I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
w
er
E
lect
ro
nics
a
nd
Driv
e
Sy
s
t
e
m
(
I
J
P
E
DS
)
Vo
l.
8
,
No
.
3
,
Sep
tem
b
er
2
0
1
7
,
p
p
.
1
1
1
7
~
1
1
2
7
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/
ij
p
ed
s
.
v8
i
3
.
pp
1
1
1
7
-
1127
1117
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JP
E
DS
Co
ntribut
io
n t
o
t
he
Per
for
m
a
nce
I
m
pro
v
e
m
en
t
of
D
o
ubly
F
ed
I
nd
uction
M
a
chine F
u
nctioni
ng
in
M
o
tor
M
o
d
e
by
t
he
DTC
C
o
n
t
ro
l
Na
j
ib E
l O
ua
njli
1
,
Aziz
Der
o
uich
2
,
Abde
la
ziz
E
l
G
hziza
l
3
,
Yo
un
ess
E
l M
o
ura
bit
4
,
B
a
dre
B
o
s
s
o
ufi
5
,
M
o
ha
m
m
e
d T
a
o
us
s
i
6
1,
2,
3,
4
L
a
b
o
ra
to
ry
o
f
P
ro
d
u
c
ti
o
n
En
g
in
e
e
rin
g
,
En
e
rg
y
a
n
d
S
u
sta
in
a
b
l
e
De
v
e
lo
p
m
e
n
t
,
Hig
h
e
r
S
c
h
o
o
l
o
f
T
e
c
h
n
o
lo
g
y
,
S
id
i
M
o
h
a
m
e
d
Be
n
A
b
d
e
ll
a
h
Un
i
v
e
rsit
y
F
e
z
,
M
o
ro
c
c
o
5
L
a
b
o
ra
to
ry
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
a
n
d
M
a
i
n
ten
a
n
c
e
,
E
S
T
O S
c
h
o
o
l
o
f
T
e
c
h
n
o
lo
g
y
,
Un
iv
e
rsit
y
M
o
h
a
m
m
e
d
I
Ou
jd
a
,
M
o
ro
c
c
o
6
L
a
b
o
ra
to
ry
o
f
S
y
ste
m
s In
teg
ra
ti
o
n
a
n
d
A
d
v
a
n
c
e
d
T
e
c
h
n
o
lo
g
ies
,
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s Dh
a
r
El
M
a
h
ra
z
,
S
id
i
M
o
h
a
m
e
d
Be
n
A
b
d
e
ll
a
h
Un
i
v
e
rsit
y
F
e
z
,
M
o
ro
c
c
o
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Feb
21
,
2
0
1
7
R
ev
i
s
ed
A
u
g
10
,
2
0
1
7
A
cc
ep
ted
A
u
g
21
,
2
0
1
7
In
th
is
a
rti
c
le,
w
e
a
re
in
tere
ste
d
in
th
e
p
e
rf
o
rm
a
n
c
e
s
i
m
p
ro
v
e
m
e
n
t
o
f
Do
u
b
ly
F
e
d
In
d
u
c
ti
o
n
M
a
c
h
i
n
e
(DFIM
)
o
p
e
ra
t
in
g
in
m
o
to
r
m
o
d
e
b
y
th
e
u
se
o
f
th
e
d
irec
t
to
rq
u
e
c
o
n
tr
o
l
(DT
C).
F
irstl
y
,
we
f
o
c
u
se
d
on
th
e
m
o
d
e
li
n
g
o
f
th
e
DFIM
a
n
d
t
h
e
stu
d
y
o
f
th
e
f
u
n
c
ti
o
n
i
n
g
p
ri
n
c
ip
le
o
f
th
e
DT
C
c
o
n
t
ro
l.
T
h
e
n
,
w
e
i
m
p
le
m
e
n
t
th
is
c
o
n
tr
o
l
o
n
t
h
e
M
a
tl
a
b
/S
im
u
li
n
k
e
n
v
iro
n
m
e
n
t
.
S
e
c
o
n
d
ly
,
w
e
p
re
se
n
t
th
e
si
m
u
latio
n
re
su
lt
s
o
f
th
e
p
ro
p
o
se
d
c
o
n
tr
o
l.
T
h
e
a
n
a
ly
sis
o
f
th
e
se
re
su
lt
s
sh
o
w
s
c
lea
rl
y
th
a
t
th
e
sy
ste
m
b
a
se
d
o
n
t
h
e
DFI
M
stu
d
ied
f
o
ll
o
w
s
p
e
r
f
e
c
tl
y
th
e
se
t
p
o
in
ts
,
w
h
a
t
a
ll
o
we
d
u
s
to
ju
stif
y
th
e
e
ff
icie
n
c
y
o
f
th
e
e
lab
o
ra
te co
n
tro
l.
K
ey
w
o
r
d
:
DFI
M
DT
C
H
y
s
ter
e
s
is
c
o
m
p
ar
ato
r
Ma
tlab
/
s
i
m
u
l
in
k
S
w
itc
h
in
g
t
ab
le
Co
p
y
rig
h
t
©
201
7
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Naj
ib
E
l O
u
an
j
li,
L
ab
o
r
ato
r
y
o
f
P
r
o
d
u
ctio
n
E
n
g
in
ee
r
in
g
,
E
n
er
g
y
a
n
d
Su
s
tai
n
a
b
le
Dev
elo
p
m
en
t,
Sid
i M
o
h
a
m
ed
B
en
A
b
d
ellah
Un
i
v
er
s
it
y
,
Hig
h
er
Sch
o
o
l o
f
T
ec
h
n
o
lo
g
y
,
R
te
I
m
o
u
zz
er
,
B
P
2
4
2
7
,
Fez,
Mo
r
o
cc
o
.
E
m
ail:
n
aj
ib
.
elo
u
an
j
li@
u
s
m
b
a
.
ac
.
m
a
1.
I
NT
RO
D
UCT
I
O
N
C
u
r
r
en
tl
y
,
th
e
d
o
u
b
l
y
f
ed
i
n
d
u
ctio
n
m
ac
h
i
n
e
(
DFI
M)
i
s
w
id
el
y
u
s
ed
i
n
h
i
g
h
p
o
w
er
in
d
u
s
tr
ial
ap
p
licatio
n
s
,
d
u
e
to
m
a
n
y
ad
v
an
ta
g
e
s
o
v
er
o
th
er
r
o
tatin
g
elec
tr
ical
m
ac
h
i
n
es
[
1
]
.
T
h
e
s
u
p
p
l
y
o
f
t
h
e
D
FIM
w
o
r
k
i
n
g
in
m
o
to
r
m
o
d
e
an
d
in
v
ar
iab
le
s
p
ee
d
is
ass
u
r
ed
b
y
t
w
o
i
n
v
er
ter
s
o
f
v
o
ltag
e
w
h
ich
ar
e
r
ec
ip
r
o
ca
lly
co
n
n
ec
ted
to
th
e
s
tato
r
a
n
d
r
o
to
r
w
i
n
d
in
g
s
[
2
]
.
T
h
e
co
n
tr
o
l
o
f
t
h
i
s
m
ac
h
in
e,
w
h
ich
is
es
s
en
tia
ll
y
n
o
n
-
li
n
ea
r
d
u
e
to
th
e
co
u
p
lin
g
b
et
w
ee
n
th
e
f
l
u
x
a
n
d
t
h
e
elec
tr
o
m
a
g
n
etic
to
r
q
u
e,
is
r
elativ
e
l
y
co
m
p
lex
[
3
]
.
Se
v
er
al
co
n
tr
o
l
s
tr
ateg
ies
ar
e
u
s
ed
to
co
n
tr
o
l
th
e
DFI
M
to
o
b
tai
n
a
d
ec
o
u
p
lin
g
b
et
w
ee
n
t
h
e
t
o
r
q
u
e
an
d
th
e
f
lu
x
[
4
]
-
[
5
]
.
B
u
t,
w
e
al
w
a
y
s
lo
o
k
b
y
u
s
in
g
i
n
n
o
v
ati
v
e
s
o
lu
tio
n
s
o
f
co
n
tr
o
l to
i
m
p
r
o
v
e
its
p
er
f
o
r
m
an
ce
s
.
T
h
e
d
ir
ec
t
to
r
q
u
e
co
n
tr
o
l
(
DT
C
)
p
r
esen
t
an
attr
ac
ti
v
e
s
o
l
u
tio
n
to
h
a
v
e
a
f
u
n
ct
io
n
i
n
g
w
it
h
b
etter
p
er
f
o
r
m
a
n
ce
s
o
f
t
h
i
s
m
ac
h
i
n
e
,
in
t
h
e
v
ar
iab
le
s
p
ee
d
ap
p
licatio
n
s
.
T
h
is
co
n
tr
o
l
s
tr
ate
g
y
w
a
s
i
n
tr
o
d
u
ce
d
b
y
T
ak
ah
ash
i
[
6
]
-
[
7
]
an
d
Dep
en
b
r
o
ck
[
8
]
,
it
is
m
ai
n
l
y
c
h
ar
ac
ter
ized
b
y
a
g
o
o
d
d
y
n
a
m
ic
r
esp
o
n
s
e
o
f
th
e
to
r
q
u
e,
a
g
o
o
d
r
o
b
u
s
tn
ess
a
n
d
a
less
er
c
o
m
p
le
x
it
y
w
it
h
r
eg
ar
d
to
o
th
er
co
n
tr
o
l
.
I
n
th
i
s
w
o
r
k
,
w
e
p
r
esen
t
th
e
d
ir
ec
t
to
r
q
u
e
co
n
tr
o
l
o
f
a
DFI
M
f
u
n
ctio
n
i
n
g
i
n
m
o
to
r
m
o
d
e.
T
h
e
o
b
j
ec
tiv
e
is
to
g
u
ar
a
n
tee
th
e
b
est
p
er
f
o
r
m
a
n
ce
s
r
eg
ar
d
i
n
g
th
e
r
o
b
u
s
t
n
es
s
v
i
s
-
a
-
v
i
s
th
e
v
ar
iatio
n
s
o
f
i
ts
p
ar
am
eter
s
an
d
th
e
lo
ad
to
r
q
u
e.
