Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l. 5,
N
o
.
1
,
Ju
ly 20
14
, pp
. 71
~75
I
S
SN
: 208
8-8
6
9
4
71
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
A Three Phase Multi Level Conv
erter for grid Connected PV
System
K.S.
Srik
an
th
Departem
ent
of
Ele
c
tri
cal
and
E
l
ectron
i
cs
Eng
i
ne
ering,
KL Univ
e
r
s
i
t
y
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 28, 2014
Rev
i
sed
May
9, 201
4
Accepted
May 25, 2014
Photovoltaic en
erg
y
is a wide kind of green
ener
g
y
. A high p
e
rf
ormance on
thes
e s
y
s
t
em
s
is
needed
to m
a
ke
the m
o
s
t
of
ener
g
y
produ
ced
b
y
s
o
lar c
e
lls
.
Also, ther
e must be a constan
t
adapta
tion du
e to
the
continuous
variation o
f
power productio
n. Control
techn
i
ques for Power Converters like the MPPT
algorithm (Max
imum Po
wer Point Tr
acking)
pr
esent v
e
r
y
good
results on
photovoltaic ch
ains. Neverth
e
les
s
, lo
sses on po
wer elements reduce global
perform
ance
and
the vol
tage
/curr
e
nt ad
apta
tion
is not alway
s
possible. Th
is
paper presen
ts a
single-phase 11
-leve
l
(5 H-brid
ges) cascad
e m
u
ltil
evel DC-
AC grid-tied in
verter
. Each inv
e
rter
bridg
e
is connected to a 200 W
solar
panel. OPAL-RT lab was used as the
hardware in the loop (HIL) real-
time
control s
y
s
t
em
platform
where
a M
a
xim
u
m
P
o
wer P
o
int Track
ing (M
P
P
T
)
algorithm was implemented based on the
inver
t
er output power to assure
optimal oper
a
tio
n of the inv
e
rter
when c
onnected
to the power gr
id as well as
a Phase Locked
Loop (PLL) for phase
and frequ
ency
match. A no
vel SPWM
schem
e
is propo
sed in
this pap
e
r to b
e
used
wit
h
the
solar p
a
ne
ls that
c
a
n
accoun
t for voltage profile f
l
uctuations among the panels durin
g the d
a
y
.
Simulation and
experimental
resu
lts are shown for
voltag
e
and cu
rr
ent during
s
y
nchronization
mode and p
o
wer tr
ansferring mode to
valid
ate th
e
methodolog
y
for
grid
connectio
n
of renew
a
ble res
ources.
Keyword:
Co
nv
erter
Gri
d
MPPT
Mu
ltilev
e
l
Pho
t
ov
o
ltaic
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Dr.
K
.
S
.S
ri
ka
nt
h,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
KL Uni
v
er
sity
,
Gree
nfi
e
l
d
s,
V
a
dde
swa
r
am
, Gu
nt
u
r
Di
st
ri
ct
, A
n
dh
ra P
r
a
d
e
s
h,
I
ndi
a.
Em
a
il: srik
an
th.d
sd
@g
m
a
il.co
m
1.
INTRODUCTION
Because e
n
ergy resource
s a
nd t
h
eir
utilization
will
be
a prom
inent issue
of t
h
is c
e
ntury, the
pr
o
b
l
e
m
s
of n
a
t
u
ral
re
so
urc
e
de
pl
et
i
on,
e
nvi
ro
nm
ent
a
l
im
pact
s, and t
h
e ri
si
ng
dem
a
nd
f
o
r
ne
w
ener
gy
resources ha
ve
been
disc
usse
d fe
rve
n
tly in recent year
s
.
Several form
s of re
newa
ble ze
ro
pollution e
n
ergy
reso
u
r
ces, i
n
cl
udi
ng
wi
nd
, s
o
l
a
r,
bi
o,
ge
ot
h
e
rm
al
and so
f
o
rt
h,
ha
ve g
a
i
n
ed m
o
re p
r
om
inence
an
d a
r
e
bei
n
g
researc
h
e
d
by
m
a
ny
sci
e
nt
i
s
ts and en
gi
ne
er
s [1]
-
[
2
]
.
