I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
w
er
E
lect
ro
nics
a
nd
Driv
e
Sy
s
t
e
m
(
I
J
P
E
DS
)
Vo
l.
7
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
,
p
p
.
915
~
925
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
p
ed
s
.
v
7
.
i3
.
p
p
9
1
5
-
925
915
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JP
E
DS
Rea
l Ti
m
e I
m
ple
m
en
tatio
n of
Vari
a
ble St
ep
Si
z
e
Ba
sed P
&
O
M
PP
T for
P
V
Sys
te
m
s
Ba
sed o
n d
S
PACE
K
.
M
uthuku
m
a
r,
T
.
S.
Ana
n
dh
i
De
p
a
rt
m
e
n
t
o
f
El
e
c
tro
n
c
is
a
n
d
I
n
stru
m
e
n
tatio
n
En
g
i
n
e
e
rin
g
,
A
n
n
a
m
a
lai
U
n
iv
e
rsit
y
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
No
v
1
2
,
2
0
1
5
R
ev
i
s
ed
A
p
r
4
,
2
0
1
6
A
cc
ep
ted
Ma
y
5
,
2
0
1
6
No
w
a
d
a
y
s
S
o
lar
e
n
e
rg
y
is
a
n
i
m
p
o
rtan
t
e
n
e
rg
y
so
u
rc
e
d
u
e
to
th
e
e
n
e
rg
y
c
risis
a
n
d
e
n
v
iro
n
m
e
n
t
p
o
ll
u
ti
o
n
.
M
a
x
i
m
u
m
p
o
w
e
r
p
o
in
t
trac
k
in
g
(M
P
P
T
)
a
lg
o
rit
h
m
i
m
p
ro
v
e
s
th
e
u
ti
li
z
a
ti
o
n
e
ff
icie
n
c
y
o
f
a
p
h
o
to
v
o
l
taic
s
y
ste
m
s.
In
th
is
p
a
p
e
r
a
n
im
p
ro
v
e
d
P
&
O
M
P
P
T
a
lg
o
rit
h
m
is
d
e
v
e
l
o
p
e
d
a
n
d
sim
u
late
d
u
sin
g
M
A
TL
A
B/
S
IM
UL
IN
K
to
c
o
n
tro
l
th
e
DC/DC
b
u
c
k
c
o
n
v
e
rter.
T
h
e
o
b
tain
e
d
sim
u
li
n
k
m
o
d
e
l
is
a
lso
v
e
rif
i
e
d
u
sin
g
d
sp
a
c
e
to
o
l.
Bo
th
t
h
e
sim
u
late
d
a
n
d
e
x
p
e
rim
e
n
tal
re
su
lt
s
a
re
v
a
li
d
a
ted
b
y
a
lso
c
o
m
p
a
rin
g
th
e
m
w
it
h
c
o
n
v
e
n
ti
o
n
a
l
M
P
P
T
m
e
th
o
d
s.
T
h
e
p
e
rf
o
rm
a
n
c
e
m
e
a
su
re
s
sh
o
w
th
e
in
c
re
a
se
in
th
e
e
f
f
icie
n
c
y
o
f
P
V sy
ste
m
b
y
th
e
p
ro
p
o
se
d
m
o
d
e
l.
K
ey
w
o
r
d
:
B
u
ck
co
n
v
er
ter
Dsp
ac
e
MP
PT
P
er
tu
r
b
an
d
o
b
s
er
v
e
P
h
o
to
v
o
ltaic
s
y
s
te
m
s
Co
p
y
rig
h
t
©
201
6
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
K.
Mu
th
u
k
u
m
ar
,
Dep
ar
t
m
en
t o
f
E
lectr
o
n
ics a
n
d
I
n
s
tr
u
m
e
n
tatio
n
E
n
g
in
ee
r
i
n
g
,
An
n
a
m
ala
i U
n
i
v
er
s
i
t
y
,
An
n
a
m
alai
n
ag
ar
,
T
am
iln
ad
u
,
6
0
8
0
0
2
-
I
n
d
ia
.
E
m
ail:
m
u
th
u
k
u
m
ar
_
cd
m
@
y
a
h
o
o
.
co
.
in
NO
M
E
NCLAT
UR
E
I
PH
lig
h
t
g
e
n
er
ated
cu
r
r
en
t
I
S
ce
ll
’s
s
at
u
r
atio
n
o
f
d
ar
k
c
u
r
r
en
t
I
RS
c
ell’
s
r
e
v
er
s
e
s
at
u
r
atio
n
c
u
r
r
en
t
q
elec
tr
o
n
ch
ar
g
e
k
B
o
ltzm
a
n
n
’
s
co
n
s
tan
t
A
id
ea
l f
ac
to
r
T
C
ce
ll’
s
w
o
r
k
in
g
te
m
p
er
atu
r
e
T
Ref
ce
ll’
s
r
e
f
er
en
ce
te
m
p
er
atu
r
e
E
G
b
an
d
-
g
ap
e
n
er
g
y
λ
s
o
lar
i
n
s
o
latio
n
in
k
W
/
m
2
I
SC
ce
ll’
s
s
h
o
r
t
-
cir
cu
i
t c
u
r
r
en
t a
t a
2
5
°
C
an
d
1
k
W
/
m
2
K
I
ce
ll’
s
s
h
o
r
t
-
cir
cu
i
t
cu
r
r
en
t te
m
p
er
atu
r
e
co
ef
f
icie
n
t
V
OC
o
p
en
cir
cu
it v
o
lta
g
e
R
sh
s
h
u
n
t r
esis
ta
n
ce
R
s
s
er
ies
r
esis
tan
ce
N
s
Nu
m
b
er
o
f
s
er
ies ce
lls
N
p
Nu
m
b
er
o
f
p
ar
allel
ce
ll
1.
I
NT
RO
D
UCT
I
O
N
R
en
e
w
ab
le
e
n
er
g
y
s
o
u
r
ce
s
li
k
e
p
h
o
to
v
o
ltaic
a
n
d
w
i
n
d
g
e
n
er
ato
r
s
ar
e
w
id
el
y
u
s
ed
.
P
h
o
to
v
o
ltaic
s
y
s
te
m
s
p
r
o
d
u
ce
D
C
elec
tr
icit
y
.
P
h
o
to
v
o
ltaic
g
e
n
er
atio
n
i
s
b
ec
o
m
i
n
g
i
n
cr
ea
s
i
n
g
l
y
i
m
p
o
r
t
an
t
i
n
a
r
e
n
e
w
ab
le
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
R
ea
l Time
I
mp
leme
n
ta
tio
n
o
f
V
a
r
ia
b
le
S
tep
S
iz
e
B
a
s
ed
P
&
O
MPP
T fo
r
P
V
S
ystems
…
(
K
.
Mu
th
u
ku
ma
r
)
916
s
o
u
r
ce
s
i
n
ce
i
t
o
f
f
er
s
m
a
n
y
ad
v
an
ta
g
es
s
u
ch
a
s
n
o
f
u
el
co
s
t,
n
o
t
b
ei
n
g
p
o
ll
u
ti
n
g
an
d
e
m
it
tin
g
n
o
n
o
is
e.
P
h
o
to
v
o
ltaic’
s
s
o
u
r
ce
s
ar
e
u
s
ed
to
d
ay
i
n
m
an
y
ap
p
licatio
n
s
s
u
ch
a
s
b
atter
y
c
h
ar
g
in
g
,
h
o
m
e
p
o
w
er
s
u
p
p
l
y
,
w
ater
p
u
m
p
in
g
a
n
d
s
atellite
p
o
w
er
s
y
s
te
m
s
e
tc.
T
h
e
i
n
ter
n
a
l
ch
ar
ac
ter
is
tics
o
f
P
V
ce
ll
ar
e
h
i
g
h
l
y
n
o
n
-
l
i
n
ea
r
b
ec
au
s
e
o
f
th
e
f
a
s
t
v
ar
y
i
n
g
s
u
n
s
h
in
e
a
n
d
at
m
o
s
p
h
er
ic
co
n
d
itio
n
s
.
T
h
er
ef
o
r
e
to
ac
h
ie
v
e
m
ax
i
m
u
m
p
o
s
s
ib
le
p
o
w
er
f
r
o
m
P
V
s
o
u
r
ce
ir
r
esp
ec
tiv
e
o
f
t
h
e
te
m
p
er
at
u
r
e
a
n
d
in
s
o
lat
io
n
o
f
f
lin
e
an
d
o
n
-
l
in
e
MP
PT
tech
n
iq
u
e
s
ca
n
b
e
u
s
ed
.
P
V
m
o
d
u
le
s
s
ti
ll
h
av
e
r
elati
v
e
lo
w
co
n
v
er
s
io
n
ef
f
icien
c
y
as
it
i
s
s
e
n
s
it
iv
e
to
w
ea
t
h
er
co
n
d
itio
n
s
lik
e
s
o
lar
ir
r
ad
iatio
n
an
d
te
m
p
er
atu
r
e
[
1
4
].
A
n
o
f
f
li
n
e
v
o
lta
g
e
an
d
c
u
r
r
en
t b
a
s
ed
tech
n
iq
u
es is
n
o
t s
u
itab
le
f
o
r
f
ast
v
ar
y
in
g
at
m
o
s
p
h
er
ic
co
n
d
itio
n
[
3
]
.