T
h
e
f
ir
s
t
p
a
r
t o
f
th
is
ar
t
icl
e
w
ill
b
e
d
ev
o
t
e
d
to
th
e
m
o
d
elin
g
o
f
th
e
DFI
M.
T
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
3
,
Sep
te
m
b
er
2
0
1
7
:
1
1
1
7
–
1
1
2
7
1118
s
ec
o
n
d
p
a
r
t
d
e
als
w
ith
th
e
co
n
tr
o
l
o
f
th
is
m
ac
h
in
e.
I
n
a
th
i
r
d
p
ar
t
,
in
o
r
d
er
to
v
a
li
d
at
e
o
u
r
m
o
d
el
,
s
im
u
latio
n
r
esu
lts
u
s
in
g
th
e
M
atl
ab
/Si
m
u
lin
k
s
o
f
tw
ar
e
w
ill
b
e
p
r
esen
te
d
an
d
an
aly
ze
d
.
2.
M
O
DE
L
I
N
G
O
F
T
H
E
DF
I
M
T
h
e
g
lo
b
a
l
s
y
s
tem
is
illu
s
tr
ate
d
in
F
ig
u
r
e
1
b
el
o
w
,
it
co
n
s
is
t
s
o
f
tw
o
co
n
v
er
t
er
s
,
o
n
e
is
c
o
n
n
ec
te
d
t
o
th
e
s
t
at
o
r
an
d
th
e
o
th
er
is
c
o
n
n
ec
t
ed
t
o
th
e
r
o
t
o
r
o
f
th
e
m
ac
h
i
n
e
s
tu
d
ie
d
[
9
]
-
[
1
0
]
.
Fig
u
r
e1
.
Ov
er
a
ll sc
h
e
m
e
o
f
th
e
s
y
s
te
m
s
tu
d
ied
T
h
e
m
o
d
el
o
f
th
e
d
o
u
b
ly
f
ed
in
d
u
c
ti
o
n
m
ac
h
in
e
af
t
er
th
e
P
a
r
k
tr
an
s
f
o
r
m
ati
o
n
is
d
ef
in
e
d
b
y
th
e
ele
ctr
ic
al,
m
ag
n
etic
an
d
m
ec
h
a
n
ical
f
o
l
lo
w
in
g
eq
u
a
ti
o
n
s
[
1
1
]
-
[
1
2
]:
2
.
1
.
T
he
elec
t
rica
l e
qu
a
t
io
ns
T
h
e
elec
tr
ical
s
tato
r
an
d
r
o
to
r
eq
u
atio
n
s
o
f
t
h
e
DFI
M
i
n
th
e
r
ef
er
en
ce
f
r
a
m
e
(
d
,
q
)
a
r
e
ex
p
r
ess
ed
b
y
[
1
3
]
-
[
1
4
]
:
{
w
it
h
:
(
1
)
{
w
i
th
:
a
n
d
M=M
sr
=M
rs
(
2
)
2
.
2
.
T
he
m
a
g
net
ic
equa
t
io
ns
T
h
e
ex
p
r
ess
io
n
s
o
f
th
e
f
l
u
x
ar
e
ex
tr
ac
ted
f
r
o
m
t
h
e
elec
tr
ical
E
q
u
atio
n
s
(
2
)
:
{
(
3
)
2
.
3
.
T
he
m
ec
ha
nica
l e
qu
a
t
io
n
T
h
e
f
u
n
d
a
m
e
n
tal
eq
u
atio
n
o
f
d
y
n
a
m
ics
:
(
4
)
DF
I
M
M
e
c
h
a
n
i
c
al
l
oad
S
t
at
o
r
Ro
t
o
r
(
C
2
)
(R
2
,L
2
)
(
C
1
)
(R
1
,L
1
)
I
n
ve
r
t
e
r
I
n
ve
r
t
e
r
Re
c
t
if
ier
Re
c
t
if
ier
Grid
Grid
D
T
C
c
o
n
t
r
o
l
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
C
o
n
tr
ib
u
tio
n
to
th
e
P
erfo
r
ma
n
ce
I
mp
r
o
ve
men
t o
f D
o
u
b
ly
F
e
d
I
n
d
u
ctio
n
Ma
c
h
in
e
.
.
.
.
(
N
a
jib
E
l O
u
a
n
jli)
1119
T
h
e
ele
ct
r
o
m
ag
n
etic
t
o
r
q
u
e
is
ex
p
r
ess
e
d
as
a
f
u
n
cti
o
n
o
f
th
e
cu
r
r
en
ts
an
d
th
e
f
lu
x
by
:
(
)
(
5
)
W
ith
:
V
s(
d,
q)
,V
r(d
,
q
)
:
St
at
o
r
an
d
r
o
t
o
r
v
o
ltag
es in
th
e
r
ef
e
r
en
c
e
f
r
am
e
(
d
,
q
)
.
I
s(
d
,
q)
,
I
r(d
,
q)
:
St
at
o
r
an
d
r
o
t
o
r
cu
r
r
en
ts
in
th
e
r
ef
e
r
en
c
e
f
r
am
e
(
d
,
q
)
.
s(d
,
q
)
,
r(d
,
q)
:
Sta
to
r
an
d
r
o
t
o
r
f
lu
x
in
th
e
r
ef
e
r
en
c
e
f
r
am
e
(
d
,
q
)
.
R
s
, R
r
:
Stato
r
an
d
r
o
t
o
r
r
esis
tan
ce
s
.
L
s
,
L
r
:
Stato
r
an
d
r
o
t
o
r
in
d
u
ctan
ce
s
.
M
:
Mu
tu
al
i
n
d
u
cta
n
ce
.
P
:
Po
le
p
air
n
u
m
b
er
.
σ
:
Dis
p
er
s
io
n
co
ef
f
ic
ien
t
.
ω
s
, ω
r
:
Stato
r
an
d
r
o
t
o
r
p
u
ls
atio
n
s
.
T
em
,
T
r
: E
lec
tr
o
m
ag
n
etic
an
d
lo
a
d
to
r
q
u
e
.
Ω
: Ro
tat
io
n
s
p
ee
d
o
f
th
e
m
ac
h
in
e
(
ω
=p
.
Ω
)
.
J
: M
o
m
en
t o
f
in
e
r
ti
a.
f
:
: Co
ef
f
ici
en
t
o
f
v
is
co
u
s
f
r
i
cti
o
n
.
T
h
e
im
p
le
m
e
n
tatio
n
o
n
Ma
tla
b
/Si
m
u
l
i
n
k
o
f
th
e
D
FIM
i
s
r
ep
r
esen
ted
b
y
th
e
f
o
llo
w
i
n
g
F
ig
u
r
e
2
:
Fig
u
r
e
2
.
Si
m
u
li
n
k
Mo
d
el
o
f
t
h
e
DFI
M
3.
DIRE
CT
T
O
RQ
UE
CO
N
T
RO
L
3
.
1
.
P
rinciple o
f
t
he
DT
C
co
ntr
o
l
T
h
e
g
en
e
r
al
p
r
in
ci
p
l
e
o
f
d
ir
ec
t
to
r
q
u
e
co
n
t
r
o
l
is
b
as
ed
o
n
th
e
d
ir
ec
t
r
eg
u
lati
o
n
o
f
th
e
t
o
r
q
u
e
an
d
f
lu
x
o
f
th
e
d
o
u
b
ly
f
ed
in
d
u
ct
io
n
m
ac
h
in
e
b
y
s
elec
tin
g
o
n
e
o
f
th
e
eig
h
t
v
o
ltag
e
v
ec
to
r
s
g
en
e
r
at
ed
b
y
ea
ch
v
o
ltag
e
in
v
er
t
er
.
T
h
is
ch
o
ic
e
is
g
en
er
ally
b
ase
d
o
n
th
e
u
s
e
o
f
h
y
s
ter
esis
r
eg
u
lat
o
r
s
w
h
o
s
e
f
u
n
ctio
n
is
to
c
o
n
tr
o
l
th
e
s
tate
o
f
th
e
m
ac
h
in
e
[
1
5]
-
[
1
6
].
T
h
e
v
o
ltag
e
v
ec
to
r
V
ca
n
b
e
wr
itten
i
n
th
e
f
o
r
m
[1
7
]:
√
)
(
6
)
o
S
i(i=
a,
b,
c)
=0
if
th
e
h
i
g
h
s
w
itc
h
is
clo
s
ed
an
d
th
e
lo
w
s
w
itc
h
is
o
p
en
.
o
S
i(i=
a,
b,
c)
=1
if
th
e
h
i
g
h
s
w
itc
h
is
o
p
en
an
d
th
e
lo
w
s
w
itc
h
is
cl
o
s
ed
.
T
h
e
co
m
b
in
at
io
n
s
o
f
th
r
ee
m
ag
n
itu
d
es
(
S
a
,
S
b
,
S
c
)
all
o
w
to
g
en
er
at
e
eig
h
t
p
o
s
iti
o
n
s
o
f
th
e
v
o
ltag
e
v
ec
t
o
r
V
w
h
ich
t
w
o
c
o
r
r
es
p
o
n
d
to
th
e
z
er
o
v
ec
to
r
(
S
a
,
S
b
,
S
c
)
=
(
0
0
0
)
an
d
(
1
1
1
)
as sh
o
w
n
in
F
ig
u
r
e
3
.