S
o
lar cell
in
stallatio
n
s
in
vo
lve th
e u
s
e of m
u
lt
ip
le so
lar
panel
s
or m
o
d
u
l
e
s, w
h
i
c
h ca
n be c
o
nnect
e
d
i
n
seri
es o
r
in
p
a
rallel to
prov
id
e th
e
d
e
sired
vo
ltag
e
lev
e
l
to
th
e
inverter. The cascaded H-br
idge m
u
lti
level i
nverter topology requi
res
a separate DC sour
ce for each
H-bri
dge
so
th
at h
i
gh
po
wer and
/
or h
i
g
h
v
o
ltage th
at can
resu
lt fro
m
th
e co
m
b
i
n
atio
n
o
f
th
e
m
u
l
tip
le
m
o
d
u
les in
a
m
u
l
tilevel inverter would
favor t
h
is topol
ogy [3]-[7].
To
maxi
m
i
ze the
energy ha
rvested from
each string,
a
m
a
xim
u
m
pow
er p
o
i
n
t
t
r
ac
ki
ng
(M
PP
T) st
r
a
t
e
gy
i
s
nee
d
ed
. Th
e task
of
find
ing
th
e
op
ti
m
u
m
o
p
e
ration
po
i
n
t
might increase
the com
p
lexity and co
m
ponent count as the num
b
er of is
olated DC sources increas
e. The
app
r
oach
ch
os
en t
o
deal
wi
t
h
t
h
e
n
u
m
b
er
of
i
n
put
s
o
urc
e
s was
t
o
m
oni
t
o
r
AC
o
u
t
p
ut
p
o
w
er
pa
ra
m
e
t
e
rs
in
stead
o
f
DC
in
pu
t m
easu
r
emen
ts [8
]. Trad
itio
n
a
l m
u
ltil
ev
el in
v
e
rters i
n
clud
e cascad
e
d
H-bridg
e
inverter,
di
o
d
e cl
am
ped i
nvert
e
r
, an
d f
l
y
i
ng capaci
t
o
r
s
i
nvert
e
r
. T
h
i
s
pape
r f
o
cuse
s on t
h
e si
ngl
e
-
p
h
ase 1
1
-l
e
v
el
(
5
H
-
b
r
i
d
g
e
s) cascad
e
m
u
ltilev
e
l i
n
v
e
rter.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
71
–
75
72
2.
PV CELL
TOD
A
Y
p
hot
o
vol
t
a
i
c
(P
V) p
o
we
r sy
st
em
s
are bec
o
m
i
ng
m
o
re and
m
o
r
e
po
pul
ar
, wi
t
h
t
h
e i
n
crease
of e
n
er
gy
de
m
a
nd an
d t
h
e
conce
r
n
of e
nvi
ro
nm
ent
a
l
pol
l
u
t
i
o
n a
r
o
u
nd t
h
e w
o
rl
d.
Fo
ur
di
ffe
ren
t
sy
st
em
co
nfigu
r
ation
s
are wi
d
e
ly dev
e
lop
e
d in
grid
-con
n
ect
ed
PV
p
o
wer app
licatio
n
s
: th
e cen
tralized
i
n
v
e
rter
sy
st
em
, t
h
e st
ring i
n
ve
rt
er sy
st
em
, t
h
e
m
u
lt
i
st
ri
ng i
n
ve
rt
er sy
st
em
and t
h
e
m
odul
e-i
n
t
e
gr
at
ed i
nve
rt
er s
y
st
em
.