I
n
t
h
e
o
n
l
in
e
P
&
O
an
d
I
NC
alg
o
r
it
h
m
b
ased
o
n
th
e
f
i
x
ed
s
tep
s
ize
th
e
d
is
ad
v
a
n
ta
g
es
is
t
h
e
p
o
w
e
r
d
r
aw
n
f
r
o
m
p
v
ar
r
ay
w
i
th
a
lar
g
er
s
tep
s
ize
co
n
tr
ib
u
te
s
to
f
aster
d
y
n
a
m
ic
b
u
t
ex
ce
s
s
iv
e
s
tead
y
s
tate
o
s
cilla
ti
o
n
s
w
h
e
n
e
v
er
a
s
m
aller
s
tep
s
ize
is
r
eq
u
ir
ed
an
d
s
tead
y
s
ta
t
e
o
u
tp
u
t
ca
n
n
o
t
b
e
r
ea
ch
ed
.
[9
]
.
T
h
e
ad
v
an
tag
e
s
o
f
(
P
&
O)
m
e
th
o
d
ar
e
ea
s
y
to
im
p
le
m
e
n
t,
co
n
tr
o
l
s
c
h
e
m
e
i
s
s
i
m
p
le,
an
d
th
e
co
s
t
is
le
s
s
co
m
p
ar
e
to
o
t
h
er
tec
h
n
iq
u
e
s
[
7
]
.
T
o
ex
tr
ac
t
t
h
e
m
ax
i
m
u
m
p
o
s
s
ib
le
p
o
w
er
f
r
o
m
th
e
P
V
m
o
d
u
le
a
m
o
d
i
f
ied
P
&
O
al
g
o
r
ith
m
h
a
v
e
b
ee
n
d
ev
elo
p
ed
w
h
ic
h
b
r
ea
k
s
t
h
e
li
m
itatio
n
s
i
n
th
e
s
en
s
i
tiv
it
y
o
f
t
h
e
tr
ac
k
er
co
n
s
is
tin
g
o
f
a
b
u
c
k
-
t
y
p
e
DC
-
D
C
co
n
v
er
ter
a
n
d
ca
n
b
e
co
n
tr
o
lled
b
y
a
d
SP
A
C
E
u
n
i
t.
T
h
e
m
o
d
if
ied
P
&
O
alg
o
r
ith
m
ad
j
u
s
t
th
e
s
tep
s
i
ze
o
f
th
e
v
o
ltag
e
to
ac
h
ie
v
e
m
a
x
i
m
u
m
p
o
w
er
p
o
in
t
is
ca
r
r
ied
o
u
t
u
s
i
n
g
MA
T
L
A
B
/SIM
U
L
I
NK
a
n
d
d
SP
A
C
E
en
v
ir
o
n
m
e
n
t.
T
h
is
m
et
h
o
d
p
er
io
d
ically
p
er
tu
r
b
s
th
e
ar
r
ay
ter
m
in
a
l
v
o
ltag
e/
c
u
r
r
en
t
an
d
co
m
p
ar
es
th
e
P
V
o
u
tp
u
t p
o
w
er
w
it
h
th
at
o
f
t
h
e
p
r
ev
io
u
s
p
er
tu
r
b
ed
p
o
w
er
.
T
o
in
cr
ea
s
e
t
h
e
P
V
p
o
w
er
t
h
e
MP
P
T
m
o
v
e
s
th
e
o
p
er
atin
g
p
o
in
t
in
s
u
c
h
a
w
a
y
to
c
h
a
n
g
e
th
e
P
V
ar
r
a
y
v
o
ltag
e
o
th
er
w
i
s
e
v
icev
er
s
a.
2.
M
AT
H
E
M
AT
I
CAL M
O
DE
L
O
F
A
P
V
M
O
DULE
E
lectr
ical
m
o
d
el
o
f
P
V
m
o
d
u
l
e
is
d
ev
elo
p
ed
b
ased
o
n
th
e
s
h
o
ck
l
y
d
io
d
e
eq
u
atio
n
.
So
lar
ce
lls
co
n
s
i
s
t
o
f
a
P
-
N
j
u
n
ctio
n
f
ab
r
icate
d
in
a
th
in
w
a
f
er
.
I
n
t
h
e
d
ar
k
th
e
I
-
V
c
h
ar
ac
ter
is
tic
s
is
s
i
m
ilar
to
t
h
e
d
io
d
e
an
d
w
h
e
n
ex
p
o
s
ed
to
lig
h
t
p
h
o
to
n
s
w
i
th
e
n
er
g
y
m
o
r
e
t
h
a
n
th
e
b
a
n
d
g
ap
en
er
g
y
o
f
th
e
s
e
m
ico
n
d
u
cto
r
ar
e
ab
s
o
r
b
ed
an
d
cr
ea
te
an
elec
t
r
o
n
-
h
o
le
p
air
.
Un
d
er
th
e
i
n
f
l
u
en
ce
o
f
i
n
ter
n
al
f
ield
s
o
f
t
h
e
P
-
N
j
u
n
ct
io
n
t
h
e
ca
r
r
ier
s
ar
e
s
w
ep
t
ap
ar
t
a
n
d
c
r
ea
tes
a
cu
r
r
en
t
p
r
o
p
o
r
tio
n
al
to
r
ad
iatio
n
.
W
h
en
o
p
en
cir
c
u
ited
th
i
s
cu
r
r
e
n
t
is
s
h
u
n
ted
in
ter
n
al
l
y
b
y
t
h
e
in
tr
i
n
s
ic
P
-
N
j
u
n
ct
io
n
d
io
d
e.
T
h
u
s
th
e
s
i
m
p
le
s
t
eq
u
i
v
ale
n
t
cir
cu
i
t
o
f
a
P
V
ce
ll
is
a
cu
r
r
en
t
s
o
u
r
ce
i
n
p
ar
allel
w
i
th
a
d
io
d
e
as
s
h
o
w
n
in
Fi
g
u
r
e
1
.
Ou
tp
u
t
o
f
t
h
e
c
u
r
r
en
t
s
o
u
r
ce
i
s
d
ir
ec
tl
y
p
r
o
p
o
r
tio
n
al
to
th
e
lig
h
t
f
alli
n
g
o
n
t
h
e
ce
ll
.
T
h
e
ch
ar
ac
ter
is
ti
cs e
q
u
atio
n
f
o
r
th
is
P
V
ar
r
a
y
i
s
g
i
v
en
b
y
[
1
1
]
R
s
R
sh
I
ph
I
D
I
sh
V
I
T
Fig
u
r
e
1
.
E
q
u
iv
alen
t c
ir
cu
it o
f
a
s
o
lar
ce
ll
A
p
p
l
y
K
ir
ch
h
o
f
f
’
s
cu
r
r
e
n
t la
w
(
1
)
*
(
(
)
)
+
(
2
)
(
3
)
Su
b
s
ti
tu
te
eq
u
atio
n
(
2
)
an
d
(
3
)
in
(
1
)
w
e
g
et
*
(
(
)
)
+
(
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
9
1
5
–
9
2
5
917
[
(
)
]
(
5
)
(
)
(
)
(
6
)
(
)
*
[
(
)
(
)
]
+
(
7
)
[
(
)
]
(
8
)
*
(
(
)
)
+
(
9
)
Sin
ce
a
t
y
p
ical
P
V
ce
ll
p
r
o
d
u
ce
s
less
t
h
a
n
2
.5
W
at
0
.
5
8
V
ap
p
r
o
x
i
m
atel
y
,
t
h
e
ce
ll
s
m
u
s
t
b
e
co
n
n
ec
ted
i
n
s
er
ie
s
co
n
f
i
g
u
r
a
tio
n
o
n
a
m
o
d
u
le
to
p
r
o
d
u
ce
en
o
u
g
h
h
i
g
h
p
o
w
er
i
s
r
ep
r
esen
ted
in
eq
u
atio
n
9
w
h
er
e
I
an
d
V
ar
e
ce
ll
’
s
o
u
tp
u
t
c
u
r
r
en
t
a
n
d
v
o
lta
g
e.
T
h
e
R
s
an
d
R
sh
ar
e
ca
lc
u
lated
[
1
0
]
b
y
iter
atio
n
m
et
h
o
d
.
E
q
u
atio
n
s
5
to
9
ar
e
m
o
d
eled
u
s
in
g
Ma
tlab
/SIM
U
L
I
NK.
A
ll
t
h
e
m
o
d
el
p
ar
a
m
eter
s
ar
e
i
d
en
tifie
d
f
r
o
m
t
h
e
m
an
u
f
ac
t
u
r
er
’
s
d
ata
s
p
ec
if
icat
io
n
o
f
a
KC
P
1
2
0
6
0
s
o
lar
m
o
d
u
les
ar
e
u
n
d
er
s
tan
d
ar
d
test
co
n
d
itio
n
s
(
ST
C
s
)
o
f
s
o
lar
ir
r
ad
iatio
n
1
0
0
0
W
/
m
2
an
d
tem
p
er
at
u
r
e
is
2
5
º
C
as
in
T
ab
le
1
.
