Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
6, No. 4, Decem
ber
2015, pp. 869~
875
I
S
SN
: 208
8-8
6
9
4
8
69
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Efficiency Optimized Brushless
DC Motor Drive based on Input
Current Harmonic Elimination
Tridibesh Nag
1
, Ariji
t
Ach
a
r
y
a
1
, Debashis
Chatterjee
2
,
Ashoke
K
.
G
a
n
g
uli
2
, Arunava Chatterjee
2
1
Departement o
f
Electr
i
ca
l
Engineering
,
Netaji S
ubhash Engin
eer
ing College
2
Depart
em
ent o
f
El
ectr
i
c
a
l
Engi
neering
,
J
a
d
a
vpu
r Univers
i
t
y
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Feb 19, 2015
Rev
i
sed
Au
g 5, 201
5
Accepted Aug 28, 2015
This paper
des
c
ribes ef
ficiency
im
provement of a position
sensorless
brushless dc mo
tor with improved pul
se width modulation scheme for the
invert
er com
p
ared to exis
ting o
n
es
. This
is
bas
e
d on S
e
lect
ive
Harm
onic
Elimination. Th
e proposed method re
duces Total Harmonic Distortion from
the input
curren
t
and armatur
e
flux and ther
eb
y
redu
cing th
e
core losses.
Also the power
requirement with the
proposed
switching
techniq
u
e is much
lesser than th
e existing switchin
g
sche
me. The
effectiveness of the proposed
scheme is d
e
monstrated
through
si
mulation and experimental
r
e
sults.
Keyword:
B
r
us
hl
ess DC
m
o
t
o
r
Efficiency optimization
Selectiv
e h
a
rmo
n
i
c elim
in
atio
n
Sens
orl
e
ss
co
n
t
rol
Tot
a
l
ha
rm
oni
c di
st
o
r
t
i
o
n
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Trid
ib
esh Nag
,
Depa
rtem
ent of Elect
ri
cal
E
n
gi
nee
r
i
n
g,
Net
a
ji
S
u
bha
sh
En
gi
nee
r
i
n
g C
o
l
l
e
ge,
Techno City, Garia, Ko
lk
ata -
700
152
, I
n
d
i
a.
Em
a
il: trid
ib
esh
n
a
g@g
m
ail.c
o
m
1.
INTRODUCTION
B
r
us
hl
ess
DC
(B
LDC
)
m
o
t
o
rs
ha
ve
bee
n
wi
del
y
use
d
i
n
vari
ous
i
n
d
u
st
ri
es
, a
u
t
o
m
a
ti
on a
n
d
appl
i
a
nc
es d
u
e
t
o
t
h
ei
r
hi
g
h
e
r
effi
ci
e
n
cy
, i
m
prove
d r
u
g
g
e
dne
ss an
d
po
wer
den
s
i
t
y
. B
r
us
hl
ess
DC
(
B
LDC
)
m
o
to
rs with
trap
ezo
i
d
al b
a
ck electro
m
o
tiv
e force (EMF
)
ch
aracteristics requ
ires si
x
d
i
screte ro
to
r
positio
n
in
fo
rm
atio
n
for th
e inv
e
rter
as th
ey are u
s
ed
to
trigg
e
r th
e switch
e
s, here m
e
tal o
x
i
de se
m
i
co
n
d
u
c
t
o
r
field
effect tra
n
sisto
r
(M
O
SFET
)
.
Brus
hless DC
m
o
tors req
u
ire lo
wer m
a
in
ten
a
n
ce du
e to
t
h
e lack of m
echanical
com
m
ut
at
or and t
h
ey
ha
ve
hi
g
h
p
o
w
er
de
nsi
t
y
. Fo
r t
h
es
e reas
ons t
h
ey
are i
d
eal
fo
r
hi
g
h
t
o
rq
ue t
o
wei
g
ht
ratio
app
lication
s
[1
]. Th
e m
o
st i
m
p
o
r
tan
t
d
r
awb
a
ck
o
f
BLDC m
ach
in
e is h
i
gh
in
itial cost an
d
relativ
e
h
i
gh
er
co
m
p
lex
ity d
u
e to
t
h
e con
v
e
rter
p
a
rt. Reducin
g lo
sses thro
ugh
t
h
e inj
ect
io
n of
p
r
op
er
direct a
x
is c
u
rrent i
n
the stator
winding is als
o
present
[2]. T
h
e control algorithm
determines
t
h
e
optimal direct a
x
is
current
according to the
ope
rating speed and
loa
d
i
ng conditions. Efficiency
im
pr
ovem
ent
through using both
a
x
ial
an
d rad
i
al flux also
h
a
s
b
een
stu
d
i
ed
[3
].
