Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
5
,
No
. 2, Oct
o
ber
2
0
1
4
,
pp
. 23
0~
23
6
I
S
SN
: 208
8-8
6
9
4
2
30
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
An Adaptive Neuro-Fuzzy Inf
erence Distributed Power Flow
Cont
roll
er (DPF
C) in M
u
lti-Machine Power Systems
G.
Ma
dhusudha
n
a
Ra
o*
, V.A
n
wesha
Kuma
r*
*,
B.V
.
Sa
nker Ra
m*
* P
r
ofes
s
o
r, Dep
a
rtem
ent
of Electrical and Electr
onics
Eng
i
neerin
g,
TKRCET
** Res
ear
ch S
c
h
o
lar,
Depar
t
em
e
n
t of
El
ectr
i
ca
l
a
nd El
ectron
i
cs
E
ngineer
ing,
J
N
TUH
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
May 22, 2014
Rev
i
sed
Au
g
25
, 20
14
Accepted
Sep 10, 2014
A well-prepar
ed
abs
t
rac
t
enab
les
the re
ader to
id
entif
y th
e bas
i
c
conten
t of a
docum
ent quick
l
y
and
ac
cura
tel
y
,
to dete
rm
ine its
relev
a
nc
e to th
ei
r inter
e
sts,
and thus
to dec
i
de whether to r
e
ad the docum
ent
in its
entir
et
y.
T
h
e Abs
t
ract
should be infor
m
ative and
co
mpletely
self-ex
p
lanator
y
, prov
ide a
clear
statement of the problem, the proposed
approach or solution, and point out
major findings and conclusions.
The Abst
ract sh
ould be 100 to
2
00 words in
length
.
The ab
stract should be written in
the past tense. Standar
d
nomenclatur
e should be used and abbr
eviatio
ns should be a
voided. No
liter
a
tur
e
should be cited
.
The key
w
or
d list prov
ides the opportu
nit
y
to add
key
w
ords, used
b
y
th
e ind
e
xing
and abst
racting s
e
rvices, in
addition to those
alre
ad
y pres
ent
i
n
the ti
tle
. J
udic
i
ous
us
e of ke
ywords
m
a
y
in
cre
a
s
e
the
eas
e
with which
int
e
r
e
sted p
a
rti
e
s c
a
n
loc
a
te
our
art
i
cl
e.
Keyword:
DPFC
Genetic Alg
o
ri
tm
(GA
)
Op
tim
al lo
cati
o
n
Op
tim
al Settin
g
s
UPFC
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
G
.
Madhu
su
dh
an
a Rao
,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
TK
R C
o
lleg
e
of
En
g
i
n
eer
i
n
g
an
d Tech
no
logy,
M
e
db
owl
i
,
M
eerpet
,
Hy
dera
b
a
d-
5
0
0
0
9
7
.
Em
a
il: g
u
rralamad
h
u
@g
m
a
i
l
.
co
m
1.
INTRODUCTION
FAC
T
S
Tec
h
n
o
l
o
gy
i
s
c
o
nce
r
ne
d
wi
t
h
t
h
e
m
a
nagem
e
nt of active
and
re
activ
e power to im
prove t
h
e
perform
a
nce of electrical networks.
The c
o
ncept of FACT
S technology [4
], [8]-[20] embraces a wi
de variety
o
f
task
s related to
b
o
t
h
n
e
t
w
ork
s
and
con
s
u
m
ers p
r
ob
le
m
s
, e
s
p
ecially relate
d
to
p
o
wer q
u
a
lity
issu
es, where a
lo
t of
p
o
wer quality issu
es can b
e
im
p
r
ov
ed
or en
h
a
n
c
ed
with
an
ad
equ
a
te co
n
t
ro
l o
f
th
e
po
wer flow.
By FACTS,
o
p
e
rator
g
o
v
e
rn
s th
e
ph
ase ang
l
e, th
e vo
ltag
e
p
r
o
f
ile at certain
bu
ses and
lin
e
im
pedance
.
Po
wer fl
ow i
s
co
nt
r
o
l
l
e
d an
d i
t
fl
o
w
s by
t
h
e cont
rol
act
i
ons
usi
n
g FAC
T
S [4]
,
[
8
]
-
[
2
0]
devi
ces
,
wh
ich
in
cl
u
d
e:
a)
Static VAR C
o
m
p
en
sato
rs
(SVC)
b)
Th
yristor C
o
n
t
ro
lled Series Cap
acito
rs (TC
S
C)
c)
Static Co
m
p
en
sato
rs (STATC
OM)
d)
Static Series S
y
nchronous
Com
p
ensators
(S
SSC)
e)
Uni
f
i
e
d Po
wer
Fl
ow
C
o
nt
r
o
l
l
e
rs
(
U
P
F
C
)
2.
UNIFIED POWER FL
OW
CONTROLLERS (UPFC)
The U
PFC
m
a
y
be co
nsi
d
e
r
e
d
t
o
be co
nst
r
u
c
t
e
d o
f
t
w
o
V
S
C
s
sha
r
i
n
g a com
m
on capaci
t
o
r o
n
t
h
ei
r
DC
si
de an
d
a uni
fi
e
d
co
nt
rol
sy
st
em
. A sim
p
l
i
f
i
e
d schem
a
ti
c repres
ent
a
t
i
on
of t
h
e UPFC
i
s
gi
ven i
n
Fi
gu
re 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
An A
d
apt
i
ve N
e
ur
o-F
u
zzy
I
n
f
e
rence
Di
st
ri
b
u
t
e
d
Pow
e
r
Fl
ow
C
o
nt
r
o
l
l
e
r (
D
PFC
)
…
(
G
.Ma
d
h
u
s
u
d
h
a
n
a
R
a
o)
23
1
Fi
gu
re
1.
