Intern
ati
o
n
a
l
Journ
a
l of
Re
con
f
igur
able
and Embe
dded
Sys
t
ems
(I
JRES)
V
o
l. 4,
N
o
.
2
,
Ju
ly 20
15
, pp
. 12
9
~
14
1
I
S
SN
: 208
9-4
8
6
4
1
29
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJRES
An Integrated Architectura
l Clock Implemented Memory
Desi
gn Analysis
Ra
vi
K
h
a
t
w
a
l
,
M
a
n
o
j K
u
m
a
r
Jai
n
Department o
f
C
o
mputer scien
c
e, Moha
n Lal Sukhadia University, Udaipur
,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 12, 2015
Rev
i
sed
Mar
28
, 20
15
Accepted Apr 22, 2015
Recen
tl
y Low p
o
wer cus
t
om
m
e
m
o
ry
d
e
s
i
gn is
the m
a
jor is
s
u
e for em
bedded
designer. Micr
o wind and
Xilinx si
m
u
lato
r perform
s
eff
i
ci
ent c
ach
e
simulation and
high performances with
low power consumption. SRAM
effic
i
enc
y
an
al
yzed with 6-T arc
h
ite
ct
ure design
and analy
z
ed the simulation
perform
ance for
s
p
ecific app
lic
ation
.
W
e
have im
plem
ented clock bas
e
d
m
e
m
o
ry arch
ite
cture
des
i
gn
an
d ana
l
yzed
int
e
rnal
clock
eff
i
c
i
enc
y
for
S
R
AM
.
Architec
t
ural clock im
plem
ented
m
e
m
o
ry
des
i
gn that red
u
ces
ac
ces
s
time and pro
p
agation delay time fo
r embedded devices. Internal
semiconductor material
im
provement increases
simu
lation perf
ormance and
thes
e d
e
s
i
gn
im
plem
ented
for
app
lic
ation
s
p
eci
fic
des
i
gn ar
chit
ec
tu
re.
Keyword:
ASI
P
H
i
gh
p
e
rf
or
m
a
n
ce
ISA
Sem
i
cond
uct
o
r
de
vi
ces
Si
m
u
lato
rs
SRAM sim
u
lation
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Rav
i
Kh
atwal,
Depa
rtem
ent of c
o
m
puter sci
e
nce,
M
oha
n
Lal
Su
kha
di
a Uni
v
ers
i
t
y
,
Udai
pu
r,
R
a
jas
t
han,
I
n
di
a
Em
a
il:rav
iso
f
t
4
@g
m
a
il.co
m
1.
INTRODUCTION
C
u
st
om
archi
t
ect
ure
desi
gn
anal
y
zes t
h
e
b
e
havi
or
o
f
m
e
m
o
ry
used
f
o
r
hi
gh
pe
rf
o
r
m
a
nce a
n
d l
o
w
po
we
r con
s
um
pt
i
o
n
.
Vari
ou
s
sim
u
l
a
t
o
rs used fo
r Hi
g
h
p
e
rf
orm
a
nce t
h
at
sim
u
l
a
t
e
s cache desi
g
n
.
We ha
ve
use
d
som
e
sim
u
l
a
t
o
rs as m
i
cro wi
n
d
,
Xi
l
i
nx. T
h
ese
sim
u
l
a
t
o
rs i
nvol
ved i
n
t
h
e
desi
g
n
i
n
g of
m
e
m
o
ry
architecture.
Micro wi
nd sim
u
la
tor pr
oduces the arc
h
itectural m
e
m
o
ry de
sign a
n
d sim
u
la
tes an int
e
grat
e
d
ci
rcui
t
.
M
i
cr
o
wi
n
d
c
ont
ai
ns
a l
i
b
ra
ry
o
f
c
o
m
m
on l
ogi
c
a
n
d
anal
og
IC
s
t
o
vi
e
w
a
n
d si
m
u
l
a
t
e
l
ogi
c ci
rcui
t
s
.
Electric ex
tractio
n
of th
is ci
rcu
it is au
t
o
matically
performed analog si
m
u
la
tion
curve imm
e
diate
l
y.
