Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
6
,
No
. 2,
J
une
2
0
1
5
,
pp
. 37
0~
37
5
I
S
SN
: 208
8-8
6
9
4
3
70
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Control of Indirect Ma
trix Converter by
Using Improved SVM
Meth
od
N
.
La
va
nya
,
M
.
V
e
nu
Go
pa
la
Ra
o
Department o
f
Electrical
and
Electronics Engin
e
ering, K
.
L. University
, Ind
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 17, 2014
Rev
i
sed
Mar
27
, 20
15
Accepted Apr 18, 2015
A novel space
vector modulation (SVM
)
method for an indirect matr
ix
converter (IMC)
is used to
redu
ce
th
e common -mode voltag
e
(C
MV) in the
output.
The pro
cess of selecting
require
d active vectors
and to
d
e
scribe the
switching sequ
e
n
ce
in th
e inv
e
rter st
age of
th
e IMC is
expla
i
ned in
this
paper. Th
is novel SVM
m
e
thod u
s
ed to
decrease t
h
e peak -to-peak
am
plitud
e
voltag
e
of CMV without using
an
y
exte
rnal hard
ware.
The o
t
her
advantag
e
of this SVM method is to
redu
ce the total h
a
rmonic distor
tion
of
line-to
-lin
e
output voltage. This ne
w mo
dulation
techn
i
que is easily
implemented
through simulation and
its res
u
lts are
used to
demonstrate
th
e improved
performance of
the inpu
t/outpu
t
waveforms.
Keyword:
Active vectors and
zero vectors
C
o
m
m
on m
o
d
e
v
o
l
t
a
ge
r
e
du
ction
Indirect m
a
trix conve
rter
Space vector m
odulation
Tot
a
l
ha
rm
oni
c di
st
o
r
t
i
o
n
Vo
ltag
e
tran
sfer ratio
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
N. Lava
ny
a,
R
e
search
Sc
ho
l
a
r,
Depa
rt
m
e
nt
of
El
ectrical and Electronics
Engineeri
n
g,
K
.
L.
Un
iv
e
r
s
i
ty
,
In
d
i
a
Em
a
il: lav
a
n
y
a.n
a
n
n
a
p
a
n
e
n
i
@k
l
u
n
i
v
e
rsity.in
1.
INTRODUCTION
M
a
t
r
i
x
co
n
v
ert
e
rs (M
C
s
)
pr
o
duce
ac
out
put
s wi
t
h
vari
a
b
l
e
m
a
gni
t
udes a
n
d
f
r
eq
ue
nci
e
s fr
om
an ac
powe
r supply. These m
a
trix converte
rs ha
ve recei
ved
si
gni
ficant consi
d
eration si
nce
they provi
de
fairly
sin
u
s
o
i
d
a
l inpu
t/o
u
t
p
u
t
wav
e
form
s as
well
as b
i
d
i
rection
a
l p
o
w
er flow.
In
add
itio
n, the MCs h
a
v
e
b
e
tter
reliab
ility an
d
a co
m
p
act d
e
sig
n
du
e to
t
h
e ab
sen
ce
o
f
larg
e electro
lytic cap
acitor at
in
term
ed
iary en
erg
y
stora
g
e. T
h
ese
topologies of
MCs are
classified into t
w
o t
y
pes: the conv
en
tio
n
a
l o
r
d
i
rect
m
a
trix
co
nv
erter
(DM
C
)
an
d t
h
e
indi
rect m
a
trix c
o
n
v
e
r
ter
(I
M
C
) [
1
-
5
]
.
Thi
s
t
o
pol
o
g
y
of
IM
C
i
s
a gr
o
up
of
p
o
w
er s
w
i
t
c
hes
whi
c
h i
s
anal
og
o
u
s t
o
t
h
e
con
v
e
n
t
i
ona
l
rect
i
f
i
e
r/
dc
-l
i
n
k/
i
nve
rt
er t
o
po
l
ogy
. Th
e po
w
e
r ci
rcui
t
of I
M
C
consi
s
t
s
of
a rect
i
f
i
e
r st
age and a i
nve
rt
er st
age
.
