Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
7
,
No
. 2,
J
une
2
0
1
6
,
pp
. 45
0~
45
9
I
S
SN
: 208
8-8
6
9
4
4
50
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
A Novel High Gain SEPIC Conver
ter with the Tapped Inductor
Model Operating in Discontinuo
us Conduction Mode for Power
Factor Correction
Sat
h
i
y
am
oor
t
h
y S*
,
G
o
pi
n
a
th M
*
*
*Departm
ent
of
Ele
c
tri
cal
and
E
l
ectron
i
cs
Eng
i
ne
ering,
S
t
.
P
e
te
r’s
Univers
i
t
y
,
Ch
e
nnai,
T
a
m
ilnadu,
India
** Deparment of
EEE, Dr. N
.
G.P. Institute of
Technolog
y
,
Co
imbato
re, Tamilnad
u,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 22, 2015
Rev
i
sed
Ap
r 6, 20
15
Accepted Apr 20, 2016
P
o
wer factor
co
rrect
ion (P
F
C
) has
becom
e
one
of the m
o
s
t
ac
ti
ve res
e
a
r
ch
areas
in th
e f
i
el
d of power
el
ect
ronics
due
to
th
e s
u
rplus
power
required
fo
r
various industrial applica
tions
ar
ound the world
.
In this work, a n
ovel SEPIC
converter with
the tapped in
ducto
r model
operating in discontinuous
conduction mode (TI-SEPIC- D
C
M) is
proposed for PFC. The
proposed TI-
SEPIC-DCM i
m
proves the voltage gain through
voltage m
u
ltipl
i
er cell an
d
charge
pum
p cir
c
uit
.
Th
e vol
tag
e
m
u
ltipl
i
er
ce
ll
also he
lps in a
t
taining
the
zero-voltage switching
(ZVS)
and ze
ro-curr
e
n
t
switching
(ZCS), which
results in h
i
gher
switching
frequ
ency
and size r
e
duction
.
Moreov
er,
a th
ird
order harmonic r
e
duction con
t
rol
loop ha
s b
een pr
oposed for better
harmonic
m
itigation
.
Th
e proposed work has been sim
u
lat
e
d in MATL
AB and the
results are obtained to validate the
significan
ce
of the proposed TI-SEPIC-
DCM with near
unity
power
fa
ctor and
reduced h
a
rmonics.
Keyword:
D
i
scon
tinu
o
u
s
co
ndu
ctio
n
Power factor
c
o
rrection
SEPIC convert
e
r
Tap
p
ed
i
n
duct
o
r
m
odel
Zero
-c
ur
rent s
w
itchin
g
Zero-v
o
ltag
e
switch
i
ng
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Sath
iya
m
o
o
r
t
hy S,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
St
.Pet
er’
s
Uni
v
ersi
t
y
, C
h
e
nnai
,
Tam
i
l
n
adu,
I
ndi
a.
Em
a
il: sath
ya2
9
80@g
m
ail.co
m
1.
INTRODUCTION
Power sup
p
lies th
ro
ugh
activ
e power
factor c
o
rrection (PFC) sc
hem
e
s
are ha
ve turned out to
be
essential for
se
veral cate
g
orie
s of electronic
equi
pm
ent
to
satisfy h
a
rm
o
n
i
c laws and
stan
d
a
rd
s, lik
e the IEC
61
0
0
0
-
3-
2 [1]
.
PFC
i
s
a ki
nd o
f
rect
i
f
i
e
r whi
c
h ha
ve
ext
e
nsi
v
e ar
r
a
y
of i
n
d
u
st
ri
al
appl
i
cat
i
ons
l
i
k
e
t
e
l
ecom
m
uni
cat
i
on a
n
d
bi
om
edi
cal
i
n
d
u
st
ri
es.
The m
a
jority of PFC schem
e
s until now im
plem
ent a
boost
-
type circuit confi
g
ur
ation at its front end
[2
]–[9
] o
w
ing
to
its lo
w co
st an
d
its h
i
gh
perfo
r
m
a
n
ce in
term
s
o
f
effici
en
cy, sim
p
lic
it
y an
d
po
wer facto
r
.
The
n
agai
n
,
fo
r uni
versal
i
n
p
u
t
vol
t
a
ge a
ppl
i
cat
i
ons, t
h
e b
o
o
st
con
v
e
r
t
e
r u
nde
r
goes t
h
e c
o
m
p
l
i
cat
i
on of
l
o
wer
efficien
cy and h
i
gh
er to
tal
harm
o
n
i
c d
i
stortio
n
d
u
ring
l
o
w inpu
t vo
ltage. Add
itio
n
a
lly, th
e boo
st con
v
e
rter
h
a
s reason
ab
ly h
i
gh
switch
vo
ltag
e
stress
wh
ich
is alm
o
st
sam
e
as th
e o
u
tp
u
t
vo
ltag
e
.
Also
, th
e
b
o
o
s
t rectifier
has cert
a
i
n
s
h
ort
c
om
i
ngs, l
i
ke, i
n
put
–o
ut
p
u
t
i
s
ol
at
i
on ca
nn
ot
be i
m
pl
em
ent
e
d wi
t
h
any
t
r
o
ubl
e, t
h
e
st
art
u
p
i
n
r
u
sh
cu
rre
nt
i
s
ext
r
em
el
y
hi
gh
, a
n
d
t
h
e
r
e i
s
a nee
d
o
f
c
u
r
r
e
nt
l
i
m
i
t
i
ng at
som
e
st
age i
n
ove
rl
oa
d c
o
ndi
t
i
ons.