Sens
e
a
m
p
lifier p
l
ays do
m
i
n
a
n
t
ro
le in
SR
AM cell u
s
ed
to sen
s
e
the stored data
. Se
nse am
plifiers are
used to rea
d
th
e con
t
en
ts
o
f
SRAM cel
ls an
d
p
e
rfo
rm a
m
p
lificati
o
n, d
e
lay redu
ctio
n
and
p
o
wer
redu
ction
.
Xilin
x
si
m
u
lato
r used to
v
e
rifies th
e
fun
c
tion
a
lity an
d ti
m
i
n
g
of i
n
teg
r
ated circu
it d
e
si
g
n
s
.
Xilin
x
sim
u
latio
n
pro
cess
is allo
wed
as t
o
creatin
g and
v
e
rifying
co
m
p
lex
circu
it’s
fun
c
tio
ns.
Recently transistor technol
ogy incr
eases the SRAM capabi
lity usually
6-12 transistors used for hi
gh
perform
a
nce but the cell size gra
dually
increases is
m
a
jor
issue.
Whe
n
we
r
e
du
ce th
e
no
.
o
f
tr
an
sistors an
d
i
m
p
l
e
m
en
ted
clo
c
k
b
a
sed
m
e
m
o
ry arch
itectu
r
e
d
e
si
g
n
th
at redu
ces t
h
e
meta-stab
ility
an
d d
a
ta l
o
sses fo
r
SR
AM
. M
.
K
u
l
d
ar,
K
.
Fa
n,
M
.
C
h
u a
n
d
S.
M
a
hl
ke
[
1
]
p
r
op
ose
d
a
t
ech
n
i
que t
o
sy
nt
hes
i
ze t
h
e l
o
cal
m
e
m
o
ry
architecture of a
clustere
d
acc
elerator
u
s
i
n
g a
ph
ase-or
d
e
r
e
d
ap
pro
ach.
P. Mer
o
lla,
J. A
r
t
h
ur
,
F. Ak
op
yan
,
N
.
Im
am
, R
.
M
a
no
ha
r,
pr
o
pos
ed a t
e
c
hni
qu
e t
o
sy
nt
hesi
z
e
t
h
e l
o
cal
m
e
m
o
ry
arc
h
i
t
ect
ure
of
a cl
u
s
t
e
re
d
accelerator
usi
ng
a phase
-
ordered a
p
proac
h
. P. Merolla,
J. Art
h
ur,
F. Akopyan,
N.
Im
a
m
, R. Manohar,
D.S.
M
o
d
h
a
[2]
des
i
gne
d fa
b
r
i
cat
ed
key
b
u
i
l
d
i
n
g
bl
oc
k
of
m
odul
ar
neu
r
om
orphi
c a
r
c
h
i
t
ect
ure, a
ne
ur
osy
n
a
pt
i
c
core
, wi
t
h
25
6 di
gi
t
a
l
i
n
t
e
grat
ed,
fi
re
neu
r
o
n
s a
nd a
1
0
2
4
x
2
5
6
bi
t
SR
AM
C
R
O
SS
B
A
R
m
e
m
o
ry desi
g
n
architecture. P. R. Panda,
N.
D.
Dut
t
an
d
A.
Ni
co
ul
au
[3]
Pro
p
o
se
d scrat
c
h-
pa
d m
e
m
o
r
y
archi
t
ect
ure
desi
g
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
64
I
J
RES Vo
l. 4
,
N
o
. 2
,
Ju
ly 2
015
:
12
9
–
141
13
0
fo
r a
ppl
i
cat
i
o
n
speci
fi
c
p
r
oce
ssor
an
d
use
d
opt
i
m
i
zati
on t
e
chni
que
f
o
r
cu
st
om
i
ze em
bedded
sy
st
em
. J. Par
k
And P. C. Dini
z [4] designed
Static RAM an
d sync
hronous Dynam
i
c
RAM with efficient latency and access
m
odes. The synthesis m
e
thods
[5] us
e
d
for FP
GAs
utilize advance
d
m
e
m
o
ry structure, s
u
ch as
“s
m
a
rt
b
u
ffer”, th
at req
u
i
re recov
e
ry o
f
ad
d
ition
a
l hig
h
-lev
el in
fo
rmatio
n
ab
ou
t lo
op
s and
array. Sen
s
e am
p
lifi
e
r [7
]
design im
proves the se
nsing
delay and
perform
s excellent
tolera
nce to
proces
s va
riations.