T
h
e
s
i
m
u
lated
th
e
I
-
V
an
d
P
-
V
cu
r
v
e
s
o
f
a
s
o
lar
m
o
d
u
le
u
n
d
er
s
tan
d
ar
d
t
est co
n
d
itio
n
s
ar
e
s
h
o
w
n
in
Fi
g
u
r
e
2
.
T
ab
le
1
.
Data
s
p
ec
if
icatio
n
o
f
KC
P
1
2
0
6
0
m
o
d
u
le
D
a
t
a
sp
e
c
i
f
i
c
a
t
i
o
n
R
a
t
i
n
g
O
p
e
n
c
i
r
c
u
i
t
v
o
l
t
a
g
e
V
OC
2
1
.
2
0
V
S
h
o
r
t
c
i
r
c
u
i
t
c
u
r
r
e
n
t
I
SC
4
.
0
3
A
V
o
l
t
a
g
e
a
t
max
i
m
u
m
p
o
w
e
r
V
mp
1
7
V
C
u
r
r
e
n
t
a
t
max
i
mu
m
p
o
w
e
r
I
mp
3
.
5
0
A
R
a
t
e
d
p
o
w
e
r
5
9
.
5
W
N
u
mb
e
r
o
f
c
e
l
l
’
s i
n
se
r
i
e
s N
s
36
N
u
mb
e
r
o
f
c
e
l
l
’
s i
n
p
a
r
a
l
l
e
l
N
p
1
Fig
u
r
e
2
.
I
-
V
an
d
P
-
V
cu
r
v
es
o
f
s
o
lar
m
o
d
u
le
u
n
d
er
s
ta
n
d
ar
d
test
co
n
d
itio
n
s
3.
B
U
C
K
C
O
N
V
E
R
T
E
R
DC
-
DC
co
n
v
er
ter
s
ar
e
u
s
ed
as
s
w
itc
h
i
n
g
m
o
d
e
r
eg
u
lato
r
s
t
o
co
n
v
er
t
an
u
n
r
eg
u
lated
d
c
v
o
ltag
e
to
a
r
eg
u
lated
d
c
o
u
tp
u
t
v
o
lta
g
e.
T
h
e
r
eg
u
latio
n
is
n
o
r
m
all
y
ac
h
iev
ed
b
y
a
P
W
M
at
a
f
i
x
ed
f
r
eq
u
e
n
c
y
an
d
t
h
e
s
w
itc
h
in
g
d
ev
ice
u
s
ed
i
s
a
MO
SF
E
T
.
DC
-
D
C
co
n
v
e
r
ter
is
a
h
i
g
h
s
p
ee
d
o
n
/o
f
f
s
e
m
i
co
n
d
u
cto
r
s
w
itc
h
.
I
t
co
n
n
ec
t
s
s
o
u
r
ce
to
lo
ad
an
d
d
is
co
n
n
ec
ts
t
h
e
lo
ad
f
r
o
m
s
o
u
r
ce
at
a
f
a
s
t
s
p
ee
d
.
A
s
tep
-
d
o
w
n
co
n
v
er
ter
p
r
o
d
u
ce
s
an
a
v
er
ag
e
o
u
tp
u
t
v
o
lta
g
e,
wh
ich
is
lo
w
er
t
h
an
th
e
D
C
i
n
p
u
t
v
o
lta
g
e
V
in
.
T
h
e
b
asic
c
ir
cu
it
o
f
a
s
tep
-
d
o
wn
co
n
v
er
ter
is
s
h
o
w
n
i
n
Fig
u
r
e
3
.
I
n
c
o
n
tin
u
o
u
s
-
co
n
d
u
c
tio
n
m
o
d
e
o
f
o
p
er
atio
n
,
ass
u
m
in
g
an
MO
SF
E
T
s
w
itch
,
w
h
e
n
th
e
s
w
itc
h
is
o
n
f
o
r
t
h
e
ti
m
e
d
u
r
atio
n
t
on
t
h
e
in
d
u
cto
r
cu
r
r
en
t
p
ass
e
s
t
h
r
o
u
g
h
t
h
e
s
witch
,
an
d
t
h
e
d
io
d
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
R
ea
l Time
I
mp
leme
n
ta
tio
n
o
f
V
a
r
ia
b
le
S
tep
S
iz
e
B
a
s
ed
P
&
O
MPP
T fo
r
P
V
S
ystems
…
(
K
.
Mu
th
u
ku
ma
r
)
918
b
ec
o
m
e
s
r
ev
er
s
e
b
iased
.
T
h
is
r
e
s
u
lt
s
in
a
p
o
s
iti
v
e
v
o
lta
g
e
a
cr
o
s
s
th
e
i
n
d
u
cto
r
,
w
h
ic
h
,
in
t
u
r
n
,
ca
u
s
es
a
li
n
ea
r
in
cr
ea
s
e
i
n
th
e
in
d
u
cto
r
cu
r
r
e
n
t
i
l
.
W
h
en
t
h
e
s
w
i
tch
is
tu
r
n
ed
o
f
f
,
b
ec
a
u
s
e
o
f
t
h
e
i
n
d
u
ct
i
v
e
e
n
er
g
y
s
to
r
ag
e,
i
l
co
n
tin
u
es
to
f
lo
w
.
T
h
is
cu
r
r
en
t
f
lo
w
s
t
h
r
o
u
g
h
t
h
e
d
io
d
e
an
d
d
ec
r
ea
s
es.
A
v
er
ag
e
o
u
t
p
u
t
v
o
ltag
e
ca
n
b
e
ca
lcu
lated
in
ter
m
s
o
f
th
e
s
w
it
ch
d
u
t
y
r
at
io
as
G
S
D
V
in
D
L
R
l
R
c
C
R
L
V
o
Fig
u
r
e
3
.
B
u
ck
co
n
v
er
ter
in
on
o
V
T
T
V
(
1
0
)
T
T
D
on
(
1
1
)
T
o
d
esig
n
th
e
b
u
c
k
co
n
v
er
ter
s
p
ar
a
m
eter
s
b
a
s
ed
o
n
[
1
3
]
th
e
b
u
c
k
co
n
v
er
ter
p
ar
a
m
eter
s
v
al
u
es
a
s
s
h
o
w
n
i
n
T
ab
le
2
.
T
h
e
s
tate
s
p
ac
e
m
o
d
el
o
f
t
h
e
b
u
ck
co
n
v
er
ter
ca
n
b
e
d
er
iv
ed
a
n
d
t
h
en
to
d
eter
m
in
e
o
f
th
e
co
n
tr
o
ller
th
at
w
ill
m
ee
t t
h
e
tr
an
s
ie
n
t a
n
d
s
tead
y
s
tate
s
p
ec
i
f
icatio
n
s
o
f
th
e
clo
s
ed
lo
o
p
s
y
s
te
m
.
T
h
e
p
r
o
ce
s
s
o
f
ad
j
u
s
tin
g
th
e
co
n
tr
o
ller
p
ar
am
eter
s
[
1
2
]
in
o
r
d
er
t
o
m
ee
t
g
iv
e
n
p
er
f
o
r
m
a
n
ce
s
p
ec
if
ica
tio
n
s
is
k
n
o
w
n
as
co
n
tr
o
ller
tu
n
in
g
.
T
h
e
m
o
s
t
co
m
m
o
n
Z
ie
g
ler
Nic
h
o
ls
t
u
n
in
g
m
et
h
o
d
is
u
s
ed
f
o
r
tu
n
i
n
g
P
I
co
n
tr
o
ller
b
ased
o
n
s
tep
r
esp
o
n
s
e
to
f
i
n
d
th
e
Kp
a
n
d
T
i v
alu
es.
T
ab
le
2
.
Data
s
p
ec
if
icatio
n
o
f
B
u
ck
co
n
v
er
ter
fs
V
i
n
V
o
L
C
R
L
2
0
K
h
z
21V
12V
1
5
mH
1
0
μF
3
0
&
5
0
Ω
4.
M
AXI
M
U
M
P
O
WE
R
P
O
I
NT
T
RA
CK
I
N
G
W
h
en
a
s
o
lar
m
o
d
u
le
is
u
s
ed
in
a
s
y
s
te
m
,
its
o
p
er
atin
g
p
o
in
t
is
d
ec
id
ed
b
y
th
e
lo
ad
to
w
h
ic
h
is
co
n
n
ec
ted
.
T
h
e
ef
f
icie
n
c
y
o
f
P
V
s
y
s
te
m
ca
n
b
e
i
m
p
r
o
v
ed
i
f
t
h
e
P
V
m
o
d
u
le
is
o
p
er
ated
at
m
a
x
i
m
u
m
p
o
w
er
p
o
in
t
ir
r
esp
ec
tiv
e
o
f
v
ar
y
i
n
g
at
m
o
s
p
h
er
ic
co
n
d
itio
n
s
.
T
h
e
MP
PT
m
ec
h
a
n
i
s
m
is
b
ased
o
n
t
h
e
p
r
in
cip
le
o
f
i
m
p
ed
an
ce
m
atc
h
i
n
g
b
et
w
ee
n
lo
ad
an
d
P
V
m
o
d
u
le,
w
h
ich
is
n
ec
e
s
s
ar
y
f
o
r
m
a
x
i
m
u
m
p
o
w
er
tr
a
n
s
f
er
.