2
w
1
Te
f
lux
-s
d
is
q
f
lux
-s
q
is
d
Tr
Te
w
m
e
ch
a
n
i
ca
l
m
o
d
e
l
f
lux
-s
d
f
lux
-s
q
f
lux
-rd
f
lux
-rq
is
d
is
q
ird
irq
m
a
g
n
e
t
i
c
M
o
d
e
l
Vs
d
Vs
q
is
d
is
q
ws
ph-s
d
ph-s
q
e
l
e
ct
r
i
c
m
o
d
e
l
/
s
t
a
t
o
r
Vrd
Vrq
ird
irq
wr
ph-rd
ph-rq
e
l
e
ct
r
i
c
m
o
d
e
l
/
r
o
t
o
r
[
f
l
u
x_
s
d
]
1
[
I
s
q
]
[
I
s
d
]
[
f
l
u
x_
r
d
]
[
f
l
u
x_
r
d
]
[
I
s
q
]
[
I
s
d
]
[
I
s
d
]
[
f
l
u
x_
s
q
]
[
f
l
u
x_
s
d
]
[
f
l
u
x_
s
d
]
[
I
r
d
]
p
[
I
r
q
]
[
I
r
q
]
[
I
s
q
]
[
I
r
d
]
6
Tr
5
V
r
q
4
V
r
d
3
ws
2
V
s
q
1
V
s
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
3
,
Sep
te
m
b
er
2
0
1
7
:
1
1
1
7
–
1
1
2
7
1120
Fig
u
r
e
3
.
E
lab
o
r
atio
n
o
f
v
o
ltag
e
v
ec
to
r
s
f
r
o
m
v
o
lta
g
e
i
n
v
er
t
er
s
o
f
th
e
DFI
M
3
.
2
.
Str
a
t
eg
y
o
f
t
he
DT
C
co
ntr
o
l
T
o
r
ea
l
ize
th
is
co
m
m
an
d
it
is
n
ec
ess
a
r
y
ev
er
y
in
s
tan
t
t
o
c
o
n
t
r
o
l
th
e
s
tat
o
r
f
lu
x
,
th
e
r
o
to
r
f
lu
x
an
d
th
e
ele
ctr
o
m
ag
n
etic
t
o
r
q
u
e
o
f
th
e
m
ac
h
in
e.
3
.
2
.
1
.
Co
ntr
o
l o
f
t
he
s
t
a
t
o
r
a
nd
ro
t
o
r
f
lux
T
h
e
r
ela
ti
o
n
b
etw
ee
n
th
e
f
lu
x
v
ec
t
o
r
s
o
f
th
e
DF
I
M
an
d
th
e
v
o
lt
ag
e
v
ec
to
r
s
is
g
iv
en
b
y
th
e
f
o
ll
o
w
in
g
eq
u
a
ti
o
n
s
s
y
s
tem
[
1
8
]
:
{
⃗
⃗
⃗
⃗
)
∫
(
⃗
⃗
⃗
⃗
⃗
)
⃗
⃗
⃗
⃗
⃗
)
∫
(
⃗
⃗
⃗
⃗
⃗
⃗
)
⃗
(
7
)
On
an
in
ter
v
al
[
0
,
t
e
]
,
w
e
co
n
s
id
e
r
th
at
th
e
t
er
m
s
R
s
I
s
an
d
R
r
I
r
a
r
e
r
esp
ec
tiv
ely
n
eg
lig
ib
le
i
n
f
r
o
n
t
o
f
Vs an
d
V
r
.
T
h
u
s
,
w
e
ca
n
w
r
ite
th
e
e
q
u
a
ti
o
n
s
(
7
)
in
th
e
f
o
r
m
:
{
⃗
⃗
⃗
⃗
⃗
⃗
⃗
⃗
⃗
⃗
⃗
⃗
⃗
⃗
⃗
⃗
(
8
)
I
n
g
en
e
r
a
l,
f
o
r
ea
ch
f
lu
x
w
e
h
a
v
e
:
⃗
)
⃗
)
⃗
(
9
)
W
ith
:
⃗
)
: V
ec
to
r
o
f
th
e
f
l
u
x
in
t
h
e
s
tep
o
f
cu
r
r
en
t
s
a
m
p
li
n
g
.
⃗
)
: V
ec
to
r
o
f
th
e
f
l
u
x
in
t
h
e
s
tep
o
f
f
o
llo
w
i
n
g
s
a
m
p
li
n
g
.
: Sa
m
p
li
n
g
p
er
io
d
.
I
n
o
r
d
er
t
o
o
b
ta
in
a
f
u
n
cti
o
n
in
g
w
ith
a
m
o
d
u
l
e
o
f
co
n
s
t
an
t
f
l
u
x
,
w
e
ca
n
f
o
ll
o
w
th
e
ex
tr
em
ity
o
f
⃗
o
n
an
alm
o
s
t
ci
r
cu
l
ar
tr
a
ject
o
r
y
,
b
y
ch
o
o
s
in
g
a
c
o
r
r
ec
t
s
e
q
u
en
ce
o
f
th
e
v
e
ct
o
r
V
f
o
r
th
e
d
if
f
e
r
e
n
t
s
u
cc
ess
iv
e
tim
e
in
ter
v
als
o
f
d
u
r
ati
o
n
t
e
.
Fig
u
r
e
4
.
E
x
a
m
p
le
o
f
t
h
e
ev
o
l
u
tio
n
o
f
⃗
⃗
⃗
ex
tr
e
m
it
y
K
’
1
K
’
2
K
’
3
(
B
)
(
A
)
(
C
)
(
a)
(b)
(
c
)
Vs
1
(
100)
Vs
4
(
011)
Vs
7
(
111)
Vs
6
(
101)
Vs
5
(
001)
Vs
3
(
010)
Vs
2
(
110)
Vs
0
(
000)
d
q
Vr
1
(
100)
Vr
4
(
011)
Vr
7
(
111)
Vr
6
(
101)
Vr
5
(
001)
Vr
3
(
010)
Vr
2
(
110)
Vr
0
(
000
)
d
q
I
n
v
e
r
ter
c
on
n
e
c
ted
to
th
e
s
tat
or
I
n
v
e
r
ter
c
on
n
e
c
ted
to
th
e
r
otor
K
1
K
2
K
3
K
4
K
5
K
6
K
’
4
K
’
5
K
’
6
U
0
U’
0
U
0
/2
U
0
/2
U
’
0
/2
U
’
0
/2
DF
I
M
V
4
V
1
V
6
V
5
V
3
V
2
α
β
⃗
⃗
⃗
(k
+
1
)
⃗
⃗
⃗
(k
)
V
3
t=
0
t
=
t
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
C
o
n
tr
ib
u
tio
n
to
th
e
P
erfo
r
ma
n
ce
I
mp
r
o
ve
men
t o
f D
o
u
b
ly
F
e
d
I
n
d
u
ctio
n
Ma
c
h
in
e
.
.
.
.
(
N
a
jib
E
l O
u
a
n
jli)
1121
3
.
2
.
2
.
C
o
ntr
o
l o
f
t
he
elec
t
r
o
m
a
g
net
ic
t
o
rque
T
h
e
ex
p
r
ess
io
n
o
f
th
e
el
ec
t
r
o
m
ag
n
etic
t
o
r
q
u
e
in
th
e
r
ef
e
r
en
c
e
f
r
am
e
(
α
,
β
)
is
w
r
itten
[
1
9
]:
⃗
|
⃗
|
)
(
1
0
)
W
ith
:
: th
e
an
g
le
o
f
p
h
a
s
e
s
h
i
f
t
b
et
w
ee
n
t
h
e
t
w
o
s
ta
to
r
an
d
r
o
to
r
f
lu
x
.
A
cc
o
r
d
in
g
to
th
e
e
q
u
at
io
n
(
1
0
)
,
w
e
n
o
tice
th
a
t
th
e
el
ec
t
r
o
m
ag
n
etic
t
o
r
q
u
e
o
f
th
e
DF
I
M
d
ep
en
d
s
o
n
th
e
am
p
litu
d
e
o
f
tw
o
v
ec
t
o
r
s
⃗
an
d
⃗
an
d
th
e
an
g
le
b
etw
ee
n
th
em
,
if
w
e
s
u
cc
e
e
d
in
co
n
t
r
o
ll
i
n
g
p
e
r
f
e
ctly
th
is
tw
o
f
lo
w
s
in
m
o
d
u
le
an
d
i
n
p
o
s
it
io
n
,
w
e
ca
n
th
u
s
c
o
n
t
r
o
l
th
e
t
o
r
q
u
e
.
3
.
2
.
3
.
Cho
ice
o
f
t
he
v
o
lt
a
g
e
v
ec
t
o
r
T
h
e
v
o
ltag
e
v
e
ct
o
r
s
el
ec
t
io
n
d
e
p
en
d
s
o
n
th
e
f
lu
x
p
o
s
it
io
n
in
th
e
r
ef
er
en
ce
f
r
am
e
(
α
,
β
)
an
d
th
e
v
ar
i
ati
o
n
d
esi
r
e
d
f
o
r
th
e
fl
ux
m
o
d
u
le
an
d
f
o
r
th
e
e
le
ctr
o
m
ag
n
etic
t
o
r
q
u
e.
T
h
e
ev
o
lu
ti
o
n
s
p
a
ce
o
f
th
e
f
lu
x
is
d
e
co
m
p
o
s
e
d
in
t
o
s
ix
s
ec
t
o
r
s
o
f
6
0
°:
W
h
en
th
e
f
lu
x
v
ec
t
o
r
i
s
in
th
e
s
ec
t
o
r
S
i
,
th
e
c
o
n
tr
o
l
o
f
th
e
f
lu
x
an
d
th
e
to
r
q
u
e
ca
n
b
e
m
ad
e
in
th
e
w
a
y
p
r
es
en
te
d
in
th
e
f
o
ll
o
w
in
g
T
a
b
le
1
:
T
ab
le
1
.
C
h
o
ice
o
f
th
e
v
o
lta
g
e
v
ec
to
r
T
h
e
e
v
o
l
u
t
i
o
n
o
f
t
h
e
f
l
u
x
a
n
d
t
h
e
t
o
r
q
u
e
C
h
o
i
c
e
o
f
t
h
e
v
o
l
t
a
g
e
v
e
c
t
o
r
F
l
u
x
T
o
r
q
u
e
I
n
c
r
e
a
si
n
g
I
n
c
r
e
a
si
n
g
V
i+1
D
e
c
r
e
a
si
n
g
I
n
c
r
e
a
si
n
g
V
i+2
I
n
c
r
e
a
si
n
g
D
e
c
r
e
a
si
n
g
V
i
-
1
D
e
c
r
e
a
si
n
g
D
e
c
r
e
a
si
n
g
V
i
-
2
T
h
e
v
e
ct
o
r
s
V
0
an
d
V
7
a
r
e
ch
o
s
en
t
o
s
to
p
th
e
m
o
v
em
en
t o
f
th
e
f
lu
x
.