Gen
e
rally th
ree typ
e
s o
f
inv
e
rter syste
m
s e
x
cep
t th
e ce
nt
r
a
l
i
zed i
nvert
e
r
sy
st
em
can be
em
pl
oy
ed as sm
al
l
-
scal
e di
st
ri
b
u
t
e
d ge
ne
rat
i
on
(
D
G
)
sy
st
em
s, such a
s
resi
dent
i
a
l
powe
r
a
ppl
i
cat
i
ons.
The m
o
st
i
m
port
a
nt
d
e
si
gn
con
s
t
r
ai
nt
of
t
h
e P
V
D
G
sy
s
t
em
i
s
t
o
o
b
t
a
i
n
a
hi
gh
v
o
l
t
a
ge
gai
n
.
F
o
r
a
t
y
pi
cal
PV m
odul
e,
t
h
e
o
p
e
n
-
c
i
r
cui
t
v
o
ltag
e
is abo
u
t 2
1
V
and
th
e
max
i
m
u
m
p
o
w
er
po
in
t (
M
PP) v
o
ltag
e
is ab
ou
t 16
V. And
the u
tility g
r
id
is 220
or 1
1
0
Vac
.
Th
eref
ore
,
t
h
e hi
gh
vol
t
a
ge am
pl
i
f
i
cat
i
on i
s
o
b
l
i
g
at
o
r
y
t
o
real
i
ze t
h
e gri
d
-c
on
nect
ed
fu
nct
i
on an
d
achi
e
ve t
h
e l
o
w t
o
t
a
l
ha
rm
oni
c di
st
o
r
t
i
o
n
(TH
D
)
.
T
h
e c
o
n
v
e
n
t
i
onal
sy
st
em
requi
re
s
l
a
rge
num
bers
of
PV
m
odul
es i
n
ser
i
es, and t
h
e
no
rm
al PV array
vol
t
a
ge i
s
bet
w
een 1
50 a
nd
4
5
0
V
, a
nd t
h
e s
y
st
em
power i
s
m
o
re
than 500W. This syste
m
is not appli
cable to the
m
odule
-
int
e
grate
d
inve
rt
e
r
s, beca
use the
typical powe
r
rating
of the m
odule
-
integrate
d
inve
rter
syste
m
is
below 500W,
and the m
o
du
les with powe
r ratings
betwee
n 100
and
2
0
0
W
a
r
e
al
so q
u
i
t
e
com
m
on. The
ot
he
r m
e
t
hod i
s
t
o
use a l
i
n
e f
r
e
q
uency
st
e
p
-
up
t
r
ans
f
o
r
m
e
r, and t
h
e
no
rm
al
PV array
vol
t
a
ge i
s
b
e
t
w
een 3
0
a
n
d
15
0V
. B
u
t th
e lin
e frequ
en
cy tran
sfo
r
m
e
r has th
e d
i
sadv
an
tag
e
s
o
f
larg
er size an
d
weigh
t
. In
th
e grid-conn
ected
PV sy
stem, powe
r electroni
c inve
rters are neede
d
to re
alize
t
h
e p
o
w
er
co
n
v
ersi
on
,
gri
d
i
n
t
e
rc
on
nect
i
o
n
,
an
d
co
nt
r
o
l
opt
i
m
i
zati
on.
The
resi
de
nt
i
a
l
gri
d
-c
on
nect
ed P
V
sy
st
em
i
s
sho
w
n i
n
t
h
e
bel
o
w
Fi
gu
re
1.
Fi
gu
re
1.
Di
a
g
r
a
m
of a
resi
den
t
i
a
l
gri
d
-
c
o
n
n
e
c
t
e
d P
V
sy
st
e
m
A
grid connec
ted system
is
connected to a
large i
n
d
e
p
e
nd
en
t
g
r
i
d
(typ
ically th
e p
u
b
lic electricity
g
r
i
d
)
and
f
e
ed
s po
w
e
r
in
t
o
th
e g
r
i
d
.
Gr
id
conn
ected
syste
m
s v
a
r
y
i
n
size
f
r
o
m
r
e
sid
e
n
tial (
2
-
10kW
p)
to
so
lar
powe
r stations
. This
is a
form
of dece
ntralized electri
city
g
e
n
e
ration
.