A si
x
bi
di
rect
i
onal
s
w
i
t
c
hes
are use
d
fo
r t
h
e rect
i
f
i
e
r sta
g
e and the i
n
verter
stage
has six unidi
r
e
c
tional
swi
t
c
hes as s
h
ow
n i
n
Fi
g
u
re
1. B
y
usi
ng
I
M
C
one ca
n
g
e
nerat
e
sam
e
inp
u
t
an
d
out
pu
t
wave f
o
rm
s sim
i
l
a
r t
o
D
M
C [6
].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
370
–
3
75
37
1
Va
Vb
Vc
DC L
i
nk
V
o
ltage
P
n
Sap
Sbp
Scp
San
Sbn
Scn
S1
S3
S5
S4
S6
S2
Re
ctifier s
t
age
I
n
ver
t
e
r
s
t
ag
e
B
i
dir
ection
a
l
sw
it
c
h
Unidir
ection
a
l
swit
ch
T
h
r
ee P
h
as
e Lo
ad
Input Filter
ia
ib
ic
iA
iB
iC
A
B
C
g
g
Fi
gu
re
1.
A
To
pol
ogy
o
f
a
n
I
n
di
rect
M
a
t
r
i
x
C
o
n
v
ert
e
r
In add
itio
n, th
i
s
IMC topo
logy h
a
s
t
h
e ad
v
a
n
t
ag
es as
fo
llow
s
[7
].
1)
A si
m
p
l
e
com
m
ut
at
i
on a
n
d
c
l
am
p ci
rcui
t
f
o
r
ove
rv
ol
t
a
ge
p
r
ot
ect
i
o
n i
s
pr
o
v
i
d
e
d
.
2)
Th
ere is a
po
ssib
ility o
f
redu
ctio
n
o
f
power
switch
e
s i
n
th
e rectifier stag
e.
3)
There is a
possibility of
m
odified t
opology according to a
given a
pplica
tion,
for exam
ple, to i
m
prove the
q
u
a
lity of th
e
o
u
t
p
u
t
, to supply a th
ree-ph
ase un
b
a
lan
c
ed
l
o
ad, to
d
r
iv
e variou
s three-phase lo
ad
s and
t
o
increase t
h
e
voltage trans
f
e
r
ratio m
o
re than
0.866.
In p
o
w
er c
o
n
v
e
rt
ers, com
m
on-m
ode v
o
l
t
a
g
e
s (C
M
V
) d
u
e
t
o
t
h
e hi
g
h
-s
pe
ed p
u
l
s
e wi
dt
h
m
odul
at
i
o
n
(P
W
M
) i
n
t
r
od
uce m
a
ny pro
b
l
e
m
s
i
n
si
de an el
ect
ri
cal syste
m
. The CMV causes the followi
ng:
W
i
nding
fai
l
u
re
of m
o
t
o
r
,
det
e
ri
orat
i
o
n o
f
bea
r
i
n
g a
nd el
ect
ro
m
a
g
n
e
tic in
terferen
ce.
Hen
c
e, the redu
ction
of CMV
with
in
t
h
e
p
o
wer co
nv
erter is
i
m
p
o
r
tan
t
.
This pa
pe
r propos
es a new
S
V
M m
e
thod to dec
r
eas
e t
h
e
CMV, to im
prove the
quality of
out
put
vol
t
a
ge a
n
d al
s
o
t
o
red
u
ce t
h
e
num
ber
of s
w
i
t
chi
ng
st
at
es i
n
t
h
e i
nve
rt
er st
age. T
h
e m
e
t
hod
w
h
i
c
h i
s
pr
op
ose
d
i
s
based
o
n
t
h
e
t
h
ree act
i
v
e
v
ect
ors i
n
st
ead
of
fo
u
r
,
whi
c
h
i
s
used
i
n
t
h
e
s
t
anda
rd
SVM
m
e
t
hod.