3
.
3
.
E
s
t
i
m
a
t
io
n
o
f
t
he
f
lux
a
nd
t
h
e
t
o
rque
T
h
e
es
tim
atio
n
o
f
th
e
s
tat
o
r
an
d
r
o
to
r
f
lu
x
is
b
asin
g
o
f
th
e
s
t
a
to
r
an
d
r
o
t
o
r
v
o
lt
ag
es a
n
d
cu
r
r
en
ts
.
T
h
e
f
lu
x
co
m
p
o
n
en
ts
o
f
th
e
DF
I
M
in
th
e
r
ef
er
en
ce
f
r
am
e
(
α
,
β
)
ar
e
d
et
e
r
m
in
ed
b
y
[
2
0
]:
{
̂
∫
)
̂
∫
(
)
̂
∫
)
̂
∫
(
)
(
1
1
)
W
ith
:
̂
̂
an
d
̂
̂
.
T
h
e
m
o
d
u
l
es
o
f
th
e
s
ta
to
r
an
d
r
o
to
r
f
lu
x
a
r
e
w
r
itte
n
:
{
̂
√
̂
̂
̂
√
̂
̂
(
1
2
)
T
h
e
p
o
s
it
io
n
s
o
f
th
e
f
lu
x
v
ec
t
o
r
s
ar
e
ca
l
cu
la
te
d
as f
o
ll
o
w
s
:
{
̂
̂
)
̂
̂
)
(
1
3
)
T
h
e
ele
ct
r
o
m
ag
n
etic
t
o
r
q
u
e
is
esti
m
ated
f
r
o
m
th
e
m
ea
s
u
r
ed
s
tat
o
r
cu
r
r
en
ts
:
̂
(
̂
̂
)
(
1
4
)
T
h
e
D
T
C
c
o
n
t
r
o
l
is
v
e
ct
o
r
ia
l
,
it
is
n
e
ce
s
s
ar
y
to
d
ec
o
m
p
o
s
e
t
h
r
ee
cu
r
r
en
ts
an
d
v
o
ltag
es
(i
ab
c
,
V
a
bc
)
in
co
m
p
o
n
en
ts
d
i
r
e
ct
(
i
α
,
V
α
)
an
d
q
u
a
d
r
ati
c
(i
β
,
V
β
)
ac
c
o
r
d
in
g
t
o
th
e
C
o
n
c
o
r
d
i
a
t
r
an
s
f
o
r
m
ati
o
n
,
s
u
ch
as:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
3
,
Sep
te
m
b
er
2
0
1
7
:
1
1
1
7
–
1
1
2
7
1122
(
)
√
(
√
√
)
(
)
(
1
5
)
W
ith
:
X
=
V
s
,
V
r
,
i
s
or
i
r
.
3
.
4
.
E
la
bo
ra
t
io
n o
f
t
he
co
ntr
o
l v
e
ct
o
r
(
Sw
i
t
ching
t
a
ble)
3
.
4
.
1
.
R
eg
ula
t
o
rs
ela
bo
ra
t
io
n
o
f
t
h
e
f
lux
a
nd
t
he
t
o
rque
T
h
e
d
if
f
e
r
en
c
e
ε
ϕ
,
b
e
tw
ee
n
th
e
r
ef
e
r
en
ce
f
lu
x
ϕ
ref
an
d
th
e
esti
m
ated
f
lu
x
ϕ
est
is
in
tr
o
d
u
c
ed
in
t
o
a
h
y
s
ter
es
is
r
eg
u
la
to
r
w
ith
t
w
o
-
lev
el,
th
e
l
att
er
w
ill
g
en
er
at
e
th
e
b
in
a
r
y
v
ar
ia
b
le
(
H
ϕ
=
0
,
1)
a
t
its
o
u
t
p
u
t
,
r
e
p
r
esen
t
in
g
th
e
d
esi
r
e
d
ev
o
lu
t
io
n
f
o
r
th
e
f
lu
x
:
a.
H
ϕ
=
0
m
ea
n
s
th
at
th
e
f
l
ux
m
u
s
t b
e
d
ec
r
ea
s
e
d
.
b.
H
ϕ
=
1
m
ea
n
s
th
at
th
e
f
l
o
w
m
u
s
t
b
e
in
c
r
e
ase
d
.
Fig
u
r
e
5
.
H
y
s
te
r
es
is
r
eg
u
lato
r
w
it
h
t
w
o
le
v
els
Sim
ilar
ly
,
th
e
im
m
ed
iate
e
r
r
o
r
o
f
th
e
co
u
p
l
e
ε
T
em
is
c
alcu
l
at
e
d
b
y
co
m
p
ar
in
g
its
r
ef
er
en
ce
v
alu
e
T
em
-
r
ef
an
d
i
ts
es
tim
ated
v
alu
e
T
em
-
es
t
,
th
en
a
p
p
li
ed
to
a
th
r
e
e
-
lev
e
l
h
y
s
ter
es
is
r
eg
u
lat
o
r
,
g
en
er
atin
g
at
its
o
u
t
p
u
t
th
e
v
ar
i
ab
le
H
Te
m
w
ith
th
r
ee
lev
e
ls
(
-
1
,
0
,
1
)
,
r
ep
r
es
en
tin
g
th
e
d
i
r
e
ct
io
n
o
f
tem
p
o
r
al
ev
o
lu
t
io
n
d
esi
r
ed
f
o
r
th
e
to
r
q
u
e:
a.
H
Tem
=
1
m
ea
n
s
th
at
th
e
to
r
q
u
e
m
u
s
t b
e
in
c
r
e
ase
d
.
b.
H
Tem
=
0
m
ea
n
s
th
at
th
e
to
r
q
u
e
m
u
s
t b
e
d
e
cr
ea
s
e
d
.
c.
H
Tem
=
-
1
m
ea
n
s
th
at
it
is
n
ec
ess
ar
y
to
m
ain
tain
th
e
to
r
q
u
e
in
s
i
d
e
th
e
b
an
d
.
Fig
u
r
e
6
.
H
y
s
ter
es
is
r
eg
u
lato
r
w
it
h
t
h
r
ee
lev
el
s
3
.
4
.
2
.
E
la
bo
ra
t
io
n o
f
t
he
s
w
it
ching
t
a
ble.
T
h
e
s
tate
ch
o
ice
o
f
ea
ch
v
o
ltag
e
in
v
er
ter
is
m
ad
e
in
a
s
w
it
ch
in
g
tab
le
elab
o
r
ated
ac
co
r
d
i
n
g
to
th
e
s
tate
o
f
th
e
v
ar
iab
les
(
H
ϕ
an
d
H
Tem
)
at
th
e
o
u
tp
u
t
o
f
th
e
f
l
u
x
r
eg
u
lato
r
s
an
d
th
e
elec
tr
o
m
ag
n
et
ic
to
r
q
u
e,
as
w
ell
as
s
ec
to
r
g
iv
in
g
t
h
e
in
f
o
r
m
atio
n
ab
o
u
t
t
h
e
p
o
s
it
i
o
n
o
f
v
ec
to
r
o
f
t
h
e
f
lu
x
.
T
ab
le
2
i
s
p
r
esen
ted
in
th
e
f
o
llo
w
in
g
f
o
r
m
:
T
ab
le
2
.
Sw
itch
in
g
tab
le
S
e
c
t
o
r
S
i
1
2
3
4
5
6
H
ϕ
s
o
r
H
ϕ
r
H
T
e
m
v
o
l
t
a
g
e
v
e
c
t
o
r
1
1
V
2
(
1
1
0
)
V
3
(
0
1
0
)
V
4
(
0
1
1
)
V
5
(
0
0
1
)
V
6
(
1
0
1
)
V
1
(
1
0
0
)
1
0
V
7
(
1
1
1
)
V
0
(
0
0
0
)
V
7
(
1
1
1
)
V
0
(
0
0
0
)
V
7
(
1
1
1
)
V
0
(
0
0
0
)
1
-
1
V
6
(
1
0
1
)
V
1
(
1
0
0
)
V
2
(
1
1
0
)
V
3
(
0
1
0
)
V
4
(
0
1
1
)
V
5
(
0
0
1
)
0
1
V
3
(
0
1
0
)
V
4
(
0
1
1
)
V
5
(
0
0
1
)
V
6
(
1
0
1
)
V
1
(
1
0
0
)
V
2
(
1
1
0
)
0
0
V
0
(
0
0
0
)
V
7
(
1
1
1
)
V
0
(
0
0
0
)
V
7
(
1
1
1
)
V
0
(
0
0
0
)
V
7
(
1
1
1
)
0
-
1
V
5
(
0
0
1
)
V
6
(
1
0
1
)
V
1
(
1
0
0
)
V
2
(
1
1
0
)
V
3
(
0
1
0
)
V
4
(
0
1
1
)
ϕ
est
ε
ϕ
0
1
+
-
ϕ
ref
H
ϕ
-
+
-
1
1
0
T
em
-
est
T
em
-
ref
ε
Tem
H
T
e
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
C
o
n
tr
ib
u
tio
n
to
th
e
P
erfo
r
ma
n
ce
I
mp
r
o
ve
men
t o
f D
o
u
b
ly
F
e
d
I
n
d
u
ctio
n
Ma
c
h
in
e
.
.
.
.
(
N
a
jib
E
l O
u
a
n
jli)
1123
T
h
e
g
en
er
al
s
tr
u
ct
u
r
e
o
f
d
ir
ec
t
to
r
q
u
e
co
n
tr
o
l
o
f
th
e
d
o
u
b
l
y
f
ed
i
n
d
u
ctio
n
m
ac
h
i
n
e
is
d
etail
ed
in
th
e
f
o
llo
w
in
g
F
i
g
u
r
e
7
:
Fig
u
r
e
7
.