T
h
e
i
m
p
ed
an
ce
m
a
tch
i
n
g
is
d
o
n
e
b
y
u
s
i
n
g
a
DC
to
DC
co
n
v
er
ter
.
T
h
e
i
m
p
ed
an
ce
is
m
a
tch
e
d
b
y
ch
a
n
g
in
g
th
e
d
u
t
y
c
y
cle
o
f
t
h
e
s
w
i
tch
.
T
h
er
e
ar
e
m
an
y
MP
P
T
tech
n
iq
u
es
av
a
ilab
le
[
5
]
.
Am
o
n
g
w
h
ic
h
t
h
e
p
er
tu
r
b
an
d
o
b
s
er
v
e
a
n
d
in
cr
e
m
e
n
tal
co
n
d
u
ctan
ce
alg
o
r
it
h
m
ar
e
t
h
e
o
n
li
n
e
MP
PT
tech
n
iq
u
es.
I
t
is
s
u
itab
le
f
o
r
f
ast
v
ar
y
i
n
g
ir
r
ad
iatio
n
an
d
te
m
p
e
r
atu
r
e
.
T
h
e
p
e
r
tu
r
b
an
d
o
b
s
er
v
e
ar
e
s
i
m
p
le
an
d
ea
s
y
to
i
m
p
le
m
en
t
co
m
p
ar
ed
w
it
h
i
n
cr
e
m
e
n
tal
co
n
d
u
cta
n
ce
alg
o
r
ith
m
.
F
u
zz
y
l
o
g
ic
an
d
n
eu
r
al
n
et
w
o
r
k
ar
e
ar
tif
icial
i
n
t
ellig
e
n
t
m
eth
o
d
s
it
is
e
x
p
er
ts
b
ased
s
y
s
te
m
s
.
T
h
e
p
er
tu
r
b
a
n
d
o
b
s
er
v
e
ca
n
b
e
d
iv
id
ed
in
to
t
w
o
m
e
th
o
d
s
v
o
lta
g
e
r
e
f
er
en
ce
an
d
d
ir
ec
t
d
u
t
y
r
atio
m
et
h
o
d
[
6
]
.
I
n
th
is
p
ap
er
th
e
b
lo
ck
d
ia
g
r
a
m
o
f
p
r
o
p
o
s
ed
v
ar
iab
le
s
tep
s
ize
P
&
O
d
ir
ec
t
d
u
t
y
r
atio
m
eth
o
d
is
s
h
o
w
n
i
n
Fi
g
u
r
e
4
.
T
h
e
p
r
in
cip
le
o
f
t
h
e
P
&
O
al
g
o
r
ith
m
is
to
i
n
cr
e
ase
o
r
d
ec
r
ea
s
e
th
e
v
o
ltag
e
b
y
ad
j
u
s
t
in
g
t
h
e
d
u
t
y
c
y
cle.
I
n
t
h
e
f
lo
w
c
h
ar
t
i
f
d
p
/d
v
>0
th
e
d
u
t
y
c
y
cle
i
s
d
ec
r
ea
s
ed
an
d
if
d
p
/d
v
<0
th
en
th
e
d
u
t
y
c
y
c
le
is
r
e
v
er
s
e
d
s
h
o
w
n
in
Fi
g
u
r
e
5
.
T
h
u
s
in
cr
ea
s
e
an
d
d
ec
r
ea
s
e
o
f
t
h
e
d
u
t
y
c
y
c
le
is
b
ased
o
n
th
e
s
tep
s
ize
Δ
D.
I
f
t
h
e
p
er
t
u
r
b
atio
n
f
i
x
ed
s
tep
s
ize
Δ
D
ch
o
s
en
is
s
m
all
t
h
e
s
y
s
te
m
co
n
v
er
g
e
n
ce
s
p
ee
d
to
w
ar
d
s
t
h
e
MP
P
is
s
lo
w
a
n
d
h
en
ce
d
esire
d
lev
el
o
f
d
u
t
y
c
y
cle
i
s
n
o
t
ac
h
ie
v
ed
.
I
f
t
h
e
Δ
D
is
m
ad
e
h
i
g
h
t
h
e
s
y
s
te
m
o
s
c
illates
ar
o
u
n
d
th
e
MP
P
.
T
o
o
v
er
co
m
e
th
i
s
p
r
o
b
le
m
an
d
also
to
i
n
cr
ea
s
e
th
e
e
f
f
icie
n
c
y
a
P
I
co
n
tr
o
l
lo
o
p
is
d
ev
elo
p
ed
to
ad
j
u
s
t
th
e
p
er
tu
r
b
atio
n
s
tep
s
ize.
T
h
is
p
r
o
p
o
s
ed
v
ar
iab
le
p
er
t
u
r
b
atio
n
s
tep
P
&
O
alg
o
r
ith
m
i
s
s
u
g
g
ested
i
n
t
h
i
s
p
ap
er
.
T
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
ac
h
iev
e
s
r
ed
u
ce
d
o
s
cil
latio
n
ar
o
u
n
d
th
e
MP
P
an
d
s
tab
le
o
p
er
atio
n
o
f
th
e
P
V
p
an
el.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
9
1
5
–
9
2
5
919
D
C
-
D
C
B
U
C
K
C
O
N
V
E
R
T
E
R
M
P
P
T
P
&
O
A
l
g
o
r
i
t
h
m
D
i
r
e
ct
d
u
t
y
r
a
t
i
o
D
= D
+
D
P
W
M
G
e
n
e
r
a
t
o
r
D
I
V
PV
P
W
M
S
i
g
n
a
l
+
-
PI
S
e
t
p
o
i
n
t
V
o
Fig
u
r
e
4
.
B
lo
ck
d
iag
r
a
m
o
f
v
a
r
iab
le
s
tep
s
ize
p
er
tu
r
b
an
d
o
b
s
er
v
e
B
e
g
i
n
P
&
O
A
l
g
o
r
i
t
h
m
M
e
a
su
r
e
V
(
K
)
,
I(
K
)
P(
K
)
=
V
(
K
)
*
I
(
K
)
P
=
P
(
K
)
-
P
(
K
-
1
)
V
=
V
(
K
)
-
V
(
K
-
1
)
P
>
0
D
+
D
D
-
D
D
-
D
No
Y
e
s
Y
e
s
Y
e
s
No
No
D
+
D
T
o
S
w
i
t
c
h
V
>
0
V
>
0
Fig
u
r
e
5
.
Flo
w
c
h
ar
t o
f
P
&
O
m
et
h
o
d
5.
d
SPAC
E
B
ASE
D
I
M
P
L
E
M
E
NT
AT
I
O
N
O
F
M
P
P
T
T
h
e
d
SP
A
C
E
DS1
1
0
2
w
a
s
f
i
r
s
t
u
s
ed
at
B
r
ad
ley
U
n
iv
er
s
it
y
i
n
th
e
y
ea
r
2
0
0
0
w
h
e
n
a
u
s
er
s
m
a
n
u
al
an
d
a
w
o
r
k
s
tatio
n
b
ased
o
n
th
is
b
o
ar
d
w
er
e
d
e
v
elo
p
ed
.
Sin
ce
th
e
n
,
a
n
e
w
er
d
Sp
ac
e
DS1
1
0
3
b
o
ar
d
h
as
b
ec
o
m
e
a
v
ailab
le.
T
h
e
p
r
o
p
o
s
ed
v
ar
iab
le
p
er
tu
r
b
atio
n
s
tep
P
&
O
co
n
tr
o
ller
is
d
esi
g
n
ed
an
d
s
i
m
u
lated
u
s
in
g
th
e
SIM
U
L
I
NK
a
n
d
t
h
e
d
SP
AC
E
b
lo
ck
s
et
s
,
t
h
e
Ma
tlab
-
to
-
DSP
in
ter
f
ac
e
lib
r
ar
ies,
R
e
al
-
T
i
m
e
I
n
ter
f
ac
e
to
SIM
UL
I
NK,
an
d
R
ea
l
-
T
i
m
e
W
o
r
k
s
h
o
p
o
n
a
P
C
.
I
n
p
u
ts
to
an
d
o
u
tp
u
t
s
f
r
o
m
t
h
e
DS1
1
0
3
p
ass
t
h
r
o
u
g
h
th
e
C
L
P
1
1
0
3
co
n
n
ec
t
o
r
p
an
el
f
o
r
th
e
DS1
1
0
3
b
o
ar
d
.
T
h
e
co
n
tr
o
l
s
y
s
te
m
h
as
b
ee
n
d
ev
elo
p
ed
u
s
in
g
MA
T
L
A
B
/S
i
m
u
li
n
k
a
n
d
th
e
n
au
to
m
a
ticall
y
p
r
o
ce
s
s
ed
an
d
r
u
n
in
th
e
DS1
1
0
3
P
P
C
ca
r
d
.
A
Gr
ap
h
ical
User
I
n
ter
f
ac
e
(
G
UI
)
h
as
b
ee
n
b
u
ilt
u
s
in
g
t
h
e
s
o
f
t
w
ar
e
co
n
tr
o
l
d
e
s
k
o
f
d
SP
A
C
E
.