Utilizin
g
bo
th
rad
i
al and
ax
ial g
a
ps can in
crease th
e effectiv
e area
fo
r t
o
r
q
ue ge
n
e
rat
i
on a
n
d t
h
e
fi
l
l
-fact
or
fo
r
t
h
e coi
l
wi
n
d
i
n
g
.
B
y
opt
i
m
izi
ng c
o
re a
nd
perm
anent
m
a
gnet
t
o
min
i
mize th
e e
l
ectro
m
a
g
n
e
tic lo
ss wh
ile m
a
i
n
tain
ing
th
e same lev
e
l o
f
to
rq
u
e
, th
e m
a
g
n
e
tic satu
ratio
n
o
f
th
e
co
r
e
is also r
e
d
u
c
ed
. Th
e iron
loss can
b
e
red
u
c
ed
b
y
th
e
f
l
ux
-w
eak
en
ing
co
n
t
r
o
l
[
4
]-[6
].
To
r
e
du
ce th
e air
gap
fl
u
x
by
t
h
e
dem
a
gnet
i
z
i
n
g
effect
due t
o
t
h
e
d
-axis arm
a
ture reactio
n,
d
-axi
s cu
rre
nt
i
s
cont
r
o
l
l
e
d.
Op
t
i
m
a
l
cont
rol
m
e
t
h
o
d
of a
r
m
a
t
u
re cur
r
e
n
t
vect
o
r
i
s
pr
op
ose
d
i
n
o
r
der t
o
m
i
ni
m
i
ze t
h
e co
nt
r
o
l
l
a
bl
e l
o
ss
es [
7
]
.
Switch
i
ng techn
i
qu
es
fo
r BLDC m
o
to
r t
o
rqu
e
ripp
le re
d
u
c
t
i
on i
s
p
r
o
p
o
se
d
pre
v
i
o
usl
y
u
s
i
n
g
m
i
crocont
rol
l
e
r
[8]
.
F
P
G
A
ba
s
e
d P
W
M
i
s
al
s
o
p
r
ese
n
t
e
d i
n
[9]
.
Al
so F
u
zz
y
l
ogi
c base
d s
p
eed c
o
nt
r
o
l
i
s
di
scusse
d i
n
[
10]
.
In
t
h
e
pr
op
ose
d
cont
rol
,
t
h
e
p
h
ase c
u
rre
nt
wave
f
o
rm
i
s
switched effect
ively to e
lim
i
n
ate so
m
e
lo
wer order
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
86
9 – 875
87
0
h
a
rm
o
n
i
cs wh
i
c
h
will red
u
ce
th
e h
a
rm
o
n
i
cs g
e
n
e
rated
b
y
th
e stato
r
flux
.
Th
is will also
en
su
re th
at the
BLDC
t
o
ha
ve m
i
nim
a
l
core
l
o
sses
.
Fi
gu
re
1 s
h
ows
t
h
e e
qui
val
e
nt
ci
rcui
t
o
f
a
B
L
DC
m
o
t
o
r.
c
R
a
R
b
R
c
L
b
L
a
L
a
e
b
e
c
e
Fi
gu
re
1.
Eq
ui
val
e
nt
ci
rc
ui
t
o
f
a B
L
DC
m
o
t
o
r
2.
BLDC MOT
O
R MO
DEL
The t
h
ree
pha
s
e
v
o
l
t
a
ge eq
ua
t
i
ons
fr
om
t
h
e equi
val
e
nt
ci
rc
ui
t
of
Fi
g
u
re
1
fo
r t
h
e
B
L
DC
m
o
t
o
r can
b
e
written
as,
00
0
0
00
0
0
00
0
0
aa
a
a
a
a
bb
b
b
b
b
cc
c
c
c
b
vR
i
L
i
e
d
vR
i
L
i
e
dt
vR
i
L
i
e
(1
)
Whe
r
e,
v
= st
at
or
v
o
l
t
a
ge,
R
=
stator
resistance,
i =
stator c
u
rrent,
L
= stator
inducta
nces and
e
= back
e
m
f.