Gen
er
al
s
tr
u
ct
u
r
e
o
f
th
e
d
ir
ec
t to
r
q
u
e
co
n
tr
o
l a
p
p
li
ed
to
th
e
DFI
M
4.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
e
g
lo
b
al
m
o
d
el
o
f
t
h
e
s
y
s
te
m
s
t
u
d
ied
(
DFI
M
an
d
b
lo
ck
s
o
f
th
e
DT
C
co
n
tr
o
l)
is
s
i
m
u
la
ted
in
th
e
Ma
tlab
/
Si
m
u
l
in
k
en
v
ir
o
n
m
e
n
t
.
Fig
u
r
e
8
.
Si
m
u
latio
n
s
ch
e
m
e
o
f
th
e
DT
C
co
n
tr
o
l o
n
t
h
e
Ma
tl
ab
/Si
m
u
li
n
k
e
n
v
ir
o
n
m
en
t
4
.
1
.
Si
m
ula
t
io
n r
es
ults
T
o
s
h
o
w
t
h
e
p
er
f
o
r
m
an
ce
s
o
f
d
ir
ec
t
to
r
q
u
e
co
n
tr
o
l
ap
p
lied
to
DFI
M,
w
e
p
r
esen
t
t
h
e
s
i
m
u
latio
n
r
esu
lt
s
o
f
t
h
e
s
y
s
te
m
f
o
r
r
ef
er
en
ce
f
l
u
x
(
s
-
ref
=
1
W
b
,
r
-
ref
=
0
.
5
W
b
)
.
T
h
e
b
an
d
w
id
th
o
f
h
y
s
t
e
r
e
s
is
co
m
p
ar
ato
r
o
f
th
e
to
r
q
u
e
is
f
i
x
ed
in
±
0
.
0
1
N.
m
an
d
t
h
o
s
e
o
f
th
e
co
m
p
ar
ato
r
s
o
f
th
e
s
tato
r
an
d
r
o
to
r
f
lo
w
s
ar
e
f
i
x
ed
to
±
0
.
0
0
5
W
b
.
p
h
i
s
-
r
e
f
p
h
i
r
-
r
e
f
Vr_
alp
ha
Vr_
be
t
a
I
r_a
lph
a
I
r_b
et
a
ph
ir
Nr
e
s
t
i
m
a
t
i
o
n
Vs
_a
lph
a
Vs
_b
et
a
I
s
_a
lph
a
I
s
_b
et
a
ph
is
Ns
C
em
e
s
t
i
m
a
t
i
o
n
co
r
r
f
l
u
x
co
r
r
f
l
u
x
dT
e
eT
e
co
r
r
co
u
p
l
e
i
r
a
b
c
i
s
a
b
c
p
h
i
r
T
e
m
w
p
h
i
s
ephi
eT
e
N
Sa
Sb
Sc
S
w
i
t
ch
i
n
g
t
a
b
l
e
ephi
eT
e
N
Sa
Sb
Sc
S
w
i
t
ch
i
n
g
t
a
b
l
e
w
r
e
f
I
n
ve
r
t
e
r
P
a
r
k
I
n
ve
r
t
e
r
Tr
P
a
r
k
I
n
ve
r
s
e
P
a
r
k
D
F
I
M
P
a
r
k
I
n
ve
r
s
e
[
I
s
q
]
[
T
e
m
]
[
w
]
[
F
i
r
q
]
[
F
i
r
d
]
[
F
i
s
q
]
[
F
i
s
d
]
[
V
r
q
]
[
V
r
d
]
[
V
s
q
]
[
V
s
d
]
[
I
s
d
]
[
I
r
q
]
[
I
r
d
]
[
t
e
t
a
S
]
[
V
s
q
]
[
V
s
d
]
[
I
s
q
]
[
I
s
d
]
[
w
r
e
f
]
[
t
e
t
a
R
]
[
w
]
[
I
r
q
]
[
t
e
t
a
S
]
[
I
r
d
]
[
I
s
q
]
[
I
s
d
]
[
T
r
]
[
t
e
t
a
R
]
[
t
e
t
a
S
]
[
V
r
q
]
[
V
r
d
]
[
I
r
q
]
[
I
r
d
]
[
w
]
[
t
e
t
a
R
]
[
T
e
m
]
Isd
Isq
Vs
d
Vs
q
t
et
aS
V_
alp
ha
V_
be
t
a
i_a
lph
a
i_b
et
a
(
d
,
q
)
-
-
-
-
>
(
a
l
p
h
a
;
b
e
t
a
)
I
rd
I
rq
Vrd
Vrq
t
et
aR
V_
alp
ha
V_
be
t
a
i_a
lph
a
i_b
et
a
(
d
,
q
)
-
-
-
-
>
(
a
l
p
h
a
;
b
e
t
a
)
w
ref
w
T
ref
V
s
I
s
S
w
it
c
h
i
n
g
t
ab
le
S
w
it
c
h
i
n
g
t
ab
le
Tran
s
for
m
ati
on
(a,
b
,
c)
t
o
(α,
β
)
-
+
Rot
o
r
f
lu
x
e
s
t
im
at
o
r
I
r
α,
β
V
r
α,
β
3
2
V
r
I
r
1
5
4
S
e
c
t
o
r
6
3
2
-
+
φ
r
α,
β
I
r
α,
β
T
o
r
q
u
e
e
s
t
im
at
o
r
1
5
4
S
e
c
t
o
r
6
3
2
-
+
Rot
o
r
f
lu
x
e
s
t
im
at
o
r
V
S
α
,
β
I
S
α,
β
Tran
s
for
m
ati
on
(a,
b
,
c)
t
o
(α,
β
)
3
2
Grid
Grid
I
n
ve
r
t
e
r
I
n
ve
r
t
e
r
Re
c
t
if
ier
Re
c
t
if
ier
D
FIM
(
C
2
)
(R
2
,L
2
)
(
C
1
)
(R
1
,L
1
)
H
T
e
m
H
ϕ
r
H
ϕ
s
ε
T
e
m
T
em
-
e
s
t
T
r
e
f
Φ
s
-
e
s
t
Φ
r
-
r
e
f
Φ
r
-
e
s
t
Φ
s
-
r
e
f
ε
ϕr
ε
ϕs
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
3
,
Sep
te
m
b
er
2
0
1
7
:
1
1
1
7
–
1
1
2
7
1124
4
.
1
.
1
.
T
est
w
it
h c
o
ns
t
a
nt
s
peed
T
h
e
f
ig
u
r
es
b
elo
w
p
r
esen
t
th
e
r
esp
o
n
s
e
o
f
th
e
m
ag
n
it
u
d
es
o
f
th
e
d
o
u
b
l
y
f
ed
in
d
u
ctio
n
m
ac
h
in
e
a
t
co
n
s
ta
n
t
s
p
ee
d
an
d
v
ar
iab
le
lo
ad
(
th
e
r
ef
er
en
ce
to
r
q
u
e
o
f
s
et
-
p
o
in
t
s
r
an
g
in
g
f
r
o
m
0
→
1
0
N.
m
→
5
N.
m
)
.
I
n
th
is
tes
t,
t
h
e
r
o
tatio
n
s
p
ee
d
r
ea
ch
es
its
r
ef
er
en
ce
w
it
h
o
u
t
o
v
er
tak
i
n
g
,
it
is
in
s
e
n
s
iti
v
e
to
ch
an
g
es
i
n
t
h
e
lo
ad
(
F
ig
u
r
e
9
.
a)
.
F
ig
u
r
e
9
.
b
s
h
o
w
t
h
at
t
h
e
to
r
q
u
e
h
as
g
o
o
d
d
y
n
a
m
ics
w
h
o
s
e
m
ea
n
v
alu
e
f
o
llo
w
s
t
h
e
s
e
tp
o
in
t
v
alu
e
s
w
it
h
a
v
er
y
f
a
s
t
r
esp
o
n
s
e
ti
m
e
w
h
ich
eq
u
als
t
r
=
0
.
3
2
s
,
b
u
t
it
h
as
lo
w
r
ip
p
les.
T
h
e
s
tato
r
an
d
r
o
to
r
f
lu
x
r
e
m
ain
co
n
s
tan
t a
t
its
r
ef
er
e
n
c
e
v
al
u
es
w
h
atev
er
th
e
ap
p
lied
lo
ad
w
h
ic
h
s
h
o
w
s
t
h
at
t
h
e
to
r
q
u
e
an
d
th
e
f
lu
x
ar
e
d
ec
o
u
p
led
(
F
ig
u
r
e
9
.
c)
.
T
h
e
ev
o
lu
tio
n
o
f
t
h
ese
f
lo
w
s
in
t
h
e
r
ef
er
en
ce
f
r
am
e
(
α
,
β)
is
p
er
f
ec
tl
y
cir
c
u
lar
(
F
ig
u
r
e
9
.
d
)
.
T
h
e
co
m
p
o
n
e
n
t
s
o
f
t
h
e
s
tato
r
an
d
r
o
to
r
cu
r
r
en
ts
in
th
e
(
a,
b
,
c)
r
ef
er
en
ce
h
av
e
s
in
u
s
o
id
al
p
atter
n
s
w
it
h
a
f
r
eq
u
en
c
y
p
r
o
p
o
r
tio
n
al
to
th
e
r
e
f
er
en
ce
s
p
ee
d
,
th
e
y
r
ep
ly
w
e
ll
to
t
h
e
v
ar
iatio
n
s
i
m
p
o
s
ed
b
y
t
h
e
lo
ad
to
r
q
u
e
(
F
ig
u
r
e
9
.e
an
d
F
ig
u
r
e
9
.
f
)
.
(
a)
(
b
)
(
c)
(
d
)
(
e)
(
f
)
Fig
u
r
e
9
.
T
est w
i
th
co
n
s
ta
n
t s
p
ee
d
,
(
a
)
R
o
tatio
n
s
p
ee
d
(
b
)
E
l
ec
tr
o
m
a
g
n
etic
to
r
q
u
e
(
c
)
Stato
r
an
d
r
o
to
r
f
lu
x
(d
)
E
v
o
lu
tio
n
o
f
t
h
e
s
tato
r
an
d
r
o
to
r
f
lu
x
in
t
h
e
r
ef
er
en
ce
f
r
am
e
(
α
,
β
)
(
e
)
Stato
r
cu
r
r
en
ts
(
f
)
R
o
t
o
r
cu
r
r
en
ts
4
.