I
t
allo
w
s
th
e
r
ea
l
-
ti
m
e
e
v
al
u
atio
n
o
f
th
e
co
n
tr
o
l
s
y
s
te
m
.
“
co
n
t
r
o
l
d
esk
”
s
er
v
es
m
u
lt
ip
le
u
s
es.
I
t
p
r
o
v
id
es
th
e
in
ter
f
ac
e
f
o
r
d
o
w
n
lo
ad
in
g
co
n
tr
o
ller
m
o
d
els d
es
ig
n
ed
i
n
SIM
UL
I
NK
o
n
to
t
h
e
D
SP
.
T
h
e
in
s
tr
u
m
e
n
t p
an
e
l
f
ea
tu
r
e
o
f
c
o
n
tr
o
l d
esk
is
u
s
ed
to
d
is
p
lay
v
ar
io
u
s
m
ea
s
u
r
e
m
e
n
ts
s
u
c
h
as
t
h
e
d
u
t
y
c
y
cle
o
f
th
e
P
W
M
s
ig
n
a
l,
v
o
ltag
e,
c
u
r
r
en
t,
er
r
o
r
an
d
th
e
co
n
tr
o
ller
o
u
tp
u
t
s
i
g
n
als
m
u
s
t
b
e
s
en
t
th
r
o
u
g
h
th
e
“C
L
P
1
1
0
3
”
an
d
“
DS1
1
0
3
”
b
ef
o
r
e
th
e
m
ea
s
u
r
e
m
e
n
t
s
ca
n
b
e
d
is
p
la
y
ed
in
co
n
tr
o
l
d
esk
o
n
th
e
co
m
p
u
ter
.
T
h
e
“
C
L
P
1
1
0
3
”
s
er
v
es
as
a
n
i
n
ter
f
ac
e
b
et
w
ee
n
t
h
e
“
DS1
1
0
3
”
an
d
th
e
e
x
ter
n
al
h
ar
d
w
ar
e
p
o
r
tio
n
o
f
t
h
e
o
v
er
all
s
y
s
te
m
.
T
h
e
C
L
P
1
1
0
3
c
o
n
tain
s
co
n
n
ec
to
r
s
f
o
r
2
0
An
alo
g
-
to
-
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
R
ea
l Time
I
mp
leme
n
ta
tio
n
o
f
V
a
r
ia
b
le
S
tep
S
iz
e
B
a
s
ed
P
&
O
MPP
T fo
r
P
V
S
ystems
…
(
K
.
Mu
th
u
ku
ma
r
)
920
Dig
ital
i
n
p
u
ts
,
8
Dig
i
tal
-
to
-
An
alo
g
o
u
tp
u
t
s
,
s
ev
er
al
o
t
h
e
r
co
n
n
ec
to
r
s
th
at
ca
n
b
e
u
s
ed
f
o
r
Dig
ital
I
/O,
s
lav
e/
DSP
I
/O,
in
cr
e
m
en
ta
l
en
co
d
er
in
ter
f
ac
es,
C
AN
i
n
ter
f
a
ce
an
d
s
er
ial
i
n
ter
f
ac
e
s
.
O
u
tp
u
t
f
r
o
m
t
h
e
D
S1
1
0
3
in
cl
u
d
es th
e
P
W
M
s
ig
n
al
f
o
r
th
e
g
ate
o
f
MO
SF
E
T
o
f
b
u
ck
DC
-
DC
co
n
v
er
ter
.
6.
SI
M
UL
AT
I
O
N
A
ND
E
XP
E
RIM
E
NT
AL
R
E
S
UL
T
S
Si
m
u
latio
n
s
ar
e
ca
r
r
ied
o
u
t
u
s
in
g
Ma
t
lab
Si
m
u
li
n
k
.
Fi
g
u
r
e
6
s
h
o
w
s
t
h
e
v
ar
iatio
n
s
i
n
te
m
p
er
at
u
r
e
an
d
ir
r
ad
iatio
n
an
d
is
u
s
ed
as
in
p
u
t.
Fi
g
u
r
e
7
s
h
o
w
s
th
e
in
p
u
t
&
o
u
tp
u
t
v
o
lta
g
e,
cu
r
r
en
t
a
n
d
p
o
w
er
f
o
r
f
ix
ed
s
tep
s
ize
p
er
t
u
r
b
an
d
o
b
s
er
v
e
alg
o
r
it
h
m
.
W
h
en
T
C
=2
5
o
C
an
d
λ
=
2
5
0
W
/
m
2
a
n
d
R
L
=
6
0
Ω
,
T
C
=2
8
o
C
an
d
λ
=4
0
0
W
/m
2
a
n
d
R
L
=3
0
Ω
an
d
T
C
=3
0
o
C,
33
o
C
,
3
5
o
C
an
d
λ
=
6
0
0
W
/m
2
,
8
0
0
W
/m
2
a
n
d
1
0
0
0
W
/m
2
a
n
d
R
L
=5
Ω
f
o
r
th
e
in
p
u
t
a
n
d
o
u
tp
u
t
v
o
lta
g
e,
cu
r
r
e
n
t
a
n
d
p
o
w
er
i
s
s
h
o
w
n
i
n
T
ab
le
3
f
o
r
d
if
f
er
en
t
s
t
ep
s
ize
Δ
D.
I
f
Δ
D
i
s
s
m
al
l
it
ca
n
n
o
t
r
ea
c
h
t
h
e
p
o
wer
w
h
en
e
v
er
Δ
D
is
h
i
g
h
it
o
s
ci
llates
at
v
er
h
h
ig
h
s
o
t
h
i
s
t
h
e
d
is
ad
v
an
tag
e
s
o
f
f
i
x
ed
s
tep
s
ize
s
o
w
e
ca
n
p
r
o
p
o
s
ed
m
e
th
o
d
f
o
r
v
ar
iab
le
s
te
p
s
ize
p
er
tu
r
b
an
d
o
b
s
er
v
e
al
g
o
r
ith
m
f
o
r
d
if
f
er
en
t
ir
r
ad
iatio
n
s
an
d
te
m
p
er
at
u
r
es
.
Fig
u
r
e
6
.
Dif
f
er
en
t T
e
m
p
er
atu
r
es a
n
d
I
r
r
ad
iatio
n
s
Fig
u
r
e
7
.
Si
m
u
lated
I
n
p
u
t
&
O
u
tp
u
t V
o
lta
g
e,
C
u
r
r
en
t a
n
d
P
o
w
er
w
a
v
ef
o
r
m
o
f
a
f
i
x
ed
s
tep
s
ize
b
ased
P
&
O
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
9
1
5
–
9
2
5
921
T
ab
le
3
.
Sim
u
lated
I
n
p
u
t &
O
u
tp
u
t V
o
lta
g
e,
C
u
r
r
en
t a
n
d
P
o
w
er
v
a
lu
e
s
o
f
a
f
i
x
ed
s
tep
s
ize
b
ased
P
&
O
P
a
r
a
me
t
e
r
s
D
i
f
f
e
r
e
n
t
t
e
mp
e
r
a
t
u
r
e
a
n
d
i
r
r
a
d
i
a
t
i
o
n
R
L
=
6
0
Ω
R
L
=
3
0
Ω
R
L
=
5
Ω
ΔD
=
0
.
0
1
5
ΔD
=
0
.
0
4
5
ΔD
=
0
.
0
1
5
ΔD
=
0
.
0
4
5
ΔD
=
0
.
0
1
5
ΔD
=
0
.
0
4
5
P
V
V
o
l
t
a
g
e
(
V
)
1
8
.
3
5
1
8
.
3
1
9
.
1
2
1
9
.
0
7
1
8
.
9
8
1
8
.
8
2
P
V
c
u
r
r
e
n
t
(
A
)
0
.
0
9
7
9
6
0
.
1
1
1
6
0
.
1
9
3
0
.
2
2
7
9
1
.
0
4
7
1
.
2
5
2
P
V
P
o
w
e
r
(
W
)
1
.
7
9
6
2
.
0
4
3
3
.
6
9
1
4
.
3
4
8
2
0
.
9
8
2
4
.
2
B
u
c
k
V
o
u
t
(
V
)
9
.
6
3
2
1
0
.
4
5
1
0
.
0
4
1
0
.
9
1
9
.
8
4
7
1
0
.
6
5
B
u
c
k
I
o
u
t
(
A
)
0
.
1
6
0
7
0
.
1
7
4
4
0
.
3
3
4
6
0
.
3
6
3
8
1
.
9
6
9
2
.
1
2
8
B
u
c
k
P
o
u
t
(
W
)
1
.
5
4
8
1
.
8
2
4
3
.
3
5
7
3
.
9
6
9
1
9
.
1
9
2
2
.
2
6
P
e
r
c
e
n
t
a
g
e
o
f
P
o
w
e
r
(
%)
8
6
.
1
8
9
.
2
90
91
9
1
.
5
9
1
.
8
T
ab
le
4
.