Th
e abov
e qu
an
tities are d
e
fi
n
e
d
for three ph
ases
a-
b-c
.
T
h
e m
echanical dynam
i
c equation for the
m
o
t
o
r
can be g
i
ven
a
s
,
(t
)
(
)
()
em
L
d
TB
J
T
t
dt
t
(2
)
Whe
r
e,
T
em
(t
)
= de
vel
o
ped
el
ect
rom
a
gnet
i
c
t
o
r
que
,
ω
(t)
=
rot
o
r a
n
gula
r
v
e
locity
,
B =
v
i
scou
s frictio
n
constant,
J
= ro
tor m
o
m
e
n
t
of in
ertia and
T
L
= lo
ad
torq
u
e
.
The
bac
k
EMF
(
a
phase
)
ca
n be descri
bed
as
,
()
ae
ek
t
(3
)
Whe
r
e,
k
e
= pe
r-
pha
se back
E
M
F
The v
o
l
t
a
ge
e
q
uat
i
o
n
i
n
Lapl
a
ce
d
o
m
a
i
n
can be obt
ai
ne
d fr
o
m
(1)
an
d (
2
) f
o
r
p
h
ase
a
as
,
()
()
()
()
a
an
a
a
a
e
ss
Vs
R
I
L
I
s
k
s
(4
)
From
(4
),
t
h
e
p
h
ase c
u
r
r
e
n
t
ca
n
be
gi
ve
n as
,
()
()
()
an
e
a
aa
Vs
K
s
Is
Rs
L
(5
)
The electrom
a
gnetic torque
T
em
can
be e
x
pre
ssed as
,
()
aa
b
b
c
c
em
ei
e
i
e
i
T
(6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Efficien
cy Op
ti
mized Bru
s
h
l
ess DC Mo
t
o
r
Drive b
a
sed
on
Inp
u
t
C
u
rren
t
Ha
rmon
ic .... (Trid
i
b
e
sh
Nag
)
87
1
3.
P
R
O
P
O
S
ED
S
H
E
P
W
M
BA
S
E
D L
O
SS
M
I
NI
M
I
ZA
TI
O
N
For a T
r
a
p
ezoi
d
al em
f
machine conside
r
e
d
,
the ba
c
k
em
f and
ph
ase cu
rre
nt wa
vef
o
rm
s fo
r p
h
ase
a
con
s
i
d
eri
ng 12
0
o
swi
t
c
hi
n
g
ar
e gi
ven i
n
Fi
gu
re 2(a
)
f
o
r n
o
r
m
a
l
swi
t
c
hi
ng and Fi
gu
re 2
(
b
)
fo
r P
W
M
s
w
i
t
c
hi
n
g
req
u
ire
d
fo
r s
p
eed c
ont
rol a
p
plications.
From
Fi
g
u
re
2
(
a) t
h
e
harm
oni
c cu
rre
nt
s ca
n
be
obt
ai
ne
d
as,
Figu
re
2.
P
h
as
e cu
rre
nt wa
ve
fo
rm
for
1
2
0
o
co
ndu
ctio
n m
o
d
e
(a
)
no
r
m
al sw
itch
i
ng
(b)
PWM switch
i
ng
The c
o
r
r
es
po
n
d
in
g e
x
p
r
essi
o
n
fo
r the
cu
rre
nt wa
ve
fo
rm
for
1
2
0
o
co
n
duc
t
i
on m
ode ca
n
be
gi
ve
n as
,
41
1
1
[
c
os
sin
c
os
3
s
i
n
3
c
os
5
s
i
n
5
c
os
7
s
in
7
....]
35
7
a
I
I
tt
t
t
(7
)
Pu
ttin
g
α
=
30
o
i
n
e
quat
i
o
n
(
7
)
,
t
h
e
ha
rm
oni
c spect
r
u
m
can b
e
gi
ve
n i
n
Fi
gu
re
3.
Fi
gu
re 3.