In th
e case
of resid
e
n
tial or
b
u
ild
ing
m
ount
ed g
r
i
d
con
n
ect
ed
PV
sy
st
em
s, t
h
e el
ect
ri
ci
t
y
dem
a
nd
of t
h
e b
u
i
l
d
i
ng i
s
m
e
t
by
the P
V
sy
st
em
. Onl
y
th
e ex
cess is
fed
in
t
o
th
e gri
d
wh
en
t
h
ere i
s
an e
x
cess
.
T
h
e feedi
n
g of
el
ectricity in
to
th
e
g
r
id requ
ires th
e
t
r
ans
f
o
r
m
a
ti
on
of
DC
i
n
t
o
AC
by
a
speci
al
,
g
r
i
d
-c
o
n
t
r
ol
l
e
d i
nve
rt
er.
3.
PROP
OSE
D
CO
NCEPT
Th
is p
a
p
e
r p
r
esen
ts
a
si
n
g
l
e-ph
ase 11
-level
(5
H-bridges) cascad
e
mu
ltilev
e
l DC-AC grid-tied
i
nve
rt
er as sh
o
w
n i
n
t
h
e Fi
g
u
r
e 2. Eac
h
i
n
v
e
rt
er b
r
i
d
ge i
s
con
n
ect
ed t
o
a
20
0
W
s
o
l
a
r
panel
.
OP
AL
-
R
T l
a
b
was used as t
h
e hardware in t
h
e loop
(HIL
)
real-tim
e
control sy
stem
platform
wh
ere a
Maxim
u
m
Power Poi
n
t
Tracki
ng
(M
P
P
T) al
g
o
r
i
t
h
m
was i
m
pl
em
ented bas
e
d
on t
h
e i
nve
rt
er o
u
t
p
ut
p
o
we
r t
o
ass
u
re
opt
i
m
al
operat
i
o
n
of t
h
e inve
rter when c
o
nne
cted to t
h
e
power grid
as well as a Phase
Loc
k
ed
Loop
(
P
LL)
for
ph
ase and
fre
que
ncy
m
a
tch.
A
n
o
v
el
S
P
W
M
sc
hem
e
i
s
pr
o
p
o
sed
i
n
t
h
i
s
pa
pe
r t
o
b
e
use
d
wi
t
h
t
h
e sol
a
r
panel
s
t
h
at
ca
n
account
for
vol
tage profile fl
uctuations
am
ong the
pa
nels
during the
day. B
ecause e
n
ergy
resources a
n
d thei
r
u
tilizatio
n
will b
e
a
p
r
o
m
i
n
en
t issu
e
o
f
th
is cen
t
u
ry, th
e pro
b
l
ems o
f
n
a
t
u
ral
resource d
e
p
l
etio
n,
envi
ro
nm
ent
a
l im
pact
s, and
t
h
e ri
si
n
g
dem
a
nd
f
o
r
ne
w e
n
er
gy
res
o
urce
s ha
ve bee
n
di
scusse
d fe
r
v
en
t
l
y
i
n
recent yea
r
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Three Phase
Multi Level Converter for
grid
C
o
nnected PV Syste
m
(K.S.
Srikanth)
73
Fig
u
re
2
.
Mu
ltilev
e
l in
verter syste
m
o
v
e
rv
iew
An
ove
r
v
i
e
w
of t
h
e sy
st
em
i
s
sho
w
n i
n
Fi
gu
re. T
h
e co
re
com
pone
nt
of
t
h
i
s
i
nvert
e
r
d
e
si
gn i
s
t
h
e
fo
ur
-s
wi
t
c
h c
o
m
b
i
n
at
i
on sh
o
w
n i
n
Fi
gu
re.