Three
nove
l cache
m
odels [9] usi
ng M
u
ltiple-Valued Logic (MVL) t
o
re
duces the cache
data storage a
r
ea and cache
energy
co
nsu
m
p
tio
n
fo
r em
b
e
d
d
e
d
syste
m
s. Sp
in
-tran
s
fer to
rq
u
e
RAM (STT-RAM) [1
0
]
is an
e
m
erg
i
n
g
nonv
o
l
atile
m
e
m
o
ry
t
echn
o
l
o
gy
t
h
at
has l
o
w
-
p
o
w
er
an
d
hi
g
h
-
d
e
n
si
t
y
adva
nt
age
s
ove
r
t
h
e SR
AM
.
2.
AR
CHITE
C
T
U
R
A
L S
R
AM
DESI
GN
The
6-T Static
SRAM
contains acce
ss tra
n
s
i
stor.
R
A
M
de
sign arc
h
itecture
has im
ple
m
ented with
PN d
i
ffu
s
ion
,
metal co
n
t
atn
e
ss d
a
ta un
it, b
it lin
e etc (see fig
u
re 1). Micro
wind
[8
] simu
lato
r
u
s
ed
to
d
e
sign
and sim
u
late
SRAM desi
gn architecture
.
Theses access
transistors are
connected t
o
the word line a
t
their
sp
ecific g
a
te term
in
als, an
d
th
e b
it lin
e at their source/dra
i
n terminals. Wo
rd
lin
e is u
s
ed
to
select th
e cell
wh
ile th
e b
it lin
es are
u
s
ed
to p
e
rf
orm
read
/ write op
eration o
n
th
e SR
AM
cell. Me
m
o
ry
co
n
t
ro
ller
g
e
n
e
rates
the proper si
gnals to veri
fy the speci
fic m
e
mory location
ne
eds to
be acces
se
d, a
n
d the
n
having the
data show
up on the
data
bus
. Internal architecture
of Static SR
AM (s
ee figure
2) ha
s im
ple
m
ented with sem
i
conduct
o
r
m
a
t
e
ri
al
. Sim
u
l
a
t
i
on spee
d
de
pen
d
s
u
p
o
n
se
m
i
cond
uct
o
r m
a
t
e
ri
al
desi
g
n
a
nd m
e
t
a
l
cont
e
c
t
n
ess (
s
ee fi
g
u
re
3
)
.
We i
m
pro
v
e t
h
e sem
i
conduct
o
r
m
a
t
e
ri
al
s for SR
AM
a
n
d
a
n
al
y
ze i
t
s
i
n
t
e
r
n
al
cl
oc
k e
ffi
ci
ency
. Sem
i
con
duct
o
r
m
a
t
e
ri
al
desi
g
n
i
m
pro
v
e t
h
e
SR
AM
ca
pabi
l
i
t
y
and re
d
u
ces
t
h
e
gap
bet
w
e
e
n
p-
n s
u
bst
r
at
es. T
h
e
4 set
s
of
6
-
T
SRAM design h
a
v
e
im
p
l
emen
ted
with silicid
e (salicid
e) m
a
terial an
d
an
alyze its clo
c
k b
a
sed
me
m
o
ry
archi
t
ect
u
r
e (s
ee fi
g
u
re
4
)
de
si
gn
. C
l
oc
k m
a
i
n
t
a
i
n
t
h
e m
e
m
o
ry
ope
rat
i
o
ns
so m
e
m
o
ry
can
per
f
o
r
m
schedul
e
d
write an
d read
o
p
e
ration
s
.We
h
a
v
e
im
p
l
e
m
e
n
ted
C
L
OC
K
ba
sed
sram
d
e
sig
n
with th
e h
e
l
p
o
f
x
ilinx
simu
lator
(see fig
u
re 1
5
)
.
Fi
gu
re 1.