Ha
rm
oni
c spect
r
u
m
fo
r 12
0
o
c
o
nd
u
c
t
i
on m
ode
fo
r
no
rm
al
phase c
u
r
r
ent
wa
vef
o
r
m
Usi
n
g t
h
e
p
r
o
pos
ed s
w
i
t
c
hi
ng
wi
t
h
rem
oval
o
f
5
th
and 7
th
h
a
r
m
o
n
i
cs as show
n
i
n
th
e pr
opo
sed
Sel
ect
i
v
e Ha
r
m
oni
c El
im
i
n
at
i
on
base
d (
S
H
E
) P
W
M
s
w
i
t
c
hi
n
g
of
Fi
g
u
re
2(
b)
, t
h
e
ha
rm
oni
c
spect
r
u
m
can
be
sho
w
n i
n
Fi
gu
r
e
4.
Fi
gu
re 4.
Ha
rm
oni
c spect
r
u
m
fo
r 12
0
o
c
o
nd
u
c
t
i
on m
ode
fo
r
SHE
-
P
W
M
p
h
a
se cu
rre
nt
wa
vef
o
rm
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
86
9 – 875
87
2
Th
e
p
h
a
se curr
en
t
o
f
BLD
C
m
o
to
r
f
o
r
120° con
t
ain
s
h
a
rm
o
n
i
cs as ev
id
en
t
f
r
o
m
Fig
u
r
e
2
(
a)
.
I
t
is
reasona
b
ly apparent that
by elim
in
at
i
ng t
h
e c
u
r
r
ent
harm
oni
cs, t
h
e c
o
re l
o
s
s
es can
be m
i
n
i
m
i
zed, t
hus
hi
ghe
r
effi
ci
ency
i
n
t
h
e gi
ve
n
spee
d
r
a
nge
can
be
o
b
t
ai
ned.
Fo
r
re
m
oval
of
5
th
and
7
th
ha
rm
onics fr
om
the wa
v
e
fo
rm
,
t
h
ree s
w
i
t
c
hi
n
g
s a
r
e
per
f
o
r
m
e
d
per
q
u
arte
r
cycle of t
h
e c
u
rre
nt wa
ve
form
. Of the t
h
re
e switchi
ngs
, t
w
o are
u
s
ed
for eli
m
in
atio
n
of th
e 5
th
and
7
th
harm
on
i
c
s and o
n
e sw
i
t
c
hi
ng i
s
use
d
fo
r ad
just
m
e
nt
of t
h
e f
u
ndam
e
nt
al
.
Thi
s
p
r
oces
s o
f
sel
ect
i
v
e har
m
oni
c el
im
i
n
ati
on ba
sed P
W
M
i
s
em
pl
oy
ed usi
ng a PIC
base
d m
i
croco
n
t
r
ol
l
e
r
PIC
1
8F
4
5
2
.
T
h
e
bl
oc
k
di
ag
r
a
m
of t
h
e e
xpe
ri
m
e
nt
al
set
up
i
s
sh
ow
n i
n
Fi
g
u
re
5
.
BL
DC
Microco
n
troller
1
8
F452
SH
E-PW
M
pulses
230V
, 50
Hz,
1-
Φ
AC
L
C
Fi
gu
re
5.
B
l
oc
k
di
ag
ram
of t
h
e ex
peri
m
e
nt
al set
u
p
Hysteresis L
o
s
s
:
Th
is loss is
du
e to th
e
rev
a
rsal of m
a
g
n
e
t
i
sati
on
of t
h
e
arm
a
ture core
. The
core
undergoes
one
com
p
lete cycle
of m
a
gnetic revarsal
after passing under
o
n
e
pai
r
o
f
pol
e
s
.
Hy
st
eresi
s
l
o
ss i
s
gi
ven
b
y
wel
l
kn
o
w
n
St
ei
nm
ent
z
eq
uat
i
o
n e
x
p
r
esse
d as
,
1.