Sc
he
m
a
t
i
c
di
agram
fo
r t
h
e
U
PFC
The
UP
FC
gi
v
e
s si
m
u
l
t
a
neou
s co
nt
r
o
l
of
re
al
an
d re
act
i
v
e
p
o
we
r
fl
o
w
a
n
d
v
o
l
t
a
ge
am
pl
i
t
ude
at
t
h
e
UPFC term
in
als. Ad
d
ition
a
lly, th
e con
t
ro
ller
m
a
y b
e
ad
j
u
st
ed
to
gov
ern
on
e or m
o
re o
f
th
ese criteria in
an
y
co
m
b
in
atio
n
o
r
to
co
n
t
ro
l
no
ne of th
em
. Th
i
s
techn
i
qu
e
p
e
rmits with
th
e co
m
b
in
ed
ap
p
l
i
catio
n
o
f
con
t
ro
lling
the pha
se angle with cont
roll
ed series reacti
v
e com
p
en
sations a
n
d voltage regulati
on,
but also the real
-time
chan
ge
fr
om
one m
ode
of
co
m
p
ensat
i
on i
n
t
o
a
not
her
o
n
e
t
o
ha
n
d
l
e
t
h
e
act
ual
sy
st
em
cont
i
n
ge
nci
e
s
m
o
re
effectively.
For insta
n
ce, seri
es
react
i
v
e
co
m
p
ensat
i
on m
a
y
be al
t
e
re
d
by
p
h
ase
-
an
gl
e co
nt
r
o
l
[
2
]
or
vi
c
e
v
e
rsa. Th
is can b
eco
m
e
essentiall
y i
m
p
o
r
tant at rela
tiv
ely
b
i
g
n
u
m
b
e
rs
of FACTS d
e
v
i
ces will b
e
applied
i
n
interconnected power grids
,
and c
o
m
p
atibility and coor
di
nation c
ont
rol can own to be
save in the face of
devices
failure
s and system
changes
.
2.
1.
DPFC Modeling
To e
n
abl
e
t
h
e
cont
rol
of
t
h
e
DPFC
[
22]
, c
o
nt
r
o
l
l
e
rs f
o
r i
n
di
vi
d
u
al
DPFC
co
nve
rt
ers a
r
e
nee
d
ed
. T
h
i
s
chapt
e
r ad
d
r
es
ses t
h
e
basi
c c
ont
rol
sy
st
em
of t
h
e D
PFC
[
21]
,
w
h
i
c
h i
s
c
o
m
posed
o
f
sh
unt
c
o
nt
rol
a
n
d seri
es
cont
rol
t
h
at
are
hi
g
h
l
i
g
ht
ed
i
n
Fi
gu
re
2.
Fi
gu
re 2 DPFC
B
a
si
c
C
o
nt
rol
The fu
nct
i
o
ns of
t
h
e
se
ri
es
c
o
ntrol can be
summarized as:
a)
Main
tain
th
e cap
acito
r DC
vo
ltag
e
o
f
its
own conv
erter
b
y
u
s
i
n
g th
e
3rd
h
a
rm
o
n
i
c freq
u
e
n
c
y
com
pone
nt
s.
b)
Gene
rate the series voltage
at
the funda
mental
freque
ncy that is prescribe
d
by the central
cont
rol
.
The
fu
nct
i
o
ns
of
t
h
e s
h
unt
c
o
nt
r
o
l
are:
a)
In
ject
a c
o
nst
a
nt
3
r
d
harm
oni
c cu
rre
nt
i
n
t
o
t
h
e
line t
o
s
u
ppl
y
active p
o
we
r
fo
r se
ries c
o
n
v
e
rters.
b)
Main
tain
th
e cap
acito
r
DC vo
ltag
e
of th
e sh
un
t conv
erter b
y
ab
so
rb
ing
activ
e p
o
wer
fro
m
th
e
gri
d
at
t
h
e
f
u
nd
am
ent
a
l
fre
que
ncy
.
c)
Inject reactive
voltage at t
h
e fu
nd
am
en
tal freq
u
e
n
c
y [1
] to
th
e grid
as
prescrib
ed
b
y
th
e cen
t
ral
cont
rol
.
To de
si
g
n
a D
PFC
co
nt
r
o
l
schem
e
, t
h
e DPFC
m
u
st
fi
rst
be m
odel
e
d.
Thi
s
sect
i
on
p
r
esent
s
s
u
c
h
m
odel
i
ng of t
h
e DPFC
.
As t
h
e DPFC
ser
v
es
t
h
e po
wer sy
st
em
, t
h
e
m
odel
sho
u
l
d
desc
ri
b
e
t
h
e beha
vi
o
r
of t
h
e
DPFC at th
e syste
m
lev
e
l, wh
ich
is at th
e fu
nd
am
en
tal an
d
th
e
3
r
d
h
a
rm
o
n
i
c
frequ
en
cy
. Th
e m
o
d
e
ling
of the
swi
t
c
hi
n
g
be
h
a
vi
o
r
of c
o
n
v
e
rt
ers i
s
not
r
e
qui
red
.