The
ef
fect
o
f
t
h
e
st
an
da
rd
S
V
M
m
e
t
hod o
n
t
h
e out
p
u
t
per
f
o
r
m
a
nce and a com
p
arat
i
v
e
eval
uat
i
o
n o
f
t
h
e TH
D are di
scusse
d
in
ord
e
r t
o
identify th
e effectiv
en
ess
o
f
th
e
new SVM m
e
th
o
d
.
2.
NEW S
V
M
METHO
D
The
ne
w S
V
M
m
e
t
hod
use
s
a
gr
ou
p
o
f
t
h
ree
nei
g
h
b
o
r
act
i
v
e vect
ors
t
o
sy
nt
hesi
ze t
h
e
refe
rence
out
put
v
o
l
t
a
ge
vect
o
r
.
The
m
a
xi
m
u
m
val
u
e o
f
C
M
V
i
s
r
e
d
u
ced t
o
42
%
onl
y
by
a
ppl
y
i
n
g
t
h
e act
i
v
e
vect
o
r
s i
n
t
h
e i
n
vert
er
st
age f
o
r ge
ne
ra
t
i
ng t
h
e
re
fere
nce
out
put
v
o
l
t
a
ge vect
or
. T
o
ove
rcom
e t
h
e l
i
m
i
t
a
t
i
ons o
f
t
h
e
st
anda
rd S
V
M
m
e
t
hod, su
ch
as, l
i
n
e-t
o
-l
i
n
e
out
p
u
t
v
o
l
t
a
g
e
havi
n
g
hi
gh
ri
p
p
l
e
and t
h
e
i
nve
rt
er st
age
havi
ng
h
i
gh
sw
itch
i
ng lo
ss at th
e i
nver
t
er
stag
e
,
a
PWM technique
is applied at the
i
n
vert
e
r
st
a
g
e [
1
]
.
T
h
i
s
t
e
c
hni
que
u
s
es a gro
u
p
of th
r
e
e n
e
i
g
hbou
r activ
e
v
ector
s to g
e
n
e
r
a
te a r
e
f
e
r
e
n
ce
o
u
t
pu
t vo
ltag
e
v
ect
o
r
. In
t
h
e
n
e
w
SV
M
m
e
t
hod
t
h
e i
n
v
e
rt
er st
a
g
e sect
ors
are
de
fi
ne
d
di
f
f
ere
n
t
l
y
as
com
p
ared
wi
t
h
t
h
e st
a
nda
r
d
S
V
M
m
e
t
hod.
T
h
es
e
sect
ors are
def
i
ned by
usi
ng
t
h
ree nea
r
est
act
i
v
e vect
ors i
n
or
de
r t
o
ge
n
e
rat
e
t
h
e refer
e
nce o
u
t
p
ut
v
o
l
t
a
ge
vector. T
h
e space vector divi
sion int
o
six se
ctors a
nd t
h
e group of three s
e
lected active vectors in eac
h sector
are s
h
o
w
n i
n
F
i
gu
re
2.
The propose
d
SVM m
e
thod
can be illustrat
e
d by ass
u
m
i
n
g
the de
sired
output voltage a
nd t
h
e input
current
space
vectors t
o
be
l
o
cated
in
sector
1(-
/6
α
o
/6
,
/6
α
i
/
6
)[
2
]
.
The c
o
m
b
ination
of th
e two a
c
tive vectors
I
ab
and I
ac
are
us
ed to
ge
nerate
the re
fere
nce i
n
put current
vect
o
r
i
n
t
h
e
re
ct
i
f
i
e
r st
age w
h
i
c
h i
s
si
m
i
l
a
r t
o
t
h
at
o
f
t
h
e st
anda
r
d
SVM
m
e
t
hod.
Th
ree
act
i
v
e vect
o
r
s
V
6
, V
1
and V
2
are
u
s
ed
in th
e i
n
verter stag
e to
g
e
n
e
rate th
e
re
fere
nce voltage
vect
or (refe
r
to Figure
1).