6
max
hh
WK
B
f
W
a
tts
(8)
Whe
r
e
f
= Fund
am
en
tal
f
r
e
quen
c
y,
max
B
i
s
t
h
e m
a
xi
m
u
m
fl
ux de
nsi
t
y
of
t
h
e st
a
t
or c
o
re
an
d
h
K
= Hysteresi
s
constant. Ta
ki
ng
ha
rm
onic com
pone
nts int
o
account for
a
three pha
se balance
d
syste
m
,
(8)
can be m
odified
as,
1.6
1
.6
1.6
ma
x
5
m
a
x
5
7
m
a
x
7
.....
th
hh
h
h
WK
B
f
K
B
f
K
B
f
n
t
e
r
m
(9
)
Eddy
Current
loss:
Wh
en
p
e
rm
an
en
t
m
a
g
n
e
t ro
t
o
r of th
e BLDC
m
o
to
r ro
tates, flux
lin
k
a
g
e
ch
ang
e
s in
stato
r
arm
a
tu
re
core
. T
h
us acc
ording t
o
t
h
e la
ws
of electrom
a
gnetic i
n
du
ctio
n an e.m
.
f is i
n
du
ced
i
n
th
e co
re bod
y wh
ich
sets
u
p
larg
e cu
rren
t in
th
e co
re
d
u
e
t
o
its sm
a
ll resistan
ce.
Th
e power loss d
u
e
t
o
th
e fl
ow of th
is curren
t is
k
now
n as edd
y
cur
r
e
n
t
lo
ss. Th
e ed
d
y
cur
r
e
nt lo
ss
p
e
r un
it co
r
e
vo
lu
m
e
e
W
i
s
gi
ve
n
by
rel
a
t
i
o
n
(
1
0),
22
ma
x
ee
WK
B
f
Watts
(
1
0)
Agai
n, t
a
ki
n
g
harm
oni
c c
o
m
p
o
n
e
n
t
s
i
n
acc
ou
nt
(1
0)
can
b
e
m
odi
fi
ed as
,
22
2
2
2
2
ma
x
5
max
5
7
m
a
x
7
.....
th
ee
e
e
WK
B
f
K
B
f
K
B
f
n
t
e
r
m
(1
1)
As evi
d
ent
f
r
o
m
equat
i
on (
9
)
and (
1
1),
bot
h
t
h
e l
o
sses co
n
t
ai
n harm
oni
c t
e
rm
s. R
e
m
oval
of t
h
e 5
th
and 7
th
ord
e
r
h
a
rm
o
n
i
cs
from
th
e ph
ase cu
rren
t
w
ill en
su
re
red
u
c
ed
harm
o
n
i
c con
t
en
t in
t
h
e induced
flux
lin
k
a
g
e
s. Remo
v
a
l
o
f
t
h
ese
h
a
rm
o
n
i
cs from th
e p
h
a
se
cu
rren
t
will con
t
ribu
te to
a i
n
du
ced
fl
u
x
wav
e
fo
rm
with
m
i
n
i
m
a
l co
re l
o
sses. C
o
n
s
equ
e
n
tly, th
e inpu
t
po
wer requ
irem
en
t for th
e
BLDC
m
o
to
r will d
i
min
i
sh
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Efficien
cy Op
ti
mized Bru
s
h
l
ess DC Mo
t
o
r
Drive b
a
sed
on
Inp
u
t
C
u
rren
t
Ha
rmon
ic .... (Trid
i
b
e
sh
Nag
)
87
3
W
i
t
h
t
h
e
rem
oval
of l
o
we
r
or
der
ha
rm
oni
cs i
n
p
h
ase c
u
r
r
ent
wave
f
o
rm
, t
h
e t
o
rq
ue
pul
sat
i
o
n al
s
o
get
s
red
u
ce
d.
4.
RESULTS
A
N
D
DI
SC
US
S
I
ON
A si
m
u
l
a
t
i
on s
t
udy
f
o
r t
h
e
p
r
op
ose
d
sc
hem
e
was ca
rri
e
d
out
usi
n
g
M
A
T
L
AB/Simulink R2012b
. T
o
val
i
d
at
e t
h
e si
m
u
l
a
t
i
on, a
n
e
xpe
ri
m
e
nt
al
study
was al
so
c
o
nducted
using an expe
rim
e
ntal BLDC m
o
tor. T
h
e
co
m
p
lete sp
ecificatio
n
o
f
t
h
e
m
o
to
r is pro
v
id
ed
in
Tab
l
e
1
.
Th
e requ
ired
48V DC
for th
e BLDC mo
tor is
obtaine
d t
h
rough a single
phase diode
bri
d
ge rectifie
r
m
odule. The
DC
voltage
is filtered
with a
LC
filter
b
e
fo
re it is fed to
th
e th
ree ph
ase inv
e
rter
driv
er.