The
m
odel
i
ng of t
h
e DP
FC
con
s
i
s
t
s
of t
h
e con
v
e
r
t
e
r
m
odel
i
ng an
d t
h
e net
w
o
r
k m
odel
i
n
g
.
D
u
e t
o
t
h
e use
of si
ng
l
e
-p
hase seri
es
con
v
ert
e
rs, t
h
ey
are
m
odel
e
d as
a
single-phase s
y
ste
m
. To ensure that
the si
ngle
-
phase se
ries converter
m
o
d
e
l is co
mp
atib
le with
the th
ree-
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
2
30 –
23
6
23
2
pha
se
net
w
or
k
m
odel
,
t
h
e net
w
o
r
k
i
s
m
odel
e
d
as t
h
ree
si
n
g
l
e
-
phase
net
w
or
ks
wi
t
h
1
2
0
◦
phase s
h
ift.
Figure
3
gi
ves
t
h
e
fl
o
w
chart
of
t
h
e
DP
FC
m
odel
i
ng
p
r
oces
s,
whi
c
h l
eads t
o
si
x
se
p
a
rat
e
d m
odel
s
.
Fi
gu
re 3.
D
P
F
C
M
odel
i
n
g p
r
ocess fl
o
w
c
h
a
t
Tw
o t
o
ol
s ar
e em
pl
oy
ed
fo
r t
h
e
DPF
C
m
odel
i
ng:
t
h
e su
per
p
o
s
i
t
i
on t
h
e
o
re
m
and Pa
rk
’
s
tran
sform
a
t
i
o
n
[1
].
As is well k
n
o
wn
, th
e
tran
sm
i
ssi
on n
e
t
w
o
r
k i
s
a l
i
n
ear sy
st
em
and t
h
e s
upe
rp
osi
t
i
o
n
theorem
can there
f
ore be a
p
plied.
Howev
e
r, fo
r th
e co
nv
erter, certain
app
r
oxi
m
a
t
i
ons are nee
d
ed f
o
r t
h
e
ap
p
lication
of
th
e sup
e
rpo
s
itio
n th
eo
rem
.
With
in
th
e
flow
ch
art, t
h
e
d
i
amo
n
d
sh
ap
es
with
‘s.p
.’ ind
i
cate th
e
pr
ocess o
f
ap
p
l
y
i
ng t
h
e su
pe
rp
osi
t
i
on t
h
e
o
r
e
m
,
and t
h
e s
h
ape
s
wi
t
h
‘
d
q’ re
p
r
esent
t
h
e pr
ocess o
f
P
a
rk
’s
trans
f
orm
a
tion. Because Park’s trans
f
orm
a
tion is desi
gne
d for a
n
alysis of signals at a single fre
que
n
c
y
and
t
h
e D
PFC
si
gn
al
consi
s
t
s
o
f
t
w
o
f
r
eq
ue
ncy
com
pone
nt
s, t
h
e s
upe
r
posi
t
i
on
t
h
e
o
rem
i
s
fi
rst
u
s
ed
t
o
se
parat
e
t
h
e com
pone
nt
s. The
n
, t
h
e c
o
m
pone
nt
at
d
i
ffere
nt
f
r
eq
ue
nci
e
s are s
u
b
j
ect
ed t
o
Pa
rk
’
s
t
r
ans
f
o
r
m
a
t
i
on a
n
d
analyzed se
parately. Park’s transform
a
ti
on,
whi
c
h i
s
wi
del
y
used i
n
el
ect
rical m
achinery
anal
ysis, transform
s
AC
c
o
m
pone
nt
s i
n
t
o
DC
.
The
pri
n
ci
pl
e of Pa
r
k
’s t
r
a
n
s
f
o
r
m
a
ti
on i
s
t
o
pr
oj
ect
t
h
e A
C
si
gnal
i
n
ve
ct
or re
p
r
esent
a
t
i
on o
n
t
o
a
rotatin
g re
fere
nce f
r
am
e, referre
d to as the
‘
d
-
q
f
r
am
e’.
Th
e fre
que
ncy
o
f
t
h
e r
o
t
a
t
i
on i
s
cho
s
en t
o
be t
h
e sam
e
as the freque
n
c
y
of the AC signal. As
a resu
lt, th
e v
o
ltag
e
s an
d
th
e cu
rren
t in
th
e d
-
q
referen
ce are con
s
tan
t
in
st
eady
-
st
at
e.
The c
o
m
pone
nt
s at
di
ffe
re
nt
f
r
eq
ue
nci
e
s
are t
r
ans
f
or
m
e
d i
n
t
o
t
w
o
i
nde
pe
n
d
ent
rot
a
t
i
n
g
refe
rence
f
r
a
m
es at diffe
re
nt f
r
eq
ue
ncies
.