Th
e sw
itch
i
ng
sequ
en
ce
of
thr
ee v
ect
o
r
s i
n
secto
r
I
is 101-
100
-1
10-
110
-1
00-
101
and
t
h
e sw
itch
i
ng
sequ
en
ce in
secto
r
I
I
is 11
0-0
10-
100
-1
00-
01
0-1
1
0
ar
e assu
m
e
d
.
W
h
en
th
e r
e
f
e
r
e
nce ou
tpu
t
v
o
ltag
e
v
ector
chan
ges
fr
om
sect
or I t
o
sect
o
r
II
, d
u
ri
ng t
h
e
gi
ve
n t
i
m
e
, t
h
e swi
t
c
hi
n
g
st
at
e i
s
change
d f
r
om
101 t
o
1
1
0
. T
h
e
sel
ect
i
on o
f
t
h
e swi
t
c
hi
n
g
se
que
nce
of
the
active vector i
n
all six vectors
is properly selected as shown in
Tabl
e 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
C
ont
r
o
l
of
I
ndi
rect
Mat
r
i
x
C
o
nvert
e
r
by
usi
n
g
Im
pr
oved
S
V
M Met
h
o
d
(
N
. Lav
any
a)
37
2
Fi
gu
re 2.
The
R
e
fere
nce Out
put
V
o
l
t
a
ge Ve
ct
or Ge
nerat
i
o
n
at
t
h
e
I
n
vert
e
r
St
a
g
e by
Usi
n
g
Ne
w SVM
Meth
od
Tabl
e 1. In
ve
rt
er
st
age
s
w
i
t
c
h
i
ng seq
u
e
n
ce
Output sector
Switching sequenc
e
1 101-
10
0-
110-
11
0-
100-
10
1
2 110-
01
0-
011-
01
1-
010-
11
0
3 100-
11
0-
010-
01
0-
110-
10
0
4 010-
01
1-
001-
00
1-
011-
01
0
5 011-
00
1-
101-
10
1-
001-
01
1
6 001-
10
1-
100-
10
0-
101-
00
1
The Swi
t
c
hi
n
g
l
o
sses are gre
a
t
l
y
affect
ed by
t
h
e num
ber of s
w
i
t
c
hi
n
g
com
m
ut
at
i
ons.
Fi
gu
re 3 an
d
Fi
gu
re
4 s
h
ow
t
h
e di
ffe
rent
s
w
i
t
c
hi
n
g
pat
t
e
r
n
s
of
t
h
e
st
an
d
a
rd
SVM
m
e
t
h
od
an
d
ne
w s
v
m
m
e
t
hod
[4]
.
Fig
u
re 3
.
Switch
i
ng
p
a
ttern
of th
e
inv
e
r
t
er
s
t
ag
e
w
ith
th
e S
t
an
d
a
rd
SV
M me
th
od
Fi
gu
re 4.
S
w
i
t
c
hi
n
g
pat
t
e
rn
o
f
t
h
e
ne
w SVM
m
e
t
hod
From
the switching pattern it is easily obs
erve
d this for the new S
V
M m
e
thod each
powe
r switch
doe
s
not
c
h
a
n
ge i
t
s
st
at
e
du
r
i
ng t
w
o
t
o
si
x
sect
ors
i
n
t
h
e i
nve
rt
er
st
age.
We ca
n see
t
h
at
t
h
e s
w
i
t
c
h
h
a
s n
o
swi
t
c
hi
n
g
com
m
u
t
a
t
i
ons d
u
ri
ng sect
ors
1 a
nd
4.
Hence
,
t
h
e ne
w S
V
M
m
e
t
hod i
s
use
d
t
o
red
u
ce t
h
e
num
ber
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
370
–
3
75
37
3
of
swi
t
c
hi
ng
c
o
m
m
ut
at
i
ons.
There
f
ore,
by
usi
n
g
ne
w S
V
M
m
e
t
hod t
h
e
po
wer
s
w
i
t
c
hi
n
g
l
o
sses c
a
n
be
reduce
d in the
inve
rter sta
g
e.