C
M
O
S
6
-
T SR
AM
C
i
rcui
t
st
ru
ct
ur
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RES
I
S
SN
:
208
8-8
7
0
8
An
Integrated Arc
h
itectural Clock
Im
pl
em
ent
e
d
M
e
m
o
ry
Desi
g
n
An
al
y
s
i
s
(
R
avi
K
hat
w
a
l
)
13
1
Fi
gu
re
2.
B
a
si
c I
n
t
e
rnal
a
r
c
h
itecture
of CMOS SRAM
Figure
3. Metal contactetnes
s
analysis in SR
AM
Fig
u
re
4
.
Silicid
e m
a
terial in
SRAM cell
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
64
I
J
RES Vo
l. 4
,
N
o
. 2
,
Ju
ly 2
015
:
12
9
–
141
13
2
Fi
gu
re
5.
C
l
oc
k
base
d SR
AM
desi
gn
arc
h
i
t
ect
ure
a.
Sense Amplifi
er
Sen
s
e am
p
lifier u
s
ed
to
g
e
n
e
rate lo
w po
wer
sig
n
a
ls fro
m
a
b
it lin
e th
at sto
r
ed
in
a m
e
m
o
ry cell, an
d
a
m
p
lifies with
s
m
all v
o
ltag
e
swing
to
recog
n
i
zab
l
e lo
g
i
c
lev
e
ls so
th
e
d
a
ta can
b
e
easily in
terp
reted
.
The
sense
-
am
pl
i
f
i
e
r ci
rc
ui
t
s
(see
fi
g
u
re
6) c
o
nsi
s
t
of
6
(us
u
al
l
y
4) t
r
a
n
si
st
o
r
s an
d o
n
e se
ns
e am
pl
i
f
i
e
r used f
o
r
each c
o
lum
n
of m
e
m
o
ry cells
, so the
r
e
are
usually thousa
nds
or m
i
llions of
i
d
entical se
nse am
plifiers used
for
p
e
rform
a
n
ce im
p
r
o
v
e
m
e
n
t
s.
We
h
a
v
e
im
p
r
o
v
e
d
t
h
e sen
s
e
am
p
lifier circu
it with silicid
e to
salicid
e material.
Th
ese m
a
terial
s i
m
p
r
ov
e SR
AM cap
ab
ility
an
d
in
creased th
e si
m
u
latio
n
p
e
rfo
r
m
a
n
c
e. Sen
s
e am
p
lifier u
n
it
cont
ai
n
s
dat
a
u
n
i
t
,
sense
u
n
i
t
,
pre
-
cha
r
ge u
n
i
t
et
c. C
e
ll in
tern
al m
a
terial i
m
p
r
ov
es th
e simu
latio
n
p
e
rforman
c
e
fo
r s
p
eci
fi
c a
p
pl
i
cat
i
on a
n
d
g
r
ad
ual
l
y
red
u
c
e
s t
h
e
p
o
we
r c
ons
um
pt
i
on.
Fi
gu
re
6.
Se
ns
e am
pl
i
f
i
e
r archi
t
e
t
c
ure
desi
g
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RES
I
S
SN
:
208
8-8
7
0
8
An
Integrated Arc
h
itectural Clock
Im
pl
em
ent
e
d
M
e
m
o
ry
Desi
g
n
An
al
y
s
i
s
(
R
avi
K
hat
w
a
l
)
13
3
b.
SRA
M
C
e
ll
Ana
l
y
s
is fo
r Low Po
wer
The
64-T
Static SRAM
desi
gn im
ple
m
ented with acce
ss t
r
ansistors.
64-T
Static SRAM
circuits
have
sen
s
e am
p
lifier
u
n
it that prov
id
es low
p
o
wer sign
als
from
a b
it lin
e wh
ich rep
r
esen
ts a
d
a
ta b
it st
o
r
ed
i
n
a
sram
cel
l. 6
4
-T i
m
p
l
e
m
en
te
d
with
Data IN un
it, Da
ta
OUT
un
it, Ch
i
p
selectio
n
unit an
d
sense am
p
l
ifier
ci
rcui
t
s
(see fi
gu
re 7
)
.