The
co
m
p
onents at t
h
e
fundam
en
t
a
l
fr
eque
ncy
a
r
e
3-
p
h
ase
com
pone
nt
s, s
o
Par
k
’
s
t
r
ans
f
orm
a
t
i
on can b
e
appl
i
e
d
di
rec
t
l
y
. Howe
ver
,
as Park
’s t
r
a
n
s
f
o
r
m
a
ti
on i
s
de
si
gne
d
fo
r a
3
-
p
h
ase
s
y
stem
, a variat
ion is
re
qui
red
be
fo
re its
a
p
plication to a
single
-
phase
syste
m
. The
reason
for
th
is is th
at th
e 3
rd
harm
oni
c c
o
m
pone
nt
of a
t
h
ree p
h
ase sy
s
t
em
can be con
s
i
d
ere
d
a si
ngl
e-p
h
ase c
o
m
ponent
,
as i
t
s
com
pone
nt
s are
al
l
i
n
p
h
ase
(‘ze
r
o
-
se
q
u
ence
’)
.
2.
2.
Ad
apti
ve
Neu
r
o-F
u
z
z
y
Infe
rence S
y
ste
m
s
(A
NFI
S
)
Jang and Sun
introduced t
h
e
adap
tive
Ne
uro-Fuzzy infere
nce system
. T
h
is syste
m
m
a
kes use of a
hy
b
r
i
d
-l
ea
rni
n
g rul
e
t
o
opt
i
m
i
ze
t
h
e fuzz
y
sy
st
em
param
e
t
e
rs of a fi
r
s
t
orde
r Su
ge
n
o
sy
st
em
. The Suge
n
o
fuzzy m
odel
(a
lso
known as
TSK fuzzy m
odel)
was
prese
n
t
e
d
t
o
sa
ve
a
sy
st
em
ati
c
m
e
tho
d
t
o
pr
o
duce
f
u
zzy
ru
les
of a cert
a
in
inpu
t-ou
tpu
t
d
a
ta set.
Fig
u
re
4
s
hows
the arc
h
itecture of two i
n
put
s, t
w
o-
r
u
l
e
fi
r
s
t
-
or
de
r
ANFIS
S
uge
no syste
m
, the sy
ste
m
has only
one
output.
Fig
u
re
4
.
Two-in
pu
t, two-ru
le first
o
r
d
e
r Sugen
o
ANFIS
Syste
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
An A
d
apt
i
ve N
e
ur
o-F
u
zzy
I
n
f
e
rence
Di
st
ri
b
u
t
e
d
Pow
e
r
Fl
ow
C
o
nt
r
o
l
l
e
r (
D
PFC
)
…
(
G
.Ma
d
h
u
s
u
d
h
a
n
a
R
a
o)
23
3
The
fi
rst
l
a
y
e
r
of
t
h
e
A
N
FI
S
has a
d
a
p
t
i
v
e
n
ode
s wi
t
h
eac
h
n
ode
ha
s i
t
s
f
u
nct
i
on:
O
1,i
= µ
A
(x
1
)
,
fo
r i-
1,2 or
O
1,i
=
µB2(x
2
)
,
fo
r I
= 3,
4
Whe
r
e
x1
an
d
x2
are t
h
e i
n
put
s;
a
nd
Ai
a
nd B
i
a
r
e l
i
n
g
u
i
s
t
i
c
l
a
bel
s
f
o
r t
h
e
no
de.
A
n
d O
1,I
is th
e
me
m
b
ership
grade of a fuzzy
set A ( = A
1
, A
2
, B
1
or
B
2
) t
o
de
fi
ne t
h
e de
gree
of a
p
pl
y
i
ng t
h
e i
n
p
u
t
t
o
t
h
e set
A.
The sec
o
nd
l
a
y
e
r
has
fi
xe
d
no
des,
w
h
ere
i
t
s
out
put
i
s
t
h
e
pr
od
uct
of
t
h
e
pr
esent
si
g
n
al
s t
o
act
as
t
h
e
firin
g
po
we
r of
a
r
u
le.
O
2,i
=
w
i
= µ
A
(x
1
) µB
2(
x
2
)
,
fo
r i =
3,
4
Th
e th
i
r
d layer
also
h
a
s f
i
x
e
d no
d
e
s; t
h
e
i
th
no
de c
o
m
put
es
t
h
e rat
i
o
o
f
t
h
e
i
th
rules
firin
g
stre
n
g
th t
o
the r
u
les’
firi
n
g
stre
n
g
ths
su
m
:
O
3,i
=
=
,
i=1,
2.
The
nodes
of t
h
e
forth layers
are a
d
aptive
nodes, each with
a node
function:
O
4,i
=
f
i
=
(P
i
x
1
+q
i
x
2
+r
i
)
Whe
r
e
w
i
i
s
a
no
rm
al
i
zed fi
ri
ng
st
ren
g
t
h
p
r
od
uce
d
by
l
a
y
e
r 3;
{
p
i
, q
i
, r
i
) is th
e p
a
ram
e
t
e
r set of th
e
no
de,
an
d
p
o
i
n
t
e
d t
o
c
o
nse
q
u
e
nt
pa
ram
e
t
e
rs.
Th
ere is a si
n
g
le n
o
d
e
in
th
e
fifth
layer,
wh
ich
is a fix
e
d
no
d
e
, wh
ich
cal
cu
lates th
e resu
ltan
t
ou
tput
as the s
u
mm
ation of all signal
s.