T
h
e P
I
C
m
i
crocont
rol
l
er i
s
used f
o
r gene
rat
i
n
g SH
E base
d
PW
M for th
e
BLDC driv
er.
Th
e switch
i
ng
an
g
l
es
fo
r th
e
PW
M are
calculated
offlin
e and are
st
ore
d
in
the
micro
c
on
tro
ller for
o
n
lin
e u
s
e.
Table
1. BL
DC specifications
Para
m
e
ters
Specifications/Ra
tings
Motor type
Surf
ace Per
m
anent
Magnet t
y
pe
Rated Power
350W
Rated Voltage
48V
Rated Speed
450 r
/
m
i
n
No.
of poles
12
W
i
nding
3-
phase star
connected
Resistance 2.5
Ω
I
nductance 11.
2
m
H
The si
m
u
l
a
t
e
d
wave
f
o
rm
for
t
h
e
pha
se c
u
r
r
e
n
t
f
o
r
n
o
r
m
a
l
phase c
u
r
r
e
n
t
i
s
sho
w
n i
n
Fi
gu
r
e
6
(
a) a
n
d
wi
t
h
pr
o
pose
d
swi
t
c
hi
n
g
i
s
sh
ow
n
i
n
Fi
gu
re 6(
b)
.
Figu
re
6.
Sim
u
lated wa
vef
o
r
m
for p
h
ase
cu
rre
nt f
o
r
s
p
eed
refe
rence
o
f
45
0
rpm
fo
r
12
0
o
co
ndu
ctio
n
m
o
d
e
f
o
r
(a
)
no
rm
al
swi
t
c
hi
ng
(b)
pr
opo
sed
SH
E PW
M
sw
itch
i
ng
Sim
i
l
a
r phase
cur
r
ent
wa
ve
fo
rm
was obt
ai
ned
wi
t
h
t
h
e expe
ri
m
e
nt
al
set
up.
The
expe
ri
m
e
nt
al
wav
e
fo
rm
s were stored
u
s
ing
a Tek
t
ron
i
x
mak
e
d
i
g
ital sto
r
ag
e
o
s
cillo
sco
p
e
. Th
e
no
rmal p
h
a
se
curren
t is
sh
own
in Fi
g
u
re 7(
a)
and
w
ith pr
opo
sed sw
it
ch
ing
is sho
w
n in
Fi
g
u
r
e
7
(
b)
.
Th
e inpu
t po
wer
v
e
r
s
us m
o
to
r
sp
eed
at no
-
l
o
a
d
is
p
l
o
tted
t
o
ju
stify th
e lower
p
o
wer requ
irem
en
t for
t
h
e p
r
op
ose
d
S
H
E-
P
W
M
c
o
nt
rol
.
As
o
b
se
rve
d
f
r
o
m
t
h
e pl
ot
of
Fi
g
u
r
e
8,
w
i
t
h
t
h
e
pr
o
pose
d
c
ont
rol
,
t
h
e
p
o
we
r
requ
irem
en
t d
e
creases than
existin
g
switch
i
ng
co
n
t
ro
l
sch
e
me. A
20
% r
e
du
ctio
n of
p
o
w
e
r
r
e
qu
ir
em
en
t can
b
e
obs
er
ved
at
rat
e
d s
p
ee
d i
n
t
h
e
p
r
o
p
o
sed
swi
t
chi
n
g sc
hem
e
whi
c
h i
s
of
m
u
ch
rel
e
va
nce.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
86
9 – 875
87
4
Fi
gu
re
7.
Ex
pe
ri
m
e
nt
al
wavef
o
rm
fo
r
phase
cu
r
r
ent
f
o
r
spe
e
d
refe
rence
o
f
4
5
0
r
p
m
for
1
2
0
o
co
n
duct
i
o
n
m
ode
fo
r
(a
)
no
rm
al
swi
t
c
hi
n
g
(b
)
pr
opo
sed SH
E PW
M sw
itch
i
ng
Fi
gu
re 8.
Pl
ot
f
o
r
i
n
put
p
o
we
r vs
m
o
t
o
r spee
d
5.