Sim
u
lated
I
n
p
u
t &
O
u
tp
u
t V
o
lta
g
e,
C
u
r
r
en
t a
n
d
P
o
w
er
v
a
lu
e
s
o
f
a
v
ar
iab
le
s
tep
s
ize
b
ased
P
&
O
D
i
f
f
e
r
e
n
t
t
e
mp
e
r
a
t
u
r
e
a
n
d
i
r
r
a
d
i
a
t
i
o
n
P
a
r
a
me
t
e
r
s
P
V
V
o
l
t
a
g
e
V
o
l
t
s
P
V
C
u
r
r
e
n
t
A
mp
s
P
V
P
o
w
e
r
W
a
t
t
s
B
u
c
k
V
o
u
t
(V)
B
u
c
k
I
o
u
t
(A)
B
u
c
k
P
o
u
t
(
W
)
P
e
r
c
e
n
t
a
g
e
o
f
P
o
w
e
r
(
%)
R
L
=
6
0
Ω
R
L
=
3
0
Ω
R
L
=
5
Ω
1
8
.
2
0
.
1
4
2
7
2
.
5
9
6
12
0
.
2
0
0
2
2
.
4
0
2
9
2
.
5
19
0
.
2
6
6
5
5
.
0
6
8
12
0
.
4
4
.
7
9
7
9
4
.
6
1
7
.
0
9
1
.
7
5
5
2
9
.
9
9
12
2
.
4
0
1
2
8
.
8
2
96
Fig
u
r
e
8
s
h
o
w
s
th
e
i
n
p
u
t
&
o
u
tp
u
t
v
o
lta
g
e,
cu
r
r
en
t
a
n
d
p
o
w
er
f
o
r
v
ar
iab
le
s
tep
s
ize
p
er
tu
r
b
an
d
o
b
s
er
v
e
alg
o
r
ith
m
.
W
h
e
n
T
C
=2
5
o
C
an
d
λ
=
2
5
0
W
/m
2
a
n
d
R
L
=6
0
Ω
,
T
C
=
2
8
o
C
an
d
λ
=4
0
0
W
/
m
2
an
d
R
L
=3
0
Ω
an
d
T
C
=3
0
o
C
,
3
3
o
C
,
3
5
o
C
an
d
λ
=
6
0
0
W
/m
2
,
8
0
0
W
/m
2
a
n
d
1
0
0
0
W
/m
2
a
n
d
R
L
=5
Ω
f
o
r
t
h
e
in
p
u
t
an
d
o
u
tp
u
t
v
o
ltag
e,
c
u
r
r
en
t
an
d
p
o
w
er
is
s
h
o
w
n
in
T
ab
le4
f
o
r
v
ar
iab
le
s
tep
s
ize
P
&
O
f
o
r
g
i
v
e
b
etter
r
esu
lts
i
n
v
o
lta
g
e
,
cu
r
r
en
t
a
n
d
p
o
w
er
co
m
p
ar
ed
w
it
h
f
i
x
ed
s
tep
s
ize
P
&
O
al
g
o
r
ith
m
.
T
h
e
f
i
x
ed
an
d
v
ar
iab
l
e
s
tep
s
izes
b
ased
p
er
tu
r
b
an
d
o
b
s
er
v
e
alg
o
r
ith
m
is
i
m
p
le
m
e
n
ted
in
h
ar
d
w
ar
e
u
s
in
g
Dsp
ac
e
s
et
u
p
is
s
h
o
w
n
in
Fig
u
r
e
9
.
Fig
u
r
e
8
.
Si
m
u
lated
I
n
p
u
t
&
O
u
tp
u
t V
o
lta
g
e,
C
u
r
r
en
t a
n
d
P
o
w
er
w
a
v
ef
o
r
m
o
f
a
v
ar
iab
le
s
t
ep
s
ize
b
ased
P
&
O
T
h
e
in
p
u
t
an
d
o
u
tp
u
t
v
o
lta
g
e
,
cu
r
r
en
t,
p
o
w
er
a
n
d
cr
o
o
u
t
p
u
t
o
f
P
W
M
an
d
o
u
tp
u
t
v
o
ltag
e
o
f
th
e
Fix
ed
an
d
v
ar
iab
le
s
tep
s
ize
b
ased
p
er
tu
r
b
an
d
o
b
s
er
v
e
is
s
h
o
w
n
i
n
Fi
g
u
r
e
1
0
,
1
1
,
1
2
&
1
3
.
T
h
e
Fix
ed
s
tep
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
R
ea
l Time
I
mp
leme
n
ta
tio
n
o
f
V
a
r
ia
b
le
S
tep
S
iz
e
B
a
s
ed
P
&
O
MPP
T fo
r
P
V
S
ystems
…
(
K
.
Mu
th
u
ku
ma
r
)
922
s
ize
p
er
tu
r
b
an
d
o
b
s
er
v
e
o
f
d
i
f
f
er
en
t
s
tep
s
ize
Δ
D
v
alu
e
a
n
d
v
ar
iab
le
s
tep
s
ize
b
a
s
ed
p
er
tu
r
b
an
d
o
b
s
er
v
e
an
d
d
if
f
er
e
n
t lo
ad
r
esis
ta
n
ce
o
f
t
h
e
in
p
u
t a
n
d
o
u
tp
u
t
v
o
ltag
e,
c
u
r
r
en
t a
n
d
p
o
w
er
i
s
s
h
o
w
n
i
n
T
ab
le
5
.
Fi
g
u
r
e
9
.
Har
d
w
ar
e
s
etu
p
o
f
P
V
f
ed
Dsp
ac
e
b
ased
DC
-
DC
c
o
n
v
er
ter
Fig
u
r
e
1
0
.
PW
M
an
d
o
u
tp
u
t v
o
ltag
e
w
av
e
f
o
r
m
o
f
a
f
i
x
ed
s
te
p
s
ize
b
ased
P
&
O
u
s
i
n
g
D
SO
Fig
u
r
e
1
1
.
R
ea
l ti
m
e
I
n
p
u
t
&
Ou
tp
u
t V
o
ltag
e,
C
u
r
r
en
t a
n
d
P
o
w
er
d
is
p
la
y
o
f
a
f
i
x
ed
s
tep
s
i
ze
b
ased
P
&
O
in
d
SP
A
C
E
co
n
tr
o
l d
es
k
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
9
1
5
–
9
2
5
923
Fig
u
r
e
1
2
.
R
ea
l ti
m
e
I
n
p
u
t
&
Ou
tp
u
t V
o
ltag
e,
C
u
r
r
en
t a
n
d
P
o
w
er
d
is
p
la
y
o
f
a
v
ar
iab
le
s
tep
s
ize
b
ased
P
&
O
in
d
SP
AC
E
co
n
tr
o
l d
esk
Fig
u
r
e
1
3
.
PW
M
an
d
o
u
tp
u
t v
o
ltag
e
w
av
e
f
o
r
m
o
f
a
v
ar
iab
le
s
tep
s
ize
b
ased
P
&
O
u
s
in
g
DS
O
T
ab
le
5
.
R
ea
l ti
m
e
I
n
p
u
t
&
O
u
tp
u
t V
o
ltag
e,
C
u
r
r
en
t a
n
d
P
o
w
er
co
m
p
ar
ativ
e
v
al
u
es
f
o
r
f
i
x
e
d
an
d
v
ar
iab
le
s
tep
s
ize
b
ased
P
&
O
P
a
r
a
me
t
e
r
s
P
o
F
i
x
e
d
st
e
p
s
i
z
e
a
n
d
R
L
=
3
0
Ω
P
o
F
i
x
e
d
st
e
p
s
i
z
e
a
n
d
R
L
=
6
0
Ω
P
O
V
a
r
i
a
b
l
e
st
e
p
si
z
e
ΔD
=
0
.
0
1
5
ΔD
=
0
.
0
3
0
ΔD
=
0
.
0
4
5
ΔD
=
0
.
0
1
5
ΔD
=
0
.
0
3
0
ΔD
=
0
.
0
4
5
R
L
=
30
Ω
R
L
=
6
0
Ω
P
V
V
o
l
t
a
g
e
(V)
1
7
.
0
1
4
1
6
.
8
8
8
1
6
.
6
0
7
1
7
.
9
5
5
1
7
.
5
4
8
1
7
.
4
4
9
1
6
.
6
7
7
1
7
.
8
4
2
P
V
C
u
r
r
e
n
t
(
A
)
0
.
1
5
3
0
.
1
5
1
0
.
1
3
4
0
.
0
9
6
0
.
0
8
4
0
.
0
8
5
0
.
3
0
8
0
.
1
3
7
P
V
P
o
w
e
r
(
W
)
2
.
5
9
6
2
.
5
5
1
2
.
2
3
0
1
.
7
2
6
1
.
4
7
3
1
.
4
9
1
4
.
9
7
1
2
.
5
3
5
B
u
c
k
V
o
u
t
(V)
8
.
0
0
6
7
.
9
5
1
7
.
9
5
5
8
.
2
1
6
8
.
3
8
1
8
.
5
6
6
1
1
.
3
9
8
1
1
.
8
1
0
B
u
c
k
I
o
u
t
(
A
)
0
.
2
3
4
0
.
2
4
7
0
.
2
2
3
0
.
1
3
8
0
.
1
3
9
0
.
1
4
0
0
.
3
7
7
0
.
1
8
4
B
u
c
k
P
o
u
t
(
W
)
1
.