The sy
nch
r
oni
zat
i
on
bet
w
e
e
n t
h
e
s
w
i
t
c
hi
n
g
st
at
e
of t
h
e
r
ect
i
f
i
e
r an
d t
h
e
i
nve
rt
er
st
ages
of
t
h
e
ne
w
SVM
m
e
t
hod
a
r
e s
h
o
w
n i
n
Fi
gu
re
5.
Fi
gu
re
5.
The
new
S
V
M
m
e
tho
d
s
w
i
t
c
hi
ng
pat
t
e
rn
In the inverter stage, the gr
oup of three a
c
tive vectors
V
6
, V
1
and V
2
are used to gene
rate the
refe
rence
o
u
t
p
ut
v
o
l
t
a
ge
vect
or
by
a
ppl
y
i
n
g
d
u
t
y
cy
cl
es d
6
, d
1
, and
d
2
,
re
spectively. T
h
erefore
,
the
re
ference
out
put
v
o
l
t
a
ge can be gene
rat
e
d
as:
V
ref
= d
6
V
6
+d
1
V
1
+d
2
V
2
The s
w
itching patterns
of t
h
e inverter sta
g
e are
di
v
i
d
e
d in
to
two
grou
p
s
sim
ilar to
th
at o
f
th
e
st
anda
rd S
V
M
m
e
t
hod. I
n
t
h
e i
nve
rt
er st
age, v
o
l
t
a
ge v
ect
ors are ar
r
a
nge
d i
n
a d
o
u
b
l
e
-si
d
e swi
t
chi
n
g
sequence:
V
6
-V
1
-V
2
-V
2
-V
1
-V
6
. In t
h
e
rectifier stage
,
active curre
nt
vector I
ab
is
ap
p
lied and
the first sid
e
sw
itch
i
ng
sequen
ce
V
6
-V
1
-V
2
is app
lied
in th
e inv
e
rter stag
e.
Th
e
duty cycles for the t
h
ree active
vect
ors
V
6
,
V
1
and V
2
are calcu
l
ated
b
y
mu
ltip
lyin
g
d
1
, d
2
and
d
6
with d
ab
, as s
h
o
w
n
be
l
o
w:
d
1ab
=d
1
.d
ab
; d
2ab
=d
2
.d
ab
; d
6ab
=d
6
.d
ab
During the
active vect
or, I
ac
wh
ich
is ap
p
l
i
e
d
to th
e
rectifier stag
e and
th
e seco
nd
si
de switch
i
ng
sequence
V
2
-V
1
-V
6
is
g
i
v
e
n
in th
e inv
e
rter st
ag
e.
From
t
h
e Tabl
e 2, i
t
i
s
o
b
se
r
v
ed t
h
at
t
h
e
va
l
u
e o
f
C
M
V
d
e
pen
d
s
o
n
t
h
e
val
u
e
of t
h
e i
n
put
vol
t
a
ge
and t
h
e switching states of the rectifier a
n
d inverter
sta
g
es. The
pea
k
CMV is not affected
by the desire
d
out
put
fre
q
u
e
n
cy
and
vol
t
a
ge
. T
h
e
peak
v
a
l
u
e
of
C
M
V
f
o
r t
h
e
ne
w
SV
M
m
e
t
hod
i
s
1/
√
3 t
h
e
i
n
put
p
h
ase
vol
t
a
ge
m
a
gni
t
ude
w
h
i
c
h
i
s
s
h
o
w
n i
n
t
h
e
Fi
gu
re
6.
Table 2. Peak value of
CMV
T
h
e peak CM
V
I
nput cur
r
e
nt vector
1,
3,
5 2,
4,
6
Output
Voltage
Vector
V
0
√
3/2V
i
-
V
i
V
7
V
i
-
√
3/2 V
i
V
1
,V
2
,V
3
,V
4
,V
5
,V
6
1/
√
3 V
i
-1
/
√
3 V
i
Fi
gu
re
6.