1
.
2
.
T
est
w
it
h
v
a
ria
ble sp
ee
d
T
h
e
f
ig
u
r
e
s
b
elo
w
s
h
o
w
t
h
e
s
i
m
u
latio
n
r
es
u
lt
s
o
f
th
e
DT
C
co
n
tr
o
l
ap
p
lied
to
DFI
M
w
it
h
v
ar
iab
le
sp
ee
d
an
d
v
ar
iab
le
lo
ad
.
I
n
th
e
v
ar
iab
le
s
p
ee
d
test
,
th
e
Fig
u
r
e
1
0
.
a
an
d
F
ig
u
r
e
1
0
.
b
s
h
o
w
th
e
h
ig
h
d
y
n
a
m
ics
o
f
t
h
e
r
o
tatio
n
s
p
ee
d
an
d
t
h
e
e
lectr
o
m
ag
n
etic
to
r
q
u
e
o
f
th
e
DFI
M,
w
it
h
a
f
a
s
t
r
esp
o
n
s
e
ti
m
e
to
t
h
e
c
h
a
n
g
e
o
f
th
e
s
et
-
p
o
in
t
s
.
T
h
e
co
m
p
o
n
en
t
s
o
f
th
e
s
tato
r
an
d
r
o
to
r
cu
r
r
en
ts
in
t
h
e
(
a,
b
,
c
)
r
ef
er
en
ce
ar
e
al
w
a
y
s
s
in
u
s
o
id
s
,
th
eir
f
r
eq
u
e
n
cies
a
n
d
t
h
eir
a
m
p
lit
u
d
es
v
ar
y
r
e
s
p
ec
tiv
el
y
a
s
a
f
u
n
ctio
n
o
f
t
h
e
r
o
tatio
n
s
p
ee
d
an
d
th
e
lo
ad
to
r
q
u
e
i
m
p
o
s
ed
(
F
ig
u
r
e
1
0
.
e
an
d
F
ig
u
r
e
1
0
.
f
)
.
T
h
e
s
tato
r
an
d
r
o
to
r
f
lu
x
r
e
m
a
in
co
n
s
ta
n
t
at
its
r
ef
er
e
n
ce
v
alu
e
s
,
w
h
ic
h
v
alid
ates
th
at
t
h
e
DT
C
co
n
tr
o
l
i
s
r
o
b
u
s
t
to
war
d
s
th
e
v
ar
ia
tio
n
o
f
t
h
e
lo
ad
an
d
t
h
e
s
p
ee
d
as
s
h
o
w
n
i
n
F
ig
u
r
e
1
0
.c
.
T
h
ese
s
t
ato
r
an
d
r
o
to
r
f
l
u
x
ar
e
tr
ap
p
ed
in
a
cir
cle
r
e
g
ar
d
less
o
f
t
h
e
a
p
p
lied
lo
ad
,
w
h
ic
h
s
h
o
w
s
th
a
t
t
h
e
f
l
u
x
co
n
s
ta
n
c
y
d
esp
ite
th
e
lo
ad
as
s
h
o
w
n
i
n
F
ig
u
r
e
10
.d
,
w
e
co
n
cl
u
d
e
th
at
th
e
to
r
q
u
e
an
d
f
lu
x
ar
e
d
ec
o
u
p
led
.
T
h
ese
s
i
m
u
lati
o
n
r
esu
lt
s
s
h
o
w
th
e
e
f
f
ec
tiv
e
n
ess
o
f
t
h
is
co
n
tr
o
l te
ch
n
iq
u
e.
0
0
.
5
1
1
.
5
2
2
.
5
3
0
20
40
60
80
100
120
T
i
m
e
(
s
)
R
o
t
a
t
i
o
n
s
p
e
e
d
(
r
a
d
/
s
)
r
e
f
0
0
.
5
1
1
.
5
2
2
.
5
3
-5
0
5
10
15
20
T
i
m
e
(
s
)
E
l
e
c
t
r
o
m
a
n
g
e
t
i
c
t
o
r
q
u
e
(
N
.
m
)
T
e
m
T
r
e
f
0
0
.
5
1
1
.
5
2
2
.
5
3
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
1
.
4
T
i
m
e
(
s
)
S
t
a
t
o
r
a
n
d
r
o
t
o
r
f
l
u
x
(
W
b
)
s
r
-
1
.
5
-1
-
0
.
5
0
0
.
5
1
1
.
5
-
1
.
5
-1
-
0
.
5
0
0
.
5
1
1
.
5
s
a
n
d
r
s
a
n
d
r
s
r
0
0
.
5
1
1
.
5
2
2
.
5
3
-
2
0
-
1
0
0
10
20
T
i
m
e
(
s
)
S
t
a
t
o
r
c
u
r
r
e
n
t
s
(
A
)
0
.
5
0
.
5
2
0
.
5
4
-
1
0
0
10
T
i
m
e
(
s
)
Z
o
o
m
3
1
.
8
H
z
2
.
4
5
2
.
5
2
.
5
5
2
.
6
-
1
0
0
10
T
i
m
e
(
s
)
i
s
a
i
s
b
i
s
c
0
0
.
5
1
1
.
5
2
2
.
5
3
-
2
0
-
1
0
0
10
20
T
i
m
e
(
s
)
R
o
t
o
r
c
u
r
r
e
n
t
s
(
A
)
2
.
3
2
.
4
2
.
5
2
.
6
2
.
7
2
.
8
-
1
0
0
10
T
i
m
e
(
s
)
Z
o
o
m
i
r
a
i
r
b
i
r
c
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
C
o
n
tr
ib
u
tio
n
to
th
e
P
erfo
r
ma
n
ce
I
mp
r
o
ve
men
t o
f D
o
u
b
ly
F
e
d
I
n
d
u
ctio
n
Ma
c
h
in
e
.
.
.
.
(
N
a
jib
E
l O
u
a
n
jli)
1125
(
a)
(
b
)
(
c)
(
d
)
(
e)
(
f
)
Fig
u
r
e
1
0
.
T
est
w
it
h
v
ar
iab
le
s
p
ee
d
,
(
a
)
R
o
tatio
n
s
p
ee
d
(
b
)
E
l
ec
tr
o
m
a
g
n
etic
to
r
q
u
e
(
c)
Stato
r
an
d
r
o
to
r
f
lu
x
(
d
)
E
v
o
lu
tio
n
o
f
t
h
e
s
tato
r
an
d
r
o
to
r
f
lu
x
i
n
th
e
r
ef
er
en
c
e
f
r
a
m
e
(
α
,
β
)
(
e
)
Stato
r
cu
r
r
en
ts
(
f
)
R
o
to
r
cu
r
r
en
ts
5.
CO
NCLU
SI
O
N
I
n
th
is
w
o
r
k
,
w
e
p
r
esen
ted
th
e
d
ir
ec
t
to
r
q
u
e
co
n
tr
o
l
a
p
p
l
ied
to
a
DFI
M
u
s
ed
in
m
o
t
o
r
m
o
d
e,
p
o
w
er
ed
b
y
t
w
o
co
n
v
er
ter
s
,
o
n
e
o
n
t
h
e
s
tato
r
an
d
th
e
o
th
er
o
n
th
e
r
o
to
r
.
Af
ter
a
s
tu
d
y
o
f
t
h
e
m
o
d
el
i
n
g
o
f
t
h
e
s
y
s
te
m
,
w
e
r
ea
lized
th
e
i
m
p
le
m
en
tatio
n
o
f
t
h
e
DT
C
co
n
tr
o
l b
ased
o
n
th
e
d
ir
ec
t r
eg
u
latio
n
o
f
f
l
u
x
an
d
to
r
q
u
e.
T
h
e
in
ter
p
r
etatio
n
o
f
t
h
e
o
b
t
ain
ed
r
es
u
lts
s
h
o
w
s
clea
r
l
y
t
h
at
t
h
e
s
y
s
te
m
f
o
llo
w
s
p
er
f
e
ctl
y
th
e
r
ef
er
e
n
ce
v
alu
e
s
an
d
,
b
y
co
n
s
eq
u
e
n
ce
,
s
u
p
p
lies
a
g
o
o
d
s
tatic
an
d
d
y
n
a
m
ic
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
s
t
u
d
ie
d
m
ac
h
i
n
e.
AP
P
E
NDI
X
T
ab
le
3
.
P
ar
am
eter
s
o
f
t
h
e
DF
I
M
V
a
r
i
a
b
l
e
S
y
mb
o
l
V
a
l
u
e
(
u
n
i
t
)
N
o
mi
n
a
l
p
o
w
e
r
S
t
a
t
o
r
n
o
mi
n
a
l
v
o
l
t
a
g
e
R
o
t
o
t
o
r
n
o
m
i
n
a
l
v
o
l
t
a
g
e
F
r
e
q
u
e
n
c
y
P
a
i
r
p
o
l
e
n
u
m
b
e
r
P
m
V
sn
V
rn
f
P
1
.
5
k
W
2
2
0
V
1
3
0
V
5
0
H
z
2
S
t
a
t
o
r
se
l
f
i
n
d
u
c
t
a
n
c
e
Ls
0
.
2
9
5
H
R
o
t
o
r
se
l
f
i
n
d
u
c
t
a
n
c
e
Lr
0
.
1
0
4
H
M
a
x
i
m
u
m
o
f
mu
t
u
a
l
i
n
d
u
c
t
a
n
c
e
M
0
.
1
6
5
H
S
t
a
t
o
r
r
e
si
st
a
n
c
e
R
s
1
.
7
5
Ω
R
o
t
o
r
r
e
si
st
a
n
c
e
R
r
1
.
6
8
Ω
T
o
t
a
l
v
i
sco
u
s fr
i
c
t
i
o
n
s
f
0
.