Whe
n
we ha
ve ena
b
l
e
d chi
p
an
d se
nse am
pl
i
f
i
e
r can pe
rf
orm
s
m
e
m
o
ry
ope
rat
i
o
n.
We
h
a
v
e
im
p
l
e
m
e
n
ted
silicid
e material q
u
a
n
t
ity th
en
it ca
n
gradu
a
lly red
u
ce t
h
e po
wer con
s
u
m
p
tio
n
and
p
e
rform
s
efficien
t si
m
u
latio
n
.
Salicid
e material i
m
p
r
o
v
es th
e si
m
u
lat
i
o
n
p
e
rfo
r
m
a
nce with
lo
w p
o
wer
con
s
um
pt
i
on a
n
d
re
d
u
ces t
h
e
gap
bet
w
een
p
n
s
u
b
s
t
r
at
e.
W
e
ha
ve i
m
pl
em
ent
e
d
sram
des
i
gn
wi
t
h
cl
ock
base
d
me
m
o
ry archit
ecture a
n
d a
n
alyze its si
m
u
lation efficiency (see figure
8).
Fi
gu
re
7.
C
o
m
p
l
e
x
6
4
-T
SR
A
M
cel
l
desi
g
n
3.
CLOC
K
B
A
S
E
D MEMO
R
Y
AR
CHITE
C
TU
RE DESI
GN
Xilin
x
[6
] sim
u
la
to
r prov
i
d
es th
e in
terp
retatio
n o
f
VH
DL
or
V
E
RILO
G c
o
d
e
into circuit
s
fun
c
tion
a
lly an
d perform
s
t
h
e l
o
g
i
c
resu
lts of t
h
e
HDL to
d
e
term
in
e
circu
it op
eratio
n
s
.
Du
ring the HDL
synthesis m
echanism
,
XST analyzes
t
h
e HD
L code a
n
d at
t
e
m
p
t
s
t
o
i
n
fer
t
h
e speci
fi
c de
si
gn
bui
l
d
i
ng
b
l
ocks
.
SR
AM
desi
g
n
im
pl
em
ent
e
d wi
t
h
cl
ock
bas
e
d desi
gn si
n
g
l
e
cl
ock co
nt
r
o
l
l
i
ng t
h
e w
r
i
t
e
& read
ope
rat
i
on
wi
t
h
th
e h
e
lp
of inv
e
rter
(see figu
re
8
)
wh
en
sig
n
a
l activ
ated
th
en
it p
e
rform
s
m
e
m
o
ry
o
p
e
ration
s
.
When
write
en
ab
led
activ
at
ed
write ad
dress is u
s
ed
fo
r i
n
pu
t
d
a
ta
t
r
a
n
s
f
er a
n
d cl
oc
k a
c
t
i
v
at
ed f
o
r
w
r
i
t
e
ope
rat
i
ons
.
Whe
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
64
I
J
RES Vo
l. 4
,
N
o
. 2
,
Ju
ly 2
015
:
12
9
–
141
13
4
clock rea
d
is
activated the
n
it can
p
r
o
d
u
ce
t
h
e o
u
t
p
ut
dat
a
fo
rm
and per
f
o
r
m
s
read ope
rat
i
o
ns.
The
s
e
architectural clock ba
sed synt
hesize
de
sign
i
m
p
l
e
m
en
ted
with
LUTs, m
u
x, an
d
buffer etc (see
figure
9
& 10).
Fi
gu
re
8.
SR
A
M
cel
l
desi
g
n
Fi
gu
re 9.
R
TL desi
g
n
of
SR
A
M
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RES
I
S
SN
:
208
8-8
7
0
8
An
Integrated Arc
h
itectural Clock
Im
pl
em
ent
e
d
M
e
m
o
ry
Desi
g
n
An
al
y
s
i
s
(
R
avi
K
hat
w
a
l
)
13
5
Fig
u
r
e
10
. Synth
e
size
d
e
si
gn
an
alysis
of
SR
A
M
3.
1
Du
al
Cl
ock S
R
A
M
Desi
gn
Dual cloc
k implem
ented cache desi
gn c
ont
ains sepa
rate read cloc
k a
n
d writes clock
whe
n
signal
activ
ated
th
en
it can
p
e
rform m
e
m
o
ry o
p
e
ratio
n
s
.
