 2
(
2), pp
. 227-232
, March-May
201
3.
[17]
M.
P Fra
nk,
“
Introduction to Reversible Computing:
Motivation, Progress and
Cha
lleng
es
”, Proceedings of the 2nd
Conference on
C
o
mputing Frontiers, pp
. 385–390
, 2005
.
[18]
Nagamani AN,
Jay
a
shree HV,
H
R
Bhag
y
a
lakshmi, “Novel Low Power Comparat
or Design using Re
versible Logic
Gates”,
Indian
Journal of Comp
uter Sc
ience and
Engin
eering
(
I
JCSE)
, Vol. 2
,
N
o
. 4
,
pp
. 566-57
4, Aug -Sep
201
1.
[19]
M
a
jid Haghp
ara
s
t, M
a
r
y
am
Ha
j
i
zad
eh,
Roga
yye, Ro
zhin
B
a
sh
iri, “On the S
ynthesis of Diff
erent Nanometr
i
c
Reversible Conv
erters”,
M
i
ddle
-
East Journal
of
Scien
tifi
c
Resear
ch
, vo
l. 7, issue
5, pp
. 715-720
,
2011.
[20]
Vandana Shukla, O.P. Si
ngh, G.R. Mishra, R.K. Tiwari
, “A novel approach to design
decimal to BCD encoder with
reversible logic”,
Internationa
l Conference on Power, C
ontrol
and Embedded Systems (
I
CPCES)
, IEEE
, pp. 1-
5,
2014.
[21]
Y.S
y
am
al
a, A
.
V.N Til
a
k, “
R
e
v
ers
i
ble Ar
ithm
e
ti
c Log
i
c Uni
t
”
, 3rd
International Confer
en
ce on Electronics
Computer Techn
o
logy (
I
CECT)
, Vol. 5
,
pp
. 207-
211, 2011
.
[22]
J.W. Bruce, M.A. Thornton
, L. Shiv
akumaraiah, P.S. Kokate,
and X. Li,
“Efficien
t Adder Cir
c
uits Based on
a
Conservativ
e Re
versible Log
i
c
Gate”
,
IEEE Co
mputer Society
Annual Symposium on VLSI
, April 25-26, 2000
,
Pittsburgh, Penn
s
y
lvan
ia
.
[23]
Majid Haghpar
a
st and Keivan
Navi “A
Novel R
e
versible Full A
dder Circu
it for
Nanotechno
log
y
Based S
y
stems”
Journal of Applied Scien
ces
, Vol. 2(24)
, pp
. 3995
-4000, 2007
.
[24]
R. Aradh
y
a
,
R
,
Chinm
a
y
e
,
and
K. M
u
ralidh
a
ra
,
"Des
ign, Optim
i
zat
ion and
S
y
n
t
h
e
s
i
s
of Eff
i
ci
ent
Revers
ibl
e
Log
i
c
Binar
y
Decoder
,
"
Internationa
l
Journal of Comp
uter App
lica
tion
s
, Vol. 46, pp. 4
5
-51, 2012
.
[25]
H. P. Shukla, A. G. Ra
o, P. Mall, “Design of low power comparator
circuit based on reversible log
i
c techn
o
log
y
”,
1st
International Conference on
Emergi
ng Trends and Applicatio
ns in Computer
Scien
ce (
I
CETACS)
,
IEEE
, pp. 6
-
11, 2013
.
[26]
Irina Hashmi and Hafiz Md. HasanB
abu, “An Efficient Design
of a
Reversible Barrel Shifter”, 23rd
Internation
a
l
Conference on
VLSI Design
, 201
0, pp
.93-98.
[27]
M.
M.
Ma
no (1979),
Digital logic and
computer
design
, Pren
tice-
Hall, Inc. (New
York).
[28]
William
I
.
Fletcher (1980)
,
An
engineering
approach to
digital d
e
sign
, P
H
I
Learn
i
ng P
r
iva
t
e
Lim
i
t
ed,
(Indi
a).
Evaluation Warning : The document was created with Spire.PDF for Python.