CO
NCL
USI
O
N
A sim
p
le effi
ciency optim
i
zation sc
hem
e
for BL
DC
drive system
is
proposed. T
h
e efficiency
o
p
tim
izat
io
n
is realized
b
y
el
i
m
in
atin
g
unwan
ted
l
o
we
r
order ha
rm
onics for t
h
e m
o
tor curre
nt a
n
d thereby
redu
cing
to
rque p
u
l
sation
s
. Selectiv
e Harmo
n
i
c Elimin
ati
o
n
b
a
sed
PWM is e
m
p
l
o
y
ed
fo
r th
is pu
rpose wh
ich
redu
ces th
e con
v
e
rter switch
i
n
g
lo
sses.
Th
e
si
m
u
latio
n
an
d exp
e
rim
e
n
t
al resu
lts su
m
u
p
t
h
e su
itab
ility of th
e
pr
o
pose
d
s
c
he
m
e
.
REFERE
NC
ES
[1]
CW. Lu, "Torqu
e Controller for
Brushless DC motors",
IEEE Transactions on In
dustrial El
ectro
nics,
vol. 46
, pp
.
471–473, 1999
.
[2]
C. Cavallaro
,
et
al.
,
"Effi
cien
c
y
Enhanc
em
ent o
f
P
e
rm
anent-M
a
gnet S
y
n
c
hrono
us
M
o
tor Drives
b
y
Onlin
e Los
s
M
i
nim
i
zation
A
pproaches
",
IEEE Transactions
on Industrial
Electronics,
vol. 52
, pp. 1153-1160,
2005.
[3]
KJ.
Kang
,
et al.
,
"Developm
ent of a highl
y
effic
i
ent brushless
dc m
o
tor utiliz
in
g both radial an
d axial a
i
r gaps",
Journal of Applied Ph
ysics,
vol.
111, 2012
.
[4]
B. Sney
ers
,
et
al.
,
"Field
W
e
a
k
ening in
Burie
d
Magnet
ac
Motor Drives",
IEEE Transactions on Industry
Applica
tion
,
vol. IA-21, pp
. 398-
407, 1985
.
[5]
TM. Jahns, "Flux-Weakening R
e
gime Op
eratio
n of an Inter
i
or
Permanent-magnet S
y
n
c
hronou
s Motor Drives"
,
IEEE Transactio
ns on I
ndustry Application,
vol. I
A
-23, pp. 681-6
89, 1987
.
[6]
BK. Bose, "A
High-Performance Inverter-fed
Drive S
y
st
em of an Interior
Permanent Magnet S
y
nchronou
s
M
achine"
,
IEEE Transactions
on I
ndustry Applica
tion,
vol. IA-24,
pp. 987-997
, 19
88.
[7]
S. Morimoto, et al., "Loss Mi
nimization Control of Permanent Magnet S
y
n
c
hronous Motor Drives",
IEEE
Transactions on
Indus
trial Electronics,
vo
l. 41, p
p
. 511-517
, 199
4.
[8]
S
S
.
Bharatk
a
r,
e
t
al
.,
"Dual-m
ode
Switching
Technique for
Redu
ction of
Commu
tation
Torqu
e
Ripple of Brushles
s
dc Motor",
IET Ele
c
tric
Pow
e
r Applica
tions
, vo
l. 5
,
pp
. 193-202
, 2011
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Efficien
cy Op
ti
mized Bru
s
h
l
ess DC Mo
t
o
r
Drive b
a
sed
on
Inp
u
t
C
u
rren
t
Ha
rmon
ic .... (Trid
i
b
e
sh
Nag
)
87
5
[9]
T. Sutikno
, et
al., "FPGA based a PWM Technique
for Permanent Magn
et
AC Motor Drives",
Internation
a
l
Journal of Reco
nfigurabl
e and Embedded System
s,
vol. 1, pp. 43-
48, 2012
.
[10]
P. Agrawal,
et a
l
., "Com
para
tive
Stud
y
of Fuzz
y Logic
B
a
sed Speed Contro
l of
Multilev
e
l Inv
e
r
t
er fed Brushl
ess
DC Motor Drive",
International
Journal of Power
Electronics
an
d Drive S
y
stem,
vol. 4
,
2014
.