Ov
erall ou
tpu
t
= O
5,1
=
∑
f
i
=
∑
∑
The c
ont
ri
b
u
t
i
ons
o
f
t
h
e
pa
p
e
r st
art
wi
t
h
f
o
rm
att
i
ng,
deri
v
i
ng,
co
di
n
g
a
n
d
pr
og
ram
m
i
ng t
h
e
net
w
o
r
k
equat
i
o
ns
req
u
i
red t
o
l
i
n
k
DP
FC
st
eady
-
st
at
e and
dy
nam
i
c m
odel
s
t
o
t
h
e po
we
r sy
st
em
s [3]
.
One
o
f
t
h
e ot
he
r
cont
ri
b
u
t
i
ons
o
f
t
h
e pape
r i
s
deri
vi
n
g
GA a
ppl
i
cat
i
o
ns o
n
DPFC
t
o
achi
e
ve real
cri
t
e
ri
a on a real
wo
rl
d su
b-
t
r
ansm
i
ssi
on n
e
t
w
o
r
k
.
A
n
en
hance
d
GA t
e
chni
que i
s
pr
o
pos
ed
by
en
h
a
nci
n
g an
d
up
dat
i
ng t
h
e w
o
rki
n
g
pha
ses o
f
t
h
e GA i
n
cl
udi
ng t
h
e o
b
je
ct
i
v
e fu
nct
i
on
fo
rm
ul
at
i
on an
d com
put
i
ng t
h
e fi
t
n
es
s usi
n
g t
h
e di
v
e
rsi
t
y
in
th
e pop
u
l
atio
n and selectio
n pro
b
a
b
ility. Th
e sim
u
latio
n
s
and
resu
lts
sh
ow th
e adv
a
n
t
ag
es of
u
s
i
n
g
the
pr
o
pose
d
t
e
c
h
ni
q
u
e.
Int
e
grat
i
ng t
h
e res
u
l
t
s
by
l
i
nki
ng t
h
e case st
u
d
i
e
s
of t
h
e st
eady
-
s
t
at
e and t
h
e
d
y
n
am
ic
analysis [5] is
achieve
d. In the dyna
m
i
c
analysis section, a new idea for in
teg
r
ating
th
e GA with
ANFIS to
b
e
ap
p
lied on
t
h
e con
t
ro
l acti
o
n pro
c
edu
r
e
is p
r
esen
ted.
In
ad
d
ition
to, p
a
ck
ag
es of
So
ft
ware fo
r
g
e
n
e
tic
al
go
ri
t
h
m
and adapt
i
v
e N
e
u
r
o
-
f
u
zzy
sy
st
em
are devel
o
p
e
d. I
n
ot
her r
e
l
a
t
e
d wo
rk
, GA
onl
y
was
use
d
t
o
enha
nce t
h
e sy
st
em
dy
nam
i
c
per
f
o
r
m
a
nce consi
d
eri
ng al
l
wo
rki
n
g ra
nge
of
p
o
we
r sy
st
em
at
a t
i
m
e
t
h
at
ga
v
e
a difficulty a
n
d i
n
ability in som
e
cases
to
reach t
h
e soluti
on cr
iteria.
In
t
h
is pape
r,
for every operating poi
nt
GA is u
s
ed to
search
fo
r co
ntr
o
llers’
para
m
e
ters, para
m
e
ters found at
certain operati
ng
point are differe
nt
fr
om
t
hose
fo
u
n
d
at
ot
he
rs.
A
N
FI
Ss a
r
e
re
qu
i
r
ed i
n
t
h
is case to
reco
gn
ize
th
e ap
propriate p
a
ram
e
ters for each
ope
rat
i
n
g poi
nt
.
2.
3.
Proposed Adaptive
Ne
uro-F
u
zz
y Infere
nc
e Di
stribute
d Power
Flow Controller
(DP
F
C)
Th
e DPFC m
o
d
e
lin
g
an
d
co
ntro
l are sim
u
lat
e
d
in
th
e Mat l
a
b
Sim
u
lin
k
.
Th
e sch
e
m
a
tic o
f
th
e DPFC
syste
m
in
th
e si
m
u
latio
n
is sho
w
n
in Figu
re
5
.
To
sim
p
lify th
e calcu
latio
n, o
n
e
set of seri
es con
v
e
rters i
s
u
s
ed
to
rep
r
esen
t t
h
e d
i
stribu
ted
co
nv
erters.
Fi
gu
re
5.
D
P
F
C
sy
st
em
in
the sim
u
lat
i
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
2
30 –
23
6
23
4
Th
e cap
a
b
ility o
f
i
n
j
ecting
a co
n
t
ro
llab
l
e
3
6
0
◦
se
ri
es v
o
l
t
a
g
e
i
s
si
gni
fi
e
d
b
y
t
h
e i
nde
pe
nd
ent
co
nt
r
o
l
of t
h
e active a
n
d reactive
power
flow
s at t
h
e receivi
ng e
n
d.
As s
h
own,
the active a
n
d reactive powe
r
can
be
in
d
e
p
e
nd
en
tly
co
n
t
ro
lled, wh
ich
in
d
i
cates that th
e DPFC is cap
ab
le o
f
injectin
g
th
e 36
0
◦
cont
r
o
l
l
a
bl
e v
o
l
t
a
ge
at the fundam
e
ntal freque
nc
y. The
tra
n
sients are
ca
used
b
y
th
e variatio
n in
t
h
e
DC
v
o
ltag
e
s
o
f
t
h
e series
co
nv
erters [6
].