B
y
con
n
ect
i
n
g t
h
e
DC
s
o
u
r
ce t
o
t
h
e AC
out
put
by
di
f
f
ere
n
t
co
m
b
in
atio
n
s
o
f
th
e four
switch
e
s, Q
11
, Q
12
, Q
13
, a
nd
Q
14
, t
h
ree
di
f
f
e
rent
v
o
l
t
a
ge
out
put
l
e
vel
s
can be
gene
rated for each
DC source,
+V
dc
, 0,
a
nd -
V
dc
. A cascad
e inv
e
rter with
N inp
u
t
sou
r
ces
will p
r
ov
ide
(2
N+1
)
l
e
vel
s
t
o
sy
nt
hesi
ze t
h
e
AC
out
p
u
t
wave
f
o
rm
. Th
e DC
so
urc
e
i
n
t
h
e i
n
ve
rt
er
com
e
s from
t
h
e PV
arrays, a
nd the switching signals c
o
m
e
from
the
m
u
ltic
arrier sinus
o
idal pulse
widt
h m
odulation
(SP
W
M
)
cont
rol
l
e
r.
T
h
e
1
1
-l
evel
i
nve
r
t
er co
nne
ct
s fi
ve
H-
bri
dges
i
n
se
ri
es an
d i
s
co
nt
rol
l
e
d by
fi
ve set
s
of
di
f
f
ere
n
t
SPW
M
signals
to gene
rate
a near
sinu
so
id
al
w
a
v
e
fo
r
m
[
9
]-
[1
1
]
.
4.
MATL
AB/SI
M
ULI
N
K
RE
SULTS
Here t
h
e si
m
u
l
a
t
i
on i
s
carri
ed
out
by
t
w
o ca
ses 5.
1 an
d 5.
2
.
Three P
h
ase
C
a
scaded
11 l
e
vel
In
vert
e
r
co
nn
ected to
grid
with
ou
t PV Cells.
2. T
h
ree Phase Cas
caded 11 level
In
verte
r
c
o
nnected to
gri
d
with PV
Cells. All th
ese Cases A carrier sh
i
f
t
i
n
g P
W
M
Tech
ni
q
u
e i
s
use
d
.
5.
SIMULATION RESULTS
5.1. Three Phase
Cascaded
11
-level I
n
ver
t
er
Connecte
d
to Grid without P
V
Cells
Th
e sim
u
latio
n resu
lts are
shown in
t
h
e Fi
g
u
re 3
and
4
.
Fig
u
re
3
.
11
lev
e
l
Ou
t
p
u
t
Voltag
e
of cascaded
M
u
ltilev
e
l In
v
e
rter
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
71
–
75
74
Fig
u
re
3
(
a). Grid
Vo
ltag
e
wit
h
ou
t PV cell
Fig
u
re 3
(
b). Grid
Vo
ltag
e
wit
h
ou
t
PV
cell
5.2. Three Phase
Cascaded
11 Level I
n
ve
rter
Connecte
d
to
Grid with PV Cells
Fi
gu
re
4.
O
u
t
p
ut
v
o
l
t
a
ge
o
f
t
h
ree
phase
C
a
scad
ed 11
lev
e
l i
n
v
e
rter
with
PV cells
Fi
gu
re
4(a
)
.
O
u
t
p
ut
v
o
l
t
a
ge
o
f
t
h
ree
pha
se
C
a
scad
ed
1
1
level in
v
e
rter
with PV cells
6.
CO
NCL
USI
O
N
This pa
pe
r pre
s
ented a
Single Phase a
n
d three phas
e ele
v
en-le
v
el casca
de H-
bri
d
ge i
n
vert
er
, w
h
i
c
h
uses PL
L an
d
M
PPT wi
t
h
se
parat
e
s
o
l
a
r
pa
nel
s
as
DC sou
r
ces t
o
in
teract with
th
e power
g
r
i
d
.