8
7
4
1
.
9
6
6
1
.
7
7
0
1
.
1
3
4
1
.
1
5
3
1
.
2
0
2
4
.
2
9
8
2
.
1
7
6
P
e
r
c
e
n
t
a
g
e
o
f
p
o
w
e
r
(
%)
7
2
.
1
8
7
7
.
0
6
7
9
.
3
7
6
5
.
7
7
8
.
2
7
8
0
.
6
1
8
6
.
4
6
8
5
.
8
3
7.
CO
NCLU
SI
O
N
T
h
is
p
ap
er
p
r
esen
ts
th
e
s
atis
f
ac
to
r
y
p
er
f
o
r
m
an
ce
s
o
f
t
h
e
p
r
o
p
o
s
ed
v
ar
iab
le
s
tep
s
ize
b
ased
p
er
tu
r
b
an
d
o
b
s
er
v
e
alg
o
r
ith
m
f
o
r
th
e
p
h
o
to
v
o
ltaic
s
y
s
te
m
.
Gen
er
all
y
t
h
e
f
ix
ed
s
tep
s
ize
s
p
er
tu
r
b
an
d
o
b
s
er
v
e
MPPT
alg
o
r
ith
m
i
s
w
id
el
y
u
s
ed
.
T
h
e
s
elec
tio
n
o
f
s
tep
s
ize
b
y
th
e
t
r
ial
an
d
er
r
o
r
m
eth
o
d
f
o
r
th
e
co
n
v
e
n
tio
n
al
P
&
O
MP
PT
alg
o
r
ith
m
is
c
u
m
b
er
s
o
m
e.
T
h
e
ch
a
n
g
es
i
n
s
tep
s
ize
g
iv
es
g
r
ea
t
i
m
p
ac
t
o
n
t
h
e
in
cr
e
ases
o
r
d
ec
r
ea
s
es
o
f
th
e
o
u
tp
u
t
p
o
w
er
,
i
s
a
d
is
ad
v
an
ta
g
e.
T
h
is
d
i
s
ad
v
a
n
tag
e
i
s
eli
m
in
a
ted
b
y
t
h
e
p
r
o
p
o
s
ed
v
ar
iab
le
s
tep
s
ize
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
R
ea
l Time
I
mp
leme
n
ta
tio
n
o
f
V
a
r
ia
b
le
S
tep
S
iz
e
B
a
s
ed
P
&
O
MPP
T fo
r
P
V
S
ystems
…
(
K
.
Mu
th
u
ku
ma
r
)
924
m
et
h
o
d
as
th
e
s
tep
s
ize
is
a
u
t
o
m
a
ticall
y
ch
a
n
g
ed
b
y
m
ea
n
s
o
f
a
f
ee
d
b
ac
k
co
n
tr
o
ller
.
T
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
also
r
eg
u
lates
t
h
e
o
u
tp
u
t
v
o
ltag
e
ir
r
esp
ec
ti
v
e
o
f
th
e
d
y
n
a
m
ic
d
is
t
u
r
b
an
ce
s
te
m
p
er
at
u
r
e
an
d
ir
r
ad
iatio
n
.
T
h
e
o
u
tp
u
t
p
o
w
er
ef
f
icie
n
c
y
i
s
i
m
p
r
o
v
ed
b
y
5
%
to
7
%
in
s
i
m
u
lat
io
n
an
d
is
also
v
alid
at
ed
b
y
th
e
h
ar
d
w
ar
e
r
esu
lt
o
b
tain
ed
u
s
i
n
g
Dsp
ac
e
DS1
1
0
3
R
T
I
as
s
h
o
w
n
i
n
T
ab
le
5
f
o
r
th
e
lo
ad
r
esis
to
r
R
L
v
alu
e
3
0
Ω
an
d
6
0
Ω
.
T
h
e
s
i
m
u
la
tio
n
an
d
t
h
e
h
ar
d
w
ar
e
r
esu
lts
d
eb
icts
th
e
s
u
p
er
io
r
it
y
o
f
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
o
v
er
th
e
co
n
v
e
n
tio
n
a
l
m
et
h
o
d
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
T
h
e
au
th
o
r
s
w
is
h
to
th
a
n
k
A
n
n
a
m
a
lai
Un
iv
er
s
it
y
f
o
r
th
e
co
n
s
tan
t
s
u
p
p
o
r
t in
t
h
e
r
esear
c
h
p
r
o
ce
s
s
.
RE
F
E
R
E
NC
E
S
[1
]
C.
R.
Ba
la
m
u
ru
g
a
n
,
S.P.
Na
tara
ja
n
,
T
.
S
.
A
n
a
n
d
h
i
,
a
n
d
B.
S
h
a
n
t
h
i
, “
S
im
u
latio
n
a
n
d
d
S
P
A
CE
Ba
se
d
Im
p
le
m
e
n
tatio
n
o
f
V
a
rio
u
s
P
W
M
S
trate
g
ies
f
o
r
A
Ne
w
H
Ty
p
e
F
CM
L
I
T
o
p
o
lo
g
y
”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Po
we
r
El
e
c
tro
n
ics
a
n
d
Dr
ive
S
y
ste
ms
,
V
o
l.
6
,
n
o
.
3
,
2
0
1
5
.
[2
]
S
u
b
ra
m
a
n
y
a
x
Bh
a
t
a
n
d
Na
g
a
ra
ja
H.
N
.,
“
Ef
f
e
c
t
o
f
P
a
ra
siti
c
El
e
m
e
n
ts
o
n
t
h
e
P
e
rf
o
rm
a
n
c
e
o
f
Bu
c
k
B
o
o
st
C
o
n
v
e
rter
f
o
r
P
V
S
y
ste
m
s
”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
trica
l
a
n
d
C
o
mp
u
te
r E
n
g
i
n
e
e
rin
g
,
V
o
l
.
4
,
n
o
.
6
,
p
p
.
8
3
1
-
8
3
6
,
2
0
1
4
.
[3
]
P
a
ll
a
v
e
e
Bh
a
tn
a
g
a
r
a
n
d
R.
K.
N
e
m
a
,
“
M
a
x
i
m
u
m
p
o
w
e
r
p
o
in
t
t
ra
c
k
in
g
c
o
n
tro
l
trch
n
iq
u
e
s:
S
tat
e
o
f
th
e
a
rt
in
p
h
o
to
v
o
lt
a
ic ap
p
li
c
a
ti
o
n
s
”
,
Ren
e
wa
b
le
a
n
d
S
u
sta
i
n
a
b
le E
n
e
rg
y
Re
v
iews
,
v
o
l.
2
3
,
p
p
.
2
2
4
-
2
4
1
,
2
0
1
3
.
[4
]
Iss
a
m
Ho
u
ss
a
m
o
,
F
a
b
rice
L
o
c
m
e
n
t
a
n
d
M
a
n
u
e
la
S
e
c
h
il
a
riu
,
”
Ex
p
e
rime
n
tal
a
n
a
l
y
sis
o
f
i
m
p
a
c
t
o
f
M
P
P
T
m
e
th
o
d
s
o
n
e
n
e
rg
y
e
ff
ici
e
n
c
y
f
o
r
p
h
o
t
o
v
o
lt
a
ic
sy
st
e
m
s”
,
In
ter
n
a
ti
o
n
a
l
j
o
u
r
n
a
l
o
f
e
lec
trica
l
p
o
we
r
a
n
d
e
n
e
r
g
y
sy
ste
ms
,
v
o
l.
4
6
,
p
p
.
9
8
-
1
0
7
,
2
0
1
3
.
[5
]
M
o
h
a
m
e
d
A
.
El
taw
il
a
n
d
Zh
e
n
g
m
in
g
Zh
a
o
,
“
M
P
P
T
tex
h
n
iq
u
e
s
f
o
r
p
h
o
to
v
o
lt
a
ic
a
p
p
li
c
a
ti
o
n
s”
,
Ren
e
wa
b
le
a
n
d
su
sta
in
a
b
le en
e
rg
y
re
v
iews
,
v
o
l.
2
5
p
p
.
7
9
3
-
8
1
3
,
2
0
1
3
.
[6
]
M
o
h
a
m
m
e
d
A
.
E
k
g
e
n
d
y
,
Ba
sh
a
r
z
a
h
a
w
i
a
n
d
Da
v
id
J.
A
tk
in
so
n
,
“
A
s
se
ss
m
e
n
t
o
f
th
e
in
c
re
m
e
n
tal
c
o
n
d
u
c
tan
c
e
m
a
x
i
m
u
m
p
o
w
e
r
p
o
in
t
trac
k
in
g
a
lg
o
rit
h
m
”
,
IEE
E
tra
n
sa
c
ti
o
n
s
o
n
su
sta
in
a
b
le
e
n
e
rg
y
,
v
o
l,
4
n
o
.
7
,
p
p
.
1
0
8
-
1
1
7
,
2
0
1
3
.