Th
e DC vo
ltag
e
s o
f
bo
th
th
e
series
an
d
th
e shun
t co
nv
erters are well
m
a
in
tain
ed
d
u
ri
ng
ope
rat
i
o
n. T
h
e
pr
o
pose
d
st
r
u
ct
ure
of a
DP
FC
Sh
unt
C
o
n
v
ert
e
r C
o
nt
rol
DC
v
o
l
t
a
ge r
e
gul
at
o
r
i
s
s
h
o
w
n
i
n
Fi
gu
re 6.
Fi
gu
re
6.
D
P
F
C
Sh
unt
C
o
nve
rt
er C
ont
r
o
l
D
C
v
o
l
t
a
ge re
g
u
l
at
or
The pr
o
pose
d
st
ruct
ure of
Ad
a
p
tive Ne
uro-Fuzzy
Infe
rence Dist
rib
u
ted P
o
w
e
r Fl
o
w
Co
ntr
o
ller
(
D
PFC)
is show
n in
Figu
r
e
7.
Fi
gu
re
7.
A
d
a
p
t
i
v
e Ne
ur
o-
Fuz
z
y
In
fere
nce
D
i
st
ri
but
ed
P
o
w
e
r Fl
ow
C
o
nt
r
o
l
l
e
r (D
PFC
)
3.
SIM
U
LATI
O
N
RESULTS
AN
D DIS
C
US
SION
S
In th
is section
,
th
e
DPFC
m
o
d
e
l is created
an
d sim
u
lated
o
n
Mat lab
/
Si
m
u
l
i
n
k
.
All the sim
u
lat
i
o
n
s
are
based on
s
i
ngle-phase
pe
r-unit system
. One
shunt c
o
nv
er
ter and
t
w
o sing
le ph
as
e
s
e
ries converte
rs are
b
u
ilt and
tested.
Th
e system
u
n
d
e
r con
s
i
d
eratio
n is sim
u
late
d
u
n
d
e
r
d
i
fferen
t op
eratin
g co
nd
itio
ns to inv
e
stig
ate it
s
tran
sien
t stab
i
lity p
e
rform
an
ce and
to
d
e
m
o
n
s
trate
th
e effectiv
en
ess o
f
th
e
p
r
opo
sed
con
t
ro
ller. Th
e
cont
i
n
ge
ncy
u
nde
r c
o
nsi
d
e
r
a
t
i
on i
s
a t
h
ree
p
h
ase
faul
t
at
t
h
e se
ndi
n
g
e
n
d
o
f
one
o
f
t
h
e t
r
a
n
sm
i
ssi
on l
i
n
es
wh
en
t
h
e
g
e
n
e
rato
r is op
erating
at
d
i
fferen
t
po
wer lev
e
ls
. Th
e
fau
lt is con
s
id
ered
to o
c
cur b
e
tween t=0
.
2s and
t=0
.
3s.Th
e
fau
l
t is cleared wit
h
th
e op
eratio
n of tran
sm
issio
n
lin
e
reclo
s
ure.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
An A
d
apt
i
ve N
e
ur
o-F
u
zzy
I
n
f
e
rence
Di
st
ri
b
u
t
e
d
Pow
e
r
Fl
ow
C
o
nt
r
o
l
l
e
r (
D
PFC
)
…
(
G
.Ma
d
h
u
s
u
d
h
a
n
a
R
a
o)
23
5
The following case studies
were
unde
rtaken to m
a
ke t
h
e assessm
ent
s
and
sh
o
w
n i
n
Fi
gu
re
8 t
o
Fi
gu
re 9.
Fi
gu
re 6-
1:
S
p
eed devi
at
i
o
n v
e
rsus
t
i
m
e
Fi
gu
re 6-
2:
P
o
wer
an
gl
e vers
us
t
i
m
e
Fi
gu
re
6-
3.
R
e
al
po
we
r
vers
u
s
t
i
m
e
4.
CO
NCL
USI
O
N
The
DPFC
i
s
m
odel
e
d i
n
t
h
e d-
q f
r
am
e by
usi
n
g Par
k
’s
t
r
ans
f
o
r
m
a
t
i
o
n. T
h
e c
o
m
ponent
s
of t
h
e
DPFC in
AC
qua
ntity are transform
e
d into DC quantity.
The c
o
m
pone
nts
in differe
n
t fre
que
ncies are then
sep
a
r
a
tely m
o
deled
.
Th
is m
o
del is a good
r
e
p
r
esen
tatio
n
o
f
th
e
b
e
h
a
v
i
o
r
of
th
e DPFC at
th
e system
lev
e
l and
can
be
used
t
o
desi
g
n
t
h
e pa
ra
m
e
t
e
rs of t
h
e
DPFC
c
o
nt
r
o
l
.
B
a
sed
o
n
t
h
e
DPFC
m
odel
,
t
h
e s
h
u
n
t
c
ont
r
o
l
an
d
the series control are de
veloped. T
h
e functions of thes
e contro
ls are to
m
a
i
n
tain
th
e
DC cap
acito
r
vo
ltages o
f
t
h
e co
nve
rt
ers
and t
o
e
n
s
u
re
t
h
e req
u
i
r
e
d
vol
t
a
ge
s an
d
c
u
rrents are injected from
the
central control. The
DPFC b
a
sic co
n
t
ro
l and
m
o
d
e
l are sim
u
la
ted
in
Mat lab
Si
m
u
lin
k
.