0
0
2
7
K
g
.
m²
/
s
T
o
t
a
l
i
n
e
r
t
i
a
J
0
.
0
1
K
g
.
m²
RE
F
E
R
E
NC
E
S
[1
]
K.
Ch
e
n
,
e
t
a
l.
,
“
M
i
n
im
u
m
c
o
p
p
e
r
lo
ss
a
n
d
p
o
w
e
r
d
istri
b
u
ti
o
n
c
o
n
t
ro
l
stra
teg
ies
o
f
d
o
u
b
le
-
i
n
v
e
rter
-
fe
d
w
o
u
n
d
-
r
o
t
o
r
in
d
u
c
ti
o
n
m
a
c
h
in
e
s
u
sin
g
e
n
e
rg
e
t
ic
m
a
c
ro
sc
o
p
ic
re
p
re
se
n
tatio
n
,
”
IEE
E
T
ra
n
s.
E
n
e
rg
y
Co
n
v
e
,
v
o
l
/i
s
su
e
:
25
(
3
)
,
p
p
.
642
–
6
5
1
,
2
0
1
0
.
[2
]
P
.
E
.
V
id
a
l
a
n
d
M
.
P
.
Da
v
id
,
“
F
lu
x
S
li
d
i
n
g
M
o
d
e
Co
n
tr
o
l
o
f
a
Do
u
b
ly
F
e
d
In
d
u
c
ti
o
n
M
a
c
h
in
e
,
”
Eu
ro
p
e
a
n
Co
n
fer
e
n
c
e
o
n
Po
we
r E
lec
tro
n
ics
a
n
d
A
p
p
li
c
a
ti
o
n
s,
Dre
sd
e
n
,
G
e
r
m
a
n
y
,
2
0
0
5
.
0
0
.
5
1
1
.
5
2
2
.
5
3
0
20
40
60
80
100
120
T
i
m
e
(
s
)
R
o
t
a
t
i
o
n
s
p
e
e
d
(
r
a
d
/
s
)
r
e
f
0
0
.
5
1
1
.
5
2
2
.
5
3
-
1
0
-5
0
5
10
15
20
25
T
i
m
e
(
s
)
E
l
e
c
t
r
o
m
a
g
n
e
t
i
c
t
o
r
q
u
e
(
N
.
m
)
T
e
m
T
r
e
f
0
0
.
5
1
1
.
5
2
2
.
5
3
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
1
.
4
T
i
m
e
(
s
)
S
t
a
t
o
r
a
n
d
r
o
t
o
r
f
l
u
x
(
W
b
)
s
r
-
1
.
5
-1
-
0
.
5
0
0
.
5
1
1
.
5
-
1
.
5
-1
-
0
.
5
0
0
.
5
1
1
.
5
s
a
n
d
r
s
a
n
d
r
s
r
0
0
.
5
1
1
.
5
2
2
.
5
3
-
2
0
-
1
0
0
10
20
T
i
m
e
(
s
)
S
t
a
t
o
r
c
u
r
r
e
n
t
s
(
A
)
i
s
a
i
s
b
i
s
c
0
.
9
5
1
1
.
0
5
-
1
0
0
10
T
i
m
e
(
s
)
Z
o
o
m
2
.
4
2
.
5
2
.
6
-
1
0
0
10
T
i
m
e
(
s
)
0
0
.
5
1
1
.
5
2
2
.
5
3
-
2
0
-
1
0
0
10
20
T
i
m
e
(
s
)
R
o
t
o
r
c
u
r
r
e
n
t
s
(
A
)
2
.
2
2
.
3
2
.
4
2
.
5
2
.
6
2
.
7
2
.
8
-
1
0
0
10
T
i
m
e
(
s
)
Z
o
o
m
i
r
a
i
r
b
i
r
c
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
3
,
Sep
te
m
b
er
2
0
1
7
:
1
1
1
7
–
1
1
2
7
1126
[3
]
P.
E.
V
i
d
a
l,
“
Co
m
m
a
n
d
e
n
o
n
-
li
n
é
a
ire
d
'
u
n
e
m
a
c
h
in
e
a
s
y
n
c
h
ro
n
e
à
d
o
u
b
le
a
li
m
e
n
tatio
n
,
”
T
h
e
si
s
in
El
e
c
trica
l
En
g
i
n
e
e
rin
g
,
In
sti
tu
t
N
a
ti
o
n
a
l
P
o
lyte
c
h
n
iq
u
e
o
f
T
o
u
lo
u
se
,
F
ra
n
c
e
,
2
0
0
4
.
[4
]
B.
Bo
ss
o
u
f
i,
e
t
a
l.
,
“
Ro
b
u
st ad
a
p
t
iv
e
Ba
c
k
ste
p
p
in
g
c
o
n
tro
l
a
p
p
ro
a
c
h
o
f
DFI
G
g
e
n
e
ra
to
rs f
o
r
w
in
d
tu
rb
in
e
s v
a
riab
le
-
sp
e
e
d
,
”
In
ter
n
a
ti
o
n
a
l
Ren
e
wa
b
le
a
n
d
S
u
sta
i
n
a
b
le E
n
e
rg
y
Co
n
fer
e
n
c
e
(
IRS
EC)
,
p
p
.
7
9
1
-
7
9
7
,
2
0
1
4
.
[5
]
A
.
L
.
De
ro
u
ich
,
“
Re
a
l
-
T
i
m
e
S
i
m
u
latio
n
a
n
d
A
n
a
ly
sis
o
f
th
e
In
d
u
c
ti
o
n
M
a
c
h
in
e
P
e
rf
o
rm
a
n
c
e
s
Op
e
ra
ti
n
g
a
t
F
lu
x
Co
n
sta
n
t
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
A
d
v
a
n
c
e
d
C
o
mp
u
ter
S
c
ien
c
e
a
n
d
A
p
p
li
c
a
ti
o
n
s
,
v
ol
/i
ss
u
e
:
5
(
4
)
,
2
0
1
4
.
[6
]
H.
Brian
,
e
t
a
l.
,
“
F
u
z
z
y
lo
g
ic
e
n
h
a
n
c
e
d
sp
e
e
d
c
o
n
tro
l
o
f
a
n
in
d
ir
e
c
t
f
ield
o
rien
ted
in
d
u
c
ti
o
n
m
a
c
h
i
n
e
d
riv
e
,
”
IEE
E
T
ra
n
s.
Po
we
r E
lec
tro
n
ics
.
V
o
l
/
issu
e
:
1
2
(
5
)
,
p
p
.
7
7
2
–
7
7
8
,
1
9
9
7
.
[7
]
I.
T
a
k
a
h
a
sh
i
a
n
d
T
.
No
g
u
c
h
i,
“
A
n
e
w
q
u
ick
-
re
sp
o
n
se
a
n
d
h
ig
h
-
e
fficie
n
c
y
c
o
n
tro
l
stra
teg
y
o
f
a
n
in
d
u
c
ti
o
n
m
o
to
r,
”
IEE
E
T
ra
n
s.
I
n
d
.
A
p
p
l,
v
o
l
/i
ss
u
e
:
IA
-
22
(
5
)
,
1
9
8
6
.
[8
]
M
.
De
p
e
n
b
ro
k
,
“
Dire
c
t
se
lf
c
o
n
tro
lo
f
in
v
e
rter
f
e
d
in
d
u
c
ti
o
n
m
a
c
h
in
e
,
”
IEE
E
T
a
n
s.
Po
we
r
E
lec
tro
n
,
v
o
l.
3
,
p
p
.
4
2
0
-
4
2
9
,
1
9
8
8
.
[9
]
N.
E
.
Ou
a
n
jl
i,
e
t
a
l.
,
“
Co
n
tri
b
u
ti
o
n
à
l’o
p
t
im
isa
ti
o
n
d
e
s
p
e
rf
o
r
m
a
n
c
e
s
d
’u
n
e
M
a
c
h
in
e
A
s
y
n
c
h
ro
n
e
à
Do
u
b
l
e
A
li
m
e
n
tatio
n
(M
A
D
A
)
f
o
n
c
ti
o
n
n
a
n
t
e
n
m
o
d
e
m
o
teu
r,
”
In
ter
n
a
ti
o
n
a
l
c
o
n
fer
e
n
c
e
T
IS
PI
,
Ou
j
d
a
,
2
0
1
6
.
[1
0
]
M
.
T
a
o
u
ss
i,
e
t
a
l.
,
“
T
h
e
F
u
z
z
y
Co
n
tr
o
l
f
o
r
Ro
t
o
r
F
lu
x
Orie
n
t
a
ti
o
n
o
f
th
e
d
o
u
b
le
-
f
e
d
a
s
y
n
c
h
r
o
n
o
u
s
g
e
n
e
ra
to
r
Driv
e
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Co
mp
u
ter
s &
T
e
c
h
n
o
lo
g
y
,
v
o
l/
iss
u
e
:
1
3
(8
),
pp
.
4
7
0
7
-
4
7
2
2
,
2
0
1
3
.
[1
1
]
B.
Bo
ss
o
u
f
i,
e
t
a
l
.
,
“
Ba
c
k
ste
p
p
i
n
g
A
d
a
p
ti
v
e
Co
n
tro
l
o
f
DFIG
-
G
e
n
e
r
a
to
rs
f
o
r
V
a
riab
le
-
S
p
e
e
d
W
in
d
T
u
rb
i
n
e
s,
”
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
C
o
mp
u
ter
s
&
T
e
c
h
n
o
l
o
g
y
,
v
o
l
/i
ss
u
e
:
1
2
(
7
)
,
pp
.
3
7
1
9
-
3
7
3
3
,
2
0
1
4
.
[1
2
]
B.
Bo
ss
o
u
f
i,
e
t
a
l.
,
“
M
o
d
e
li
n
g
a
n
d
Ba
c
k
ste
p
p
in
g
Co
n
tro
l
o
f
DFIG
Ge
n
e
ra
to
rs
f
o
r
W
id
e
-
Ra
n
g
e
V
a
riab
le
-
sp
e
e
d
W
in
d
T
u
rb
in
e
s,
”
J
o
u
rn
a
l
o
f
El
e
c
t
ric
a
l
S
y
ste
ms
J
ES
,
v
o
l
/i
ss
u
e
:
1
0
(3
),
pp
.