[7
]
L
o
tf
i
Kh
e
m
i
ss
i,
Bra
h
i
m
Kh
iari,
Rid
h
a
A
n
d
o
u
lsi
a
n
d
A
d
n
a
n
e
Ch
e
rif
,
“
L
o
w
c
o
st
a
n
d
h
ig
h
e
ff
icie
n
c
y
o
f
sin
g
le
p
h
a
se
p
h
o
to
v
o
lt
a
ic sy
ste
m
b
a
se
d
o
n
m
ic
ro
c
o
n
tr
o
ll
e
r”
,
S
o
l
a
r E
n
e
rg
y
,
v
o
l.
8
6
,
n
o
.
5
,
p
p
.
1
1
2
9
-
1
1
4
1
,
2
0
1
2
.
[8
]
Hu
a
n
L
ian
g
T
sa
i,
“
In
so
latio
n
o
ri
e
n
ted
m
o
d
e
l
o
f
p
h
o
to
v
o
lt
a
ic
m
o
d
u
le
u
sin
g
M
a
tl
a
b
/
S
im
u
li
n
k
”
,
S
o
la
r
En
e
rg
y
,
v
o
l.
8
4
,
n
o
.
7
,
p
p
.
1
3
1
8
-
1
3
2
6
,
2
0
1
0
.
[9
]
Ji
y
o
n
g
L
i
a
n
d
Ho
n
g
h
u
a
.
W
in
g
,
“
A
No
v
e
l
sta
n
d
-
a
lo
n
e
PV
g
e
n
e
ra
ti
o
n
sy
ste
m
b
a
se
d
o
n
v
a
ri
a
b
le
ste
p
size
INC
M
PP
T
a
n
d
S
VP
W
M
c
o
n
tro
l”
,
IEE
E
6
th
In
tern
a
ti
o
n
a
l
P
o
w
e
r
e
lec
tro
n
ics
a
n
d
m
o
ti
o
n
c
o
n
tro
l
c
o
n
f
e
re
n
c
e
,
p
p
.
2
1
5
5
-
2
1
6
0
,
2
0
0
9
.
[1
0
]
M
a
rc
e
lo
G
ra
d
e
ll
a
v
il
lalv
a
,
Jo
n
a
s
Ra
fa
e
l
G
a
z
o
li
a
n
d
Ern
e
sto
Ru
p
p
e
rt
F
il
h
o
,
“
Co
m
p
re
h
e
n
siv
e
a
p
p
ro
a
c
h
to
m
o
d
e
ll
in
g
a
n
d
sim
u
latio
n
o
f
p
h
o
to
v
o
lt
a
ic
a
rra
y
s”
,
IEE
E
tra
n
sa
c
ti
o
n
s
o
n
p
o
we
r
e
lec
tro
n
ics
,
v
o
l.
2
4
,
n
o
.
5
,
p
p
.
1
1
9
8
-
1
2
0
8
,
2
0
0
9
.
[1
1
]
Hu
a
n
-
L
ian
g
T
s
a
i,
Ci
-
S
ian
g
T
u
,
a
n
d
Yi
-
ji
e
S
u
,
“
De
v
e
lo
p
me
n
t
o
f
g
e
n
e
ra
li
ze
d
p
h
o
t
o
v
o
lt
a
i
c
mo
d
e
l
u
si
n
g
M
AT
L
AB
/S
IM
ULINK”
,
p
r
o
c
e
e
d
i
n
g
s o
f
th
e
w
o
rld
c
o
n
g
re
ss
o
n
e
n
g
i
n
e
e
rin
g
a
n
d
c
o
m
p
u
ter sc
ien
c
e
,
p
p
.
1
-
6
,
2
0
0
8
.
[1
2
]
M.
Na
m
n
a
b
a
t,
M
.
Ba
y
a
ti
p
o
o
d
e
h
a
n
d
S
.
Es
h
tek
a
rd
ih
a
,
“
C
o
mp
a
riso
n
t
h
e
c
o
n
tr
o
l
me
th
o
d
s
i
n
i
mp
ro
v
e
me
n
t
th
e
p
e
rfo
rm
a
n
c
e
o
f
t
h
e
DC
-
DC c
o
n
v
e
rte
r”
,
In
tern
a
ti
o
n
a
l
c
o
n
f
e
re
n
c
e
o
n
p
o
w
e
r
e
lec
tro
n
ics
,
p
p
.
2
4
6
-
2
5
1
,
2
0
0
7
.
[1
3
]
M
.
Na
tara
jan
a
n
d
M
.
Ye
k
taii,
“
M
o
d
e
ll
in
g
o
f
DC
-
DC
b
u
c
k
c
o
n
v
e
rters
f
o
r
larg
e
sig
n
a
l
f
re
q
u
e
n
c
y
re
sp
o
n
se
a
n
d
li
m
it
c
y
c
les
”
,
IEE
E
tra
n
sa
c
ti
o
n
s o
n
c
ir
c
u
it
s a
n
d
sy
ste
ms
,
v
o
l.
5
3
,
n
o
.
8
,
p
p
.
7
1
2
-
7
1
6
,
2
0
0
6
.
[1
4
]
Ef
ti
c
h
io
s
Ko
u
tr
o
u
li
s,
K
o
sta
s
Ka
laitza
k
is
a
n
d
Nic
h
o
las
C.
V
o
u
lg
a
ris,
“
De
v
e
lo
p
m
e
n
t
o
f
a
m
icro
c
o
n
tr
o
ll
e
r
b
a
se
d
p
h
o
to
v
o
lt
a
ic
m
a
x
i
m
u
m
p
o
w
e
r
p
o
in
t
trac
k
in
g
c
o
n
tro
l
sy
st
e
m
”
,
IEE
E
tra
n
s
a
c
ti
o
n
s
o
n
p
o
we
r
e
lec
tro
n
ics
,
v
o
l.
1
6
,
n
o
.
1
,
p
p
.
4
6
-
5
4
,
2
0
0
1
.
[1
5
]
A
r
y
u
a
n
to
so
e
ted
jo
,
“
M
o
d
e
l
in
g
o
f
m
a
x
i
m
u
m
p
o
w
e
r
p
o
in
t
t
ra
c
k
in
g
c
o
n
tro
ll
e
r
f
o
r
so
lar
p
o
w
e
r
s
y
ste
m
”
,
T
EL
KOM
NIKA
In
d
o
n
e
si
a
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
in
e
e
rin
g
,
v
o
l.
1
0
,
n
o
.
3
,
p
p
.
4
1
9
-
4
3
0
,
2
0
1
2
.
[1
6
]
Nu
r
M
o
h
a
m
m
a
d
,
M
d
.
A
sif
u
l,
T
a
r
e
q
u
l
Ka
rim
a
n
d
Qu
a
z
i
De
lw
a
r
Ho
ss
a
in
,
“
Im
p
ro
v
e
d
so
lar
p
h
o
to
v
o
l
taic
a
rra
y
m
o
d
e
l
w
it
h
F
L
C
b
a
s
e
d
m
a
x
i
m
u
m
p
o
w
e
r
p
o
in
t
trac
k
in
g
”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
E
lec
trica
l
a
n
d
Co
mp
u
t
e
r
En
g
in
e
e
rin
g
,
v
o
l.
2
,
n
o
.
6
,
p
p
.
7
1
7
-
7
3
0
,
2
0
1
2
.
[1
7
]
Ch
a
n
d
a
n
i
S
h
a
rm
a
a
n
d
A
n
a
m
i
k
a
Ja
in
,
“
S
i
m
u
li
n
k
b
a
se
d
m
u
lt
iv
a
riab
le
so
lar
p
a
n
e
l
m
o
d
e
li
n
g
”
,
T
EL
KOM
NIKA
In
d
o
n
e
sia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
i
n
e
e
rin
g
,
v
o
l.
1
2
,
n
o
.
8
,
p
p
.
5
7
8
4
-
5
7
9
2
,
2
0
1
4
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
K.
M
u
th
u
k
u
m
a
r
w
a
s
b
o
rn
i
n
1
9
7
6
i
n
c
u
d
d
a
l
o
re
.
He
h
a
s
o
b
tain
e
d
B.
E
[
El
e
c
tro
n
ics
a
n
d
In
stru
m
e
n
tatio
n
]
a
n
d
M
.
E
[p
ro
c
e
ss
c
o
n
tro
l
a
n
d
I
n
stru
m
e
n
tatio
n
]
d
e
g
re
e
s
in
2
0
0
3
a
n
d
2
0
1
0
re
sp
e
c
ti
v
e
l
y
f
ro
m
A
n
n
a
m
a
lai
Un
iv
e
rsit
y
.
He
is
c
u
rre
n
tl
y
a
ss
istan
t
p
ro
f
e
ss
o
r
in
th
e
De
p
a
rtm
e
n
t
o
f
In
stru
m
e
n
tatio
n
E
n
g
in
e
e
rin
g
a
t
A
n
n
a
m
a
lai
Un
iv
e
r
sit
y
,
Ch
id
a
m
a
b
ra
m
,
In
d
ia
a
n
d
h
a
s
p
u
t
in
8
y
e
a
rs
o
f
s
e
rv
ic
e
.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
Re
n
e
w
a
b
le
so
u
rc
e
s,
P
o
w
e
r
e
lec
tro
n
ics
c
o
n
v
e
rters
a
n
d
it
s c
o
n
tr
o
l
tec
h
n
iq
u
e
s.
Evaluation Warning : The document was created with Spire.PDF for Python.