C
o
m
p
ari
s
on
o
f
pea
k
val
u
e
o
f
C
M
V f
o
r st
a
nda
rd
SVM
a
n
d
Ne
w
SVM
m
e
t
h
o
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
C
ont
r
o
l
of
I
ndi
rect
Mat
r
i
x
C
o
nvert
e
r
by
usi
n
g
Im
pr
oved
S
V
M Met
h
o
d
(
N
. Lav
any
a)
37
4
3.
R
E
SU
LTS AN
D ANA
LY
SIS
The per
f
o
r
m
a
nce
of
t
h
e ne
w SVM
m
e
t
hod
i
s
eval
uat
e
d by
usi
n
g
t
h
e
t
o
t
a
l
harm
oni
c di
st
o
r
t
i
on (T
HD
)
for th
e lin
e-t
o
-lin
e
o
u
t
p
u
t
vo
ltag
e
.
Th
e THD of t
h
e
lin
e-t
o
-lin
e ou
t
p
u
t
vo
ltag
e
,
wh
ich
co
n
t
ai
ns bo
th
fu
n
d
am
ent
a
l
and
ha
rm
oni
c c
o
m
pone
nt
s, i
s
defi
ned
as:
THD=
Whe
r
e V
1
i
s
t
h
e f
u
n
d
am
ent
a
l
com
pone
nt
a
n
d
V
rm
s
is th
e root
m
ean
squ
a
re
o
f
th
e lin
e-to-lin
e
o
u
t
p
u
t
vo
ltag
e
.
The ne
w S
V
M
m
e
t
hod i
s
sho
w
n t
o
gene
rat
e
a sm
al
l
h
a
rm
oni
c com
pone
nt
, acc
or
di
ng t
o
t
h
e fast
Fo
uri
e
r t
r
a
n
s
f
o
r
m
(FFT) o
f
t
h
e C
M
V as c
o
m
p
ared wi
t
h
t
h
e st
an
dar
d
S
V
M
m
e
t
hod
w
h
i
c
h i
s
s
h
o
w
n
i
n
t
h
e
fo
llowing
sim
u
latio
n
resu
lts i
n
Fi
g
u
re
7
.
Figure
7.
W
a
v
e
fo
rm
of I
n
put
vol
t
a
ge
, C
M
V
and
i
t
s
FFT
at
f=5
0
H
z
by
usi
n
g
ne
w
SVM
m
e
t
hod
4.
CO
NCL
USI
O
N
The re
d
u
ct
i
o
n
of C
M
V
by
usi
n
g t
h
e
new
SVM
m
e
t
hod
fo
r IM
C
i
s
p
r
o
p
o
sed i
n
t
h
i
s
pape
r.
I
n
addition, this
m
e
thod is also used
to
decre
a
se the total harm
onic distor
tion in orde
r to control the IMC ove
r
t
h
e f
u
l
l
out
put
vol
t
a
ge
ra
nge
[
2
]
[3]
.
Si
m
u
l
a
t
i
on r
e
sul
t
s
are pr
o
v
i
d
e
d
t
o
de
m
onst
r
at
e the effective
n
ess
of the
pr
o
pose
d
m
e
t
hod
.
REFERE
NC
ES
[1]
J.W. Kolar, T. Friedli, J. Ro
dr
iguez, and P.W. Wheeler, “Review of
three-phase PWM
AC-AC converter
topologies”,
IEEE Trans. Ind. Electron.
, vo
l. 58,
no. 11
, pp
. 4988
–5006, Nov. 201
1.
[2]
Tuy
e
n D.
Nguy
en
,
Hong-Hee Lee
,
“A New SVM Method for an Indirect
Matrix Converter with Common-Mod
e
Voltage Redu
ction”,
I
E
EE Transaction
on Industrial Informatics
,
vol. 10
, no
. 1
,
Feb 2014.
[3]
M. Rivera, J. R
odriguez, B. Wu
,
J.R. Espinoza, and
C.
A. Rojas, “Current contro
l for an
ind
i
rect matrix conver
t
er
with fi
lter
reson
a
nce
m
itig
ation
”
,
IEEE Trans. In
d. Electron
, vol.