The si
m
u
latio
n
resu
lts sho
w
that th
e
DPFC is able t
o
control the a
c
tive
and
react
ive powe
r fl
ows inde
pende
n
tly
and
that during operation,
t
h
e
DC
v
o
ltag
e
s
o
f
th
e con
v
e
rters are well m
a
in
tain
ed
. C
o
mm
u
n
i
cation
betwee
n
the cent
r
al control a
n
d the
se
ries
co
nv
erters is also
con
s
i
d
ered. To in
crease
th
e relia
b
ility
o
f
t
h
e DPFC d
u
ring
co
mm
u
n
icatio
n
failu
re,
th
e
referen
c
e signals in
DC
q
u
an
tities are
u
s
ed
i
n
stead of
i
n
AC
qu
an
tities. Th
e lin
e curren
t is selected as the
rotation refe
re
nce fram
e
because it can be e
a
sily
measured
by the series conve
r
ters without ext
r
a cost.
Duri
ng
comm
unication failure, the series conve
rter can use the la
st received
setti
ng to c
onti
n
ue ope
ration, thereby
in
creasing
th
e
syste
m
’s reliab
ilit
y. Th
is co
mm
u
n
i
catio
n
m
e
th
od
is also
tes
t
ed
in
Mat lab
Si
m
u
lin
k
.
It sho
w
s
th
at in
stead
y
-state, co
mm
u
n
i
catio
n
in DC
q
u
a
n
tities [6
]-[7
] h
a
s th
e same resu
lt as i
n
AC
q
u
a
n
tities. Du
ri
ng
co
mm
u
n
i
catio
n
failu
re, th
e series conv
erter of th
e D
PFC can
m
a
in
tain
syn
c
hro
n
i
zation
with
th
e system
.
REFERE
NC
ES
[1]
Elgerd
.
Electric
Energy S
y
stem T
h
eory: An
Induction,
McGRAWHILL BOOK COMPA
NY, USA. 1971.
[2]
Prabha Kundur.
Power Syst
em St
abilit
y and
Cont
rol,
McGRAW-HILL BOOK COMPA
NY, USA. 1993.
[3]
JP Barret, P Bor
n
ard, B
Mey
e
r
.
Power System Simulation,
CHAPMAN & HALL,
UK. 1997.
[4]
M Cha
m
ia
.
Mar
ket
Driven vs. Technology
Driven Approa
ch to Flexible
AC
Transmi
ssion System.
Proceedin
g
s:
FACTS Conference I--
The Future in High
-Voltage Tr
an
smission, TR100504
, Research
Project 3
022, EPRI, 199
2;
5.1.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
2
30 –
23
6
23
6
[5]
K Takahshi,
R
M
Maliszewski,
F Meslier, P
W
a
llac
e
,
L Salv
aderi
,
T W
a
t
ana
b
e.
Impacts of
Demand-Side Power
Electronics Technologies on
Po
wer System Pla
nning.
Proceedings of CIGRE Power El
ec
t
r
onics i
n
E
l
ec
t
r
ic
Power
S
y
stems, Tok
y
o
.
1995: 310-01
.
[6]
J Arrillag
a
.
High
Voltage Dir
ect
Current Transmi
ssion,
PETER
PEREGRINUS LTD., UK. 1983.
[7]
HG Hingorani
H
i
gh-Voltag
e
DC
Transmi
ssion.
IEEE Spectrum.
1996: 63-72.
[8]
HG Hingorani.
Flexible AC
tran
smission.
IEEE
Spectrum. 1993: 40-45.
[9]
L G
y
ug
yi
.
Unifi
ed Pow
e
r Flow
Control Concep
t fo
r Flex
ible
ac
Transmission Sy
ste
m
s.
Proc
TEE, Pt. C
.
1992
;
139(4): 323-331
.
[10]
Y Sekine, K
Tak
a
hashi, T Hay
a
s
h
i.
App
lica
tion o
f
Power Electro
n
ics Technol
og
ies to the 21st C
e
n
t
ury's Bulk
Power
Transmi
ssion in Japan.
F
l
exibl
e
AC Trans
m
is
s
i
on S
y
s
t
em
s
S
p
eci
alIs
s
u
e, In
tern
ati
onal J
ournal
of
Ele
c
tri
cal
P
o
wer &
Energ
y
S
y
stems. 1995; 17(3)
: 18
1- 194.
[11]
B Avramovic, L H
Fink.
Energy Management Systems and Control of FACTS,
Fle
x
ible
AC Tra
n
smission
Sy
ste
m
s
Specia
l
Issue.
In
terna
tiona
l Journ
a
l of
E
l
ec
tric
al
Power
&
Energy
S
y
stems.
1995; 17(3):
195-198
.
[12]
W
.
A.Mittlest
adt
.
Considering in Planning Use of FAC
TS Devi
ces on a Utilit
y System,
Proceedings: FACT
S
Conference I--
The Future in
Hig
h
-Voltage Tr
ansmissi
on, TR-100
504, Research
Pr
oject 3022
, EPR
I
, 1992: 4.2
.
[13]
J Maughn.
Evaluation of the
Flexib
l
e AC Transmission System
(
FACTS
)
Technologies on the Southern Electric
System,
Proceed
ings: FACTS Conference I--
Th
e Future in
High-Voltage Tr
ansmission, TR-100504, Resear
ch
Project 3022, EP
RI. 1992
.