Wh
en
write en
ab
led
th
en
activated
th
e write add
r
ess for
in
pu
t data transfer and
sep
a
rate write cl
o
c
k activ
ated
f
o
r
wri
t
e
ope
rat
i
o
ns.
A
n
ot
her
re
ad cl
ock
i
s
act
i
v
at
ed
t
h
en i
t
can
pr
od
uce t
h
e
o
u
t
put
dat
a
an
d
per
f
o
r
m
s
read
ope
rat
i
o
ns.
D
u
al
cl
ock
A
r
c
h
i
t
ect
ural
sra
m
desi
gn
im
pl
em
ent
e
d
wi
t
h
ff
d, b
u
f
f
er
et
c (
s
ee
f
i
gu
re 11
&
12
).
Fi
gu
re 1
1
. D
u
a
l
C
l
ock SR
AM
desi
gn
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
64
I
J
RES Vo
l. 4
,
N
o
. 2
,
Ju
ly 2
015
:
12
9
–
141
13
6
Fi
gu
re 1
2
. D
u
a
l
cl
ock SR
AM architectural
design
3.
2
Clock Implem
ented SRAM
Design
W
e
h
a
v
e
im
p
l
e
m
en
ted
clo
c
ks w
ith
sub
d
i
v
i
sio
n
m
ech
an
ism and
used counter
s wh
ich ar
e
asso
ciated
wi
t
h
a
st
ream
of
t
i
c
ks t
h
at
re
prese
n
t
t
i
m
e peri
o
d
s. C
l
ock
m
a
nage
read
a
n
d
w
r
i
t
e
o
p
e
r
at
i
ons
wi
t
h
hel
p
of
cl
oc
k
subdi
v
ision m
e
chanism
.
Arc
h
itectural clock
base
d SR
AM
d
e
sign
im
p
l
e
m
en
ted
with
coun
ters, buffer et
c (see
fi
g
u
re 1
3
&
1
4
)
. C
l
ock
base
d
cou
n
t
e
r m
a
nage al
l
ope
rat
i
o
n
wi
t
h
pr
ope
r
sche
dul
e an
d r
e
duce
s
pr
o
p
a
g
at
i
o
n
del
a
y
t
i
m
e
of SR
AM
s. C
l
oc
k i
m
pl
em
ent
e
d SR
AM
(see f
i
gu
re 1
5
) i
m
prove i
n
t
e
rnal
cl
ock m
echani
s
m
t
h
at
reduces t
h
e
power cons
um
ption and
pe
rform
s
scheduled
write /rea
d
operation so it c
a
n
reduces
the
access
tim
e
and propa
g
ation
delay time. Si
ngle clock SRAM ha
ve access time a
s
1ns and dual
clock sram
contains
sim
u
lation access tim
e
as
0.8 ns
, clock im
ple
m
ente
d
m
e
m
o
ry architecture m
e
c
h
anism
reduces the
pr
o
p
agat
i
o
n
de
l
a
y
t
i
m
e
as 0.2
n
s i
n
efficient
manner (see
fi
gure
16&17).
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
RES
I
S
SN
:
208
8-8
7
0
8
An
Integrated Arc
h
itectural Clock
Im
pl
em
ent
e
d
M
e
m
o
ry
Desi
g
n
An
al
y
s
i
s
(
R
avi
K
hat
w
a
l
)
13
7
Fi
gu
re
1
3
. C
l
o
c
ks i
m
pl
em
entat
i
on i
n
SR
AM
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
089
-48
64
I
J
RES Vo
l. 4
,
N
o
. 2
,
Ju
ly 2
015
:
12
9
–
141
13
8
Fi
gu
re 1
4
.
C
l
o
c
k di
vi
de
n
d
se
ct
i
on
i
m
pl
em
ent
a
t
i
on f
o
r SR
AM
cel
l
Fi
gu
re
1
5
.
C
l
o
c
k i
m
pl
em
ent
e
d SR
AM
cel
l
d
e
si
gn
Evaluation Warning : The document was created with Spire.PDF for Python.