59, no
. 1
,
pp
. 71
–79, Jan
.
2012
.
[4]
M.Y. Lee, P. Wheel
er,
and C. K
l
um
pner, “Space
-Vector m
odulat
ed m
u
ltil
evel
m
a
trix
conver
t
er”,
IEEE T
r
ans. In
d.
Ele
c
tron
, vol. 57
, no
.10, pp. 3385
–3394, Oct. 201
0.
[5]
X. Liu, P.Wang, P.C.
Loh, and F. Blaabjerg, “A compact three-phase
single-
input/dual-ou
tput matrix converter”,
IEEE Trans. Ind
.
Electron
, vol. 5
9
, no
. 1
,
pp
. 6–1
6, Jan
.
2012
.
0
0.
02
0.
04
0.
06
0.
0
8
0.
1
0.
12
0.
14
0.
16
0.
18
0.
2
-6
0
0
-4
0
0
-2
0
0
0
20
0
40
0
60
0
Ti
m
e
(
s
e
c
)
I
n
put
V
o
l
t
age(
V
o
l
t
s
)
0
0.
0
2
0.
04
0.
06
0.
0
8
0.
1
0.
12
0.
14
0.
1
6
0.
1
8
0.
2
-
150
-
100
-5
0
0
50
100
150
Ti
m
e
(
s
e
c
)
Vo
l
t
a
g
e
(
V
)
0
2
4
6
8
10
12
14
16
0
5
10
15
H
a
r
m
on
i
c
or
de
r
F
u
n
dam
en
t
a
l
(
6
0H
z
)
=
4
92.
9 ,
T
H
D
=
17
.
6
5
%
M
a
g
(%
o
f F
u
n
d
a
m
e
n
ta
l)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
370
–
3
75
37
5
[6]
Pawel Szczesni
ak, “
A
com
p
arison betw
een two average m
odelling t
echniq
u
e
s
of AC–AC p
o
wer converters
”
,
IJPEDS
, Vol. 6,
no. 1
,
Mar
c
h 20
15.
[7]
Derick Mathew, Athira P Ashok
, Bincy
M Math
ew
, “Venturini Method based Matrix Converter”,
IJPEDS
, V
o
l. 6
,
no. 1
March
201
5.
BIOGRAP
HI
ES OF
AUTH
ORS
N. Lavany
a
currentl
y
working
as
a res
earch
s
c
holar in K.L univers
it
y, V
ija
yaw
a
da
. S
h
e
obtain
e
d her
masters degree fro
m
G Naray
a
nama institut
e of science
and technolo
g
y
, H
y
derab
a
d
,
in 2010 and
also Bachelor
'
s
d
e
gree
from Bhoj Redd
y
Eng
i
neering Co
lleg
e
for Women,
H
y
der
a
bad
in 2
007. Reas
earch
areas
inter
e
sted
are power
electron
i
cs,
Electr
ical machin
es,
Renewabl
e ener
g
y
s
ources
.
Dr.
M Venu Gopala Rao
at
pres
ent is
P
r
ofes
s
o
r & Head,
Departm
e
nt of
Ele
c
tri
cal
&
Electronics Engineering
,
KL University
, Guntur
,
and Andhra Prad
esh, India. He o
b
tain
ed M.E in
Electrical Power Engineering f
r
om M S Univ
er
sity
, B
a
roda,
India in 1999
,
and M.Tech in
Computer Science from JNTU
College of Engin
eering
,
Kakinada, India in 200
4 and Doctoral
Degree in
Electr
i
cal & El
ectronics Engineering f
r
om JNT Univ
ersity
, H
y
der
a
bad, India in
2009.
He published more than 42 papers in various Na
tion
a
l, International Conferen
ces and Journals.
His research
int
e
rests ac
cum
u
late
in the
ar
ea of P
o
wer Qualit
y,
S
m
art Ele
c
tr
ic Gr
id, Distribu
tion
S
y
s
t
em
and
El
ec
tric
al M
a
chin
es
.
Evaluation Warning : The document was created with Spire.PDF for Python.