A SPW
M
approach was prese
n
ted
to de
al
with
the
une
v
en power transferring c
h
ar
acteristics o
f
t
h
e
co
nv
en
tio
n
a
l
SPW
M
m
odul
at
i
on t
e
c
hni
que
. T
h
i
s
t
echni
que
p
r
o
v
e
d t
o
be s
u
cce
ssful
d
u
e t
o
t
h
e i
rra
di
ance
pr
ofi
l
e
an
d t
h
e u
s
e o
f
capaci
t
o
rs
t
o
s
m
oot
h t
h
e
vol
t
a
ge
fl
uct
u
at
i
o
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Three Phase
Multi Level Converter for
grid
C
o
nnected PV Syste
m
(K.S.
Srikanth)
75
The system
was dri
v
en at
2kHz beca
use
of
spee
d co
nst
r
ai
ns o
f
t
h
e c
o
nt
r
o
l
pl
at
f
o
rm
, whi
c
h
req
u
i
r
e
d
bul
k filter com
ponents. Gri
d
connection results were
s
h
own usi
ng the
propose
d MPPT algorithm
.
Future
work i
n
cludes
the use
of a
DSP plat
form
to increase s
w
itching freque
ncy
and
red
u
ce fi
l
t
er re
qui
r
e
m
e
nts. The
entire PV syst
e
m
structure a
n
d its in
teracti
o
n with th
e
grid
thro
ugh
PL
L
an
d M
P
P
T
al
go
ri
t
h
m
s
were
sho
w
n
b
y
th
e
sim
u
lat
i
o
n resu
lts.
REFERE
NC
ES
[1]
F
aete F
i
lho, Yu
e Cao,
Leon
M
Tolber
t. 11-
leve
l
Cas
caded
H-bridge Grid-tied In
verter
Interf
ace
with Solar Pan
e
ls.
IEEE Trans.
201
0: 968-972
.
[2]
AJ Morrison.
Global Demand Projections
fo
r
Renewab
l
e Energy
Resources
.
I
E
EE
C
a
na
da
E
l
e
c
t
r
i
c
a
l
Po
we
r
Conference. 200
7: 537-542.
[3]
J Rodriguez, S
Bernet
, Bin Wu, JO Pontt, S Ko
uro. Mu
ltil
evel Voltage-Source-
C
onverter Topol
ogies
for
Industrial
Medium-Voltag
e
Drives
.
IEEE Transactions
on
Industrial Electronics
. 2007
; 54(
6): 2930- 2945
.
[4]
LM
Tolb
ert,
F
Z
P
e
ng. M
u
l
til
ev
el Conv
erters
as
a Ut
ili
t
y
Int
e
rf
ace
for R
e
newa
ble
Energ
y
S
y
s
t
em
s
.
IEEE
Pow
e
r
Engineering Society Summer Meeting
,
S
e
attle
. Washington. 2000; 1271- 1274
.
[5]
S Khom
foi, LM. To
lbert
.
Mul
til
evel
Power Con
v
erters.
Power Electronics Hand
book,
2nd
Edition Elsev
i
er. ISBN
978-0-12- 08847
9-7, 2007; Chap
ter 17: 451-482.
[6]
S Busquets-Mo
nge, J Rocaber
t, P Rodriguez,
S Alepuz,
J Bordonau. Multilevel Diode-clamped Converter
for
Photovoltaic Generators with
In
dependen
t
Volt
a
g
e Control of
E
ach Solar
Arra
y
. IEEE Transacti
ons on Industrial
ele
c
tr
onics
. 200
8; 55: 2713-272
3.
[7]
E Ozdemir, S O
z
demir,
LM Tolbert,
B O
z
pineci. Fundamental Fr
equency
Modulated Multilev
el I
nverter fo
r Three-
phase Stand-alo
n
e Phot
ovoltaic Application.
IE
EE App
lied
Po
wer Ele
c
tronics
Conference an
d Exposition
. 2
008;
148-153.
[8]
SA Khajehoddin
,
A Bakhshai, P
Jain.