BIOGRAP
HI
ES OF
AUTH
ORS
Tridibesh Nag
rece
ived the B
a
chelor of Engin
eering degr
ee i
n
Elec
tric
al En
gineer
ing from
Sikkim Manipal University
of
Medical Scien
ce and Technolog
y
,
Gangtok,Sikkim
,
India, in 2002
and M
a
s
t
er of Ele
c
tri
cal Eng
i
n
eering Degre
e
with s
p
ecia
liz
ati
on in Elec
tric
al
M
achines
from
Jadavpur Univer
sity
, Kolkata, in
2004 .Presen
t
ly
he is pursuing
Ph.D degree in
the Depar
t
ment
of Electrical En
gineer
ing, Jadav
pur University
,
Kolkata, India and he is Assiatant Professor in
Electrical Engin
eering
Dep
a
rtme
nt at Netaji Subhash Engineer
ing College Kolkata. His main
research
inter
e
st
includes Contr
o
l of Ele
c
tri
c
Drives & Power Ele
c
troni
cs, Ren
e
wable
Ener
g
y
Generation & C
ontrol.
Arijit Achar
y
a
rec
i
eved
th
e B
ache
l
or of
Te
ch
nolog
y degr
ee
i
n
El
ectr
i
ca
l
En
gineer
ing from
West Bengal University
of Technolog
y
,
Kolk
ata, in 2011 and
Masters of Technolog
y
with
specialization
in
Power S
y
stem from Netaji Su
bhash Engin
eering College, Kolkata in 2014
.
Presently
he is
working as Visi
ting
Lectu
r
er at Netaji
Subhash
Engineering College, Kolkata.
His
m
a
in res
ear
ch int
e
res
t
inclu
d
es
P
o
wer Ele
c
t
r
onics
, E
l
e
c
tri
c
Drives
and Ren
e
wable
Ener
g
y
Resources.
Deb
a
s
h
is
Ch
atterje
e
r
ece
ived
t
h
e B.
E.d
e
gree
i
n
Ele
c
tr
ica
l
En
gg. from
J
a
dav
pur Univers
i
t
y
,
Kolkata, India, in 1990 and M.
Tech
. Degree fr
om
IIT Kharagpur and Ph.D. degree in Electr
i
cal
Engg. from Jadavpur University
,
Kolkata,
in
199
2 and 2005
resp
ectively
.
From 1992 to 2002
, he
worked as
a
S
r
. Ex
ecut
i
ve
En
gineer
in Na
tio
nal R
a
dio
Ele
c
t
r
onics
Co.
Ltd
.
in Driv
es
and
Automation S
y
stem, Develop
m
ent Executiv
e
in Crompto
n
Greaves
Limited-Industrial
Electronics grou
p and Asst. manager R&D
in Philip
s India
Ltd
.
in
Lighting Electr
onics Division.
Currentl
y
, h
e
is
Ass
o
ciate P
r
of
es
s
o
r in Electri
cal Engg
. Depa
rtm
e
nt at J
a
dav
pur Univers
i
t
y
,
Kolkata
.
His m
a
in rese
arch
int
e
rest in
clud
es Control of E
l
e
c
tri
c
Drives & Po
wer Ele
c
tron
ics,
Renewable
Ener
g
y
Gener
a
tion
& Control.
Asho
ke
K.
Ganguli
receiv
ed th
e B.E., MEE and
Ph.D. de
gree in
Electrical Engg
from Jadavpur
University
, Kolkata, India, in
1968, 1979 and
1993 respectiv
ely
.
He has a large number of
intern
ation
a
l an
d nation
a
l publicati
ons and an
industrial
experience
of sev
e
ral
years. Curr
ently
,
he is Professor
in Electrical Engg. Departme
n
t
at Jadavpur
Universi
ty
, Kolkata. His main
res
earch
in
teres
t
includ
es
M
achin
e Drives
& P
o
w
e
r E
l
e
c
troni
cs
.
Arunava Chatt
erjee
rec
e
iv
ed t
h
e B.T
ech.
and
M
.
E. degr
ee i
n
Elec
tri
cal En
gg from
W
e
s
t
Bengal University
of Techno
log
y
and Jad
a
vpur
University
, Kolkata, India, in 2
008 and 2011
respectively
.
Presently
,
he is a C
S
IR Senior Res
earch
Scholar in
Electrical Engg. department at
Jadavpur Univer
sity
working to
wards his Ph.D. Hi
s main research inter
e
st includes Electrical
M
achine
Drives
,
P
o
wer El
ec
troni
cs
& R
e
newab
l
e
Energ
y
S
y
s
t
em
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.