3
1
7
-
3
3
0
,
2
0
1
4
.
[1
3
]
M.
T
a
o
u
ss
i,
e
t
a
l.
,
“
S
p
e
e
d
Ba
c
k
ste
p
p
in
g
c
o
n
tro
l
o
f
th
e
d
o
u
b
le
-
f
e
d
in
d
u
c
t
io
n
m
a
c
h
in
e
d
riv
e
,
”
J
o
u
rn
a
l
o
f
T
h
e
o
re
ti
c
a
l
&
Ap
p
li
e
d
In
fo
rm
a
t
io
n
T
e
c
h
n
o
l
o
g
y
,
v
ol
/i
ss
u
e
:
74
(
2
)
,
2
0
1
5
.
[1
4
]
M
.
T
a
o
u
ss
i,
e
t
a
l.
,
“
S
p
e
e
d
V
a
riab
le
A
d
a
p
ti
v
e
Ba
c
k
ste
p
p
in
g
Co
n
tr
o
l
o
f
th
e
Do
u
b
le
-
F
e
d
In
d
u
c
ti
o
n
M
a
c
h
in
e
Driv
e
,”
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
A
u
t
o
ma
ti
o
n
a
n
d
Co
n
tro
l
(
IJ
AA
C
),
v
o
l/
issu
e
:
1
0
(
1
),
pp
.
12
-
3
3
,
2
0
1
6
.
[1
5
]
Y.
Dje
riri
,
e
t
a
l.
,
“
Dire
c
t
p
o
w
e
r
c
o
n
tr
o
l
o
f
a
d
o
u
b
ly
f
e
d
in
d
u
c
ti
o
n
g
e
n
e
ra
to
r
b
a
se
d
w
in
d
e
n
e
rg
y
c
o
n
v
e
rsio
n
s
y
st
e
m
s
in
c
lu
d
in
g
a
sto
ra
g
e
u
n
it
,
”
J
o
r
n
a
l
o
f
El
e
c
trica
l
En
g
in
e
e
rin
g
,
J
EE
,
R
o
ma
n
i
a
,
vol
/i
ss
u
e
:
14
(
1
)
,
p
p
.
1
9
6
-
2
0
4
,
2
0
1
4
.
[1
6
]
F
.
L
o
n
g
f
e
i,
e
t
a
l
.
,
“
S
im
u
latio
n
Re
se
a
rc
h
o
n
Dire
c
t
T
o
rq
u
e
C
o
n
tr
o
l
f
o
r
Br
u
sh
les
s
DC
M
o
t
o
r
,
”
In
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
In
tell
ig
e
n
t
S
y
ste
ms
R
e
se
a
rc
h
a
n
d
M
e
c
h
a
tr
o
n
ics
E
n
g
i
n
e
e
rin
g
(
IS
RM
E),
C
h
in
a
,
2
0
1
5
.
[1
7
]
A
.
S
iraj,
e
t
a
l.
,
“
S
im
u
latio
n
S
tu
d
y
o
n
Dire
c
t
T
o
rq
u
e
Co
n
tro
l
o
f
In
d
u
c
ti
o
n
M
o
to
r
u
si
n
g
Ne
u
ra
l
Ne
t
w
o
rk
,
”
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
Eme
rg
i
n
g
T
re
n
d
s
&
T
e
c
h
n
o
lo
g
y
in
Co
m
p
u
ter
S
c
ien
c
e
,
v
ol
/i
ss
u
e
:
4
(
6
)
,
2
0
1
5
.
[1
8
]
F
.
Bo
u
m
a
ra
f
,
e
t
a
l.
,
“
L
a
d
o
u
b
le D
T
C
d
’u
n
e
M
a
c
h
in
e
A
s
y
n
c
h
ro
n
e
à
Do
u
b
le A
li
m
e
n
tatio
n
,
”
Rev
u
e
d
e
s S
c
ien
c
e
s et d
e
la
T
e
c
h
n
o
l
o
g
ie
(
RS
T
),
v
ol
/
issu
e
:
5
(
1
)
,
2
0
1
4
.
[1
9
]
N.
Zare
a
n
a
n
d
H.
Ka
z
e
m
i,
“
A
N
e
w
D
T
C
Co
n
tro
l
M
e
th
o
d
o
f
Do
u
b
ly
F
e
d
In
d
u
c
ti
o
n
G
e
n
e
ra
to
r
F
o
r
W
in
d
T
u
rb
in
e
,
”
S
e
c
o
n
d
Ira
n
ia
n
Co
n
fer
e
n
c
e
o
n
Re
n
e
wa
b
le E
n
e
rg
y
a
n
d
Distrib
u
ted
Ge
n
e
ra
ti
o
n
,
2
0
1
2
.
[2
0
]
A.
Ze
m
m
it
a
n
d
S
.
M
e
ss
a
lt
i,
“
M
o
d
e
li
n
g
a
n
d
S
im
u
latio
n
o
f
Do
u
b
ly
F
e
d
In
d
u
c
ti
o
n
M
o
to
r
(DFI
M
)
Co
n
tro
l
u
sin
g
DT
C
a
n
d
DFOC:
A
c
o
m
p
a
ra
ti
v
e
stu
d
y
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
A
p
p
li
e
d
En
g
i
n
e
e
rin
g
Res
e
a
rc
h
,
v
ol
/i
ss
u
e
:
11
(
8
),
2
0
1
6
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
Na
jib
El
O
u
a
n
jli
w
a
s
b
o
rn
in
1
9
8
8
in
F
e
z
,
M
o
ro
c
c
o
.
I
n
2
0
1
5
,
h
e
re
c
e
iv
e
d
M
a
ste
r.
S
p
,
i
n
A
u
to
m
a
ted
In
d
u
strial
S
y
ste
m
s
E
n
g
in
e
e
rin
g
,
f
ro
m
F
a
c
u
lt
y
o
f
S
c
ie
n
c
e
s
F
e
z
Un
iv
e
rsit
y
,
M
o
ro
c
c
o
.
S
in
c
e
2
0
1
2
,
h
e
is
p
r
o
f
e
ss
o
r
o
f
p
h
y
sic
s
s
c
ien
c
e
s
in
F
e
z
.
Cu
rre
n
tl
y
,
h
e
is
p
u
rsu
in
g
P
h
.
D
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
a
t
t
h
e
Hig
h
e
r
S
c
h
o
o
l
o
f
T
e
c
h
n
o
lo
g
y
,
Un
iv
e
rsit
y
S
id
i
M
o
h
a
m
m
e
d
Be
n
A
b
d
e
ll
a
h
,
F
e
z
,
M
o
ro
c
c
o
.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
sta
ti
c
c
o
n
v
e
rt
e
rs,
e
l
e
c
t
rica
l
m
o
to
r
d
riv
e
s
a
n
d
p
o
w
e
r
e
lec
tro
n
ics
,
e
lec
tri
c
a
l
m
a
c
h
in
e
s co
n
tr
o
l,
re
n
e
w
a
b
le en
e
rg
y
a
n
d
a
rti
f
icia
l
in
telli
g
e
n
c
e
.
Az
iz
De
r
o
u
ic
h
o
b
tain
e
d
h
is
d
i
p
l
o
m
a
f
ro
m
th
e
S
u
p
e
ri
o
r
S
c
h
o
o
l
o
f
T
e
c
h
n
ica
l
T
e
a
c
h
in
g
o
f
Ra
b
a
t
1
9
9
5
.
F
u
rt
h
e
r,
h
e
g
o
t
h
is
Di
p
lo
m
a
o
f
S
u
p
e
rio
r
S
tu
d
ies
(DES
A
)
in
El
e
c
tro
n
ics
,
A
u
to
m
a
ti
c
a
n
d
In
f
o
rm
a
ti
o
n
P
r
o
c
e
ss
in
g
in
2
0
0
4
a
n
d
th
e
P
h
.
D.
d
e
g
re
e
in
c
o
m
p
u
ter
e
n
g
in
e
e
rin
g
in
2
0
1
1
f
ro
m
th
e
"
Un
iv
e
rsit
y
S
id
i
M
o
h
a
m
e
d
Be
n
A
b
d
e
ll
a
h
"
o
f
F
e
z
.
In
2
0
1
4
,
h
e
o
b
t
a
in
e
d
h
is
d
ip
l
o
m
a
o
f
H
a
b
il
it
a
ti
o
n
Re
se
a
rc
h
f
ro
m
th
e
F
a
c
u
lt
y
o
f
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
o
f
F
e
z
.
He
wa
s
a
p
ro
f
e
ss
o
r
o
f
El
e
c
tri
c
it
y
a
n
d
Co
m
p
u
ter
S
c
ien
c
e
in
"
Ly
c
é
e
Tec
h
n
iq
u
e
,
E
l
Ja
d
id
a
"
f
ro
m
1
9
9
5
t
o
1
9
9
9
a
n
d
in
"
Ly
c
é
e
T
e
c
h
n
iq
u
e
,
F
e
z
"
f
ro
m
1
9
9
9
t
o
2
0
1
1
.
S
in
c
e
2
0
1
1
,
h
e
is
a
P
ro
f
e
ss
o
r
a
t
th
e
Hig
h
e
r
S
c
h
o
o
l
o
f
T
e
c
h
n
o
lo
g
y
,
S
id
i
M
o
h
a
m
e
d
Be
n
A
b
d
e
ll
a
h
Un
iv
e
rsity
,
F
e
z
,
M
o
ro
c
c
o
.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
:
El
e
c
tro
tec
h
n
ica
l
sy
st
e
m
s
,
sta
ti
c
c
o
n
v
e
rters
,
e
l
e
c
tri
c
a
l
m
a
c
h
in
e
s
c
o
n
tro
l
,
re
n
e
w
a
b
le
e
n
e
rg
y
a
n
d
El
e
a
rn
i
n
g
.
Evaluation Warning : The document was created with Spire.PDF for Python.