The App
l
ication o
f
th
e Ca
scaded Multil
ev
el Conv
er
ter
s
in
Gr
id Connect
e
d
Photovoltaic Sys
t
ems
. IEEE Can
a
da Elec
trical Power Confer
ence. 2007: 296-301
.
[9]
S Ozdem
i
r, E Ozdem
i
r, LM Tolber
t, S Khom
foi. Elim
ination of Harmonics in a Five-level Diode-
c
lam
p
ed
Multilev
e
l Inv
e
r
t
er Using Fundam
e
ntal Modul
ation.
In
ternation
a
l Conference o
n
Power Electr
onics and Drive
sy
ste
m
s.
2007; 2
7
-30: 850-854.
[10]
JS Lai, FZ Pen
g
. Multilevel C
onverter
s - A
New Breed of
Power Converters.
IEEE Transactions on Indu
stry
Applica
tions
. 19
96; 32(3): 509-5
17.
[11]
B Kavidha, K
Rajambal.
Transformerless Cascaded Inverter
Topology for Photovolta
ic
App
lic
ations. Ind
i
a
International Co
nference on
Power El
ectronics, C
h
ennai, Ind
i
a. 20
06: 328-331.
[12]
O Alonso, P
Sanchis,
E Gubi
a, L Marro
yo
.
Cascaded H-bridge Multilevel Converter for Grid Connected
Photovoltaic Generators with I
ndependen
t
Ma
xi
mum Power
P
o
int T
r
acking o
f
each So
lar
Ar
r
a
y.
IEEE Power
Electronics Specialist Confer
ence. 2003; 731-735.
[13]
A Abete,
R Napoli,
F Spertino.
A Simulation Pr
ocedure to Predict the M
onthly Energy Supplied
by Grid Connected
PV Sy
ste
m
s.
Pho
t
ovolta
ic
Ene
r
g
y
Conversion. Pro
ceed
ings
of 3rd
W
o
rld Conferen
ce. 2003;
3:
242
7-2430.
[14]
E Villanuev
a
, P Correa, J Rodriguez.
Control of a Single Phase Hbridge Multilevel Inverter for Grid-connect
ed P
V
Applica
tions
. Power Electronics
and Motion
Con
t
rol Conf
eren
ce.
Poznan. Poland.
2008; 451-455.
[15]
RB Godoy
, HZ Maia, FJT Filh
o, LG
Junior, JOP Pinto, GS
Tatib
ana.
Desig
n
and Implementation of a Utility
Interact
ive
Conv
erter for Smal
l
Distributed Gen
e
ration
. IEEE In
dustr
y
Applications
Conference.
2006; 1032-103
8.
[16]
S
M
S
ilva, BM
Lopes
,
BJ
C F
ilho, RP
Cam
p
ana, W
C
Boaventur
a
. P
e
rform
ance
Evalu
a
tion of P
LL Algorithm
s
for
Singlephase Grid-c
onnected S
y
s
t
ems.
IEEE Ind
u
stry Applica
tio
ns Society
Annu
al Meet
ing
, Se
a
ttle
, W
a
shington
.
2004; 2259-226
3.
BI
O
G
R
A
P
HY
OF
A
U
T
HO
R
K.S.Srikanth was born in Kakin
a
da, Andhra Prad
esh, India in
the
y
e
ar 1977.
He was awarded
B.Tech EEE d
e
gree
in th
e
year 1999 from
Che
nnai Univ
ersity
. He was awarded M.Tech
Instrumentation
degree
in the
y
e
ar 2001 from Andhr
a University. He was awarded Ph.D degree in
the
y
e
ar 2010 fr
om Andhra Uni
v
ersity
. He h
a
s 13
y
e
ars of teaching experience. He is currently
working as
pro
f
es
s
o
r in th
e d
e
partm
e
nt
of
E
l
ec
tric
al
and
El
ectron
i
cs
Eng
i
n
eering
,
Koneru
Lakshmaiah University
, Vijay
a
w
a
da, Andhra Pradesh, India.
Evaluation Warning : The document was created with Spire.PDF for Python.