[14]
TJ Hammons.
Flexib
l
e
AC Transmission Systems
(
FACTS
)
,
Electr
i
c
Mach
ines and Powe
r S
y
stems.
1997; 25: 73-85.
[15]
A Davriu, G Do
uard, P Mallet, P
G
Therond.
Taking Accoun
t of FACTS Inves
tmen
t Selection Stud
ies.
Proceedings of
CIGRE Power Electronics
in
Electric
Power S
y
stems, Tok
y
o. 199
5: 220-05.
[16]
Ross Baldick, Edward Kahn,
Co
ntract Pa
ths, Ph
ase-shifters, and
Eff
i
ci
ent
Ele
c
tri
c
it
y Trade.
IEEE Transactions on
Power S
y
stems.
1997; 12(2): 749
-755.
[17]
J Zaboszk
y
.
On
the Road Towards FACTS,
F
l
exi
b
le AC Trans
m
is
s
i
on S
y
s
t
em
s
Speci
al Is
s
u
e.
International Journ
a
l
of Electrical Po
wer
&
Energy Systems
. 1995; 17
(3): 165-172
.
[18]
EPRI Report:
Flexib
l
e ac Transmission Systems (
FACTS
)
:
Scop
ing Study,
Vol.
1. Part 1: Analytical Studies, EL-
6943. 1990
.
[19]
ARM Tenorio, JB Ekanay
ak
e, N
Jenkins.
Modeling of FACTS Devices.
The six in
ternational conference on AC an
d
DC transmission, IEE. UK. 1996
: 340-345.
[20]
E Larsen
.
Contr
o
l Aspects of FACTS Application
s
,
Proceed
ings:
FACTS Conference I--
The Futu
re in High-Vol
t
a
g
e
Transmission, TR-100504, Research
Project 302
2, EPRI, 1992: 2
.
1.
[21]
P Ramesh, M D
a
modara Reddy.
Power Transfer
Capabilit
y
&
Re
liabil
ity Im
provement in a
Transmission Line usi
n
g
Distribute
d
Powe
r- Flow Controlle
r.
International Journal of Electrical a
nd Computer Engin
eering
(IJECE). 2012;
2(4): 553-562
.
[22]
D Divan,
H Johal.
Distribu
ted
f
a
cts A n
e
w con
c
ept for rea
lizing
grid power flo
w control
. Proc. IEEE 36th Power
Electron. Spec.
Conf. (PESC), 2
005: 8–14.
BIBLIOGRAPHY
OF AUT
HORS
Dr
.
G
.
M
a
dhusu
dhana
Rao,
Prof
essor of the Department in
EEE Department of TKR College of
Engineering and
Technolog
y
and
Sc
ience. He received his Ph.D
& M.Tech from JNT University
H
y
der
a
bad
.
He
has published
more than 18 r
e
sear
ch p
a
pers in International
Journals and 30
Interna
tiona
l co
nferenc
e
/ n
a
tion
a
l conf
eren
ce p
a
pers. He has
more than 15
years of teachin
g
experi
enc
e
. He i
s
a m
e
m
b
er of
IEEE
, IS
TE, IA
CS
IT etc.
, He i
s
acting as
revi
ewer for m
a
n
y
journal l
i
ke Indu
strial E
l
ec
troni
cs (IEEE)
. His Ar
ea of Inter
e
st is P
o
wer elect
ronic
s
and Drives,
Artific
ial
Int
e
ll
ig
ence
and
Exp
e
rt
s
y
stem
s.
V.
Anw
e
sha Ku
mar,
Assistant Professor JJ In
stitut
e
of
Information Technolog
y
-
H
y
d
e
rab
a
d
.
M
.
Tech
from
K L Univers
i
t
y
,
V
a
ddes
w
aram
, Gu
ntur. He
has
co
m
p
leted h
i
s
B.T
ech from
J
N
TU
H
y
der
a
bad
.
He has published 4 conferen
ce pap
e
rs
and 4 Intern
ation
a
l journals. His Area of
inter
e
st is Power
semiconductor
drives and
Artific
ial Intelligen
ce, FACTS,
and sp
ecial mach
ines.
He
i
s
a me
mbe
r
of IE
EE
,
ISTE, and
IACS
IT. IAENG.
D
r
.B.V
.S
an
k
er R
a
m
did his B
.
E OU. Obtained
M.Tech OU an
d Ph.D in 2003
from JNTU. He
has 70 technical pap
e
rs to his credit in v
a
r
i
ous internation
a
l and nation
a
l journals and
conferen
ces. He has guided
12
research
scholar
s
for Ph.D and
6 Candidates
ar
e still pursuing
their res
e
arch
.
His
areas
of int
e
res
t
inc
l
ude F
A
CTS
,
P
o
wer Elec
tronic Appli
c
ations
to P
o
wer
S
y
s
t
em
s
,
P
o
wer
S
y
s
t
em
s
Reliabi
l
i
t
y
. He has
m
o
re than 22
y
e
ars
of teach
ing exper
i
enc
e
. He is
a
m
e
m
b
er of IEEE, ISTE
, IACSIT etc
., He
is act
i
ng as reviewe
r
for m
a
n
y
journa
l like Industr
ia
l
Electronics (IEEE)
Evaluation Warning : The document was created with Spire.PDF for Python.