M
o
re
ove
r, i
t
is wel
l
kno
w
n
t
h
at
t
h
e bo
ost
con
v
e
r
t
e
r fu
nc
t
i
oni
n
g
i
n
Di
s
c
ont
i
n
u
o
u
s
C
u
rre
nt
M
ode
(DC
M
) ca
n
of
fer se
veral
be
n
e
fi
t
s
, l
i
k
e i
n
he
rent
P
F
C
f
unct
i
on, e
x
t
r
em
el
y sim
p
l
e
cont
r
o
l
,
fl
exi
b
l
e
t
u
r
n
-o
n
of
t
h
e
m
a
i
n
swi
t
ch, an
d dec
r
e
a
sed di
o
d
e re
verse
d
-rec
ove
r
y
l
o
sses. On t
h
e ot
he
r ha
nd
,
t
h
e DC
M
op
erat
i
o
n
necessitates a high-quality boost inductor because it
must switch
very high
pea
k
ripple curre
nts (thi
rd
h
a
rm
o
n
i
c curren
t) an
d
vo
ltag
e
s. Thu
s
, a
m
o
re ro
bu
st
i
n
pu
t filter m
u
st b
e
u
tilized for th
e
p
u
rpo
s
e of
su
ppressing
t
h
e h
i
gh-frequ
e
ncy co
nstitu
en
ts o
f
th
e pu
ls
atin
g
inp
u
t
curren
t
, wh
ich
raises
th
e ov
erall weigh
t
and c
o
st
of t
h
e rect
i
f
i
e
r. Th
e con
v
ent
i
o
nal
bo
ost
pre
r
e
g
u
l
at
or fu
nct
i
o
ni
ng i
n
DC
M
i
s
sho
w
n i
n
Fi
g
u
re
1.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
450
–
4
59
45
1
B
e
si
des,
n
u
m
e
ro
us
PFC
t
o
p
o
l
ogi
es i
n
acc
or
dance
wi
t
h
fl
y
b
ack
,
b
u
ck
-b
o
o
st
, a
n
d C
u
k
c
o
n
v
e
r
t
e
rs
ha
ve
bee
n
avai
l
a
bl
e i
n
o
n
-
l
i
n
e [
1
0]
–[
1
6
]
. O
n
t
h
e
ot
he
r
han
d
,
t
h
ese
t
o
p
o
l
o
gi
es
have
a
n
i
n
ve
rt
i
n
g
o
u
t
put
.
Fi
gu
re
1.
The
c
o
n
v
e
n
t
i
onal
b
o
o
st
pre
r
eg
ul
at
o
r
f
u
nct
i
oni
ng
i
n
DC
M
In
con
t
rast,
SEPIC
rectifier h
as
qu
ite a lo
t of
b
e
n
e
fits lik
e:
Step
u
p
an
d
step
do
wn
cap
a
b
ilities
b
e
sid
e
s m
a
g
n
e
tic co
up
ling
that will bring
abo
u
t
red
u
c
tion in
inpu
t cu
rren
t
ripp
le
[16
]
–[20
]. In case
o
f
[2
0
]
, an
ext
e
nsi
v
e st
at
i
c
gai
n
SEP
I
C
con
v
ert
e
r o
p
e
rat
i
ng i
n
C
o
nt
i
n
u
o
u
s C
o
n
duct
i
o
n M
o
de
(C
C
M
) have
been
form
u
l
ated
for th
e pu
rpo
s
e
of in
creasing
the static g
a
in
at lo
w i
n
pu
t vo
ltag
e
wit
h
ou
t excessiv
e
switch d
u
t
y-
cy
cl
e and wi
t
h
dec
r
ease
d
s
w
i
t
c
h v
o
l
t
a
ge
st
ress. T
h
i
s
ha
s been acc
om
pl
i
s
he
d t
h
r
o
ug
h i
n
se
rt
i
ng a
vol
t
a
g
e
m
u
l
tip
lier
cell (
D
M and
CM)
in
th
e t
r
ad
itional SEPI
C
conver
t
er
as show
n
in
Figur
e
2
.
F
i
g
u
r
e
2
. T
h
e
D
C
M S
E
PI
C co
nv
er
te
r
Trad
ition
ally, in
v
e
rters fo
r
g
r
i
d
in
terco
nnectio
n
are
realized
b
y
a two
-
stag
e power p
r
o
cessi
ng
ap
pro
ach, co
mp
r
ised
o
f
a h
i
gh
step-u
p ac–dc f
r
on
t-
en
d
conv
er
ter w
ith h
i
gh
PFC fo
llow
e
d
b
y
a gr
id tied d
c
–
a
c
in
v
e
rter. Fact th
at g
r
i
d
-tied
inv
erter stag
e n
e
ed
s h
i
g
h
d
c
-bus v
o
ltag
e
, th
e ac–
d
c
stag
e po
ssib
ly will req
u
ire to
st
epu
p
t
h
e l
o
w
vol
t
a
ge a
b
out
near
uni
t
y
p
o
w
er
fact
or
. C
o
nve
rsel
y
, basi
c
ac–dc c
o
nve
rt
ers l
i
k
e b
o
o
st
,
buc
k
–
bo
ost
,
C
u
k
[2
1
-
2
2
]
, Se
pi
c, a
n
d Zet
a
ca
n
not
of
fer
hi
gh
ef
fi
ci
ency
d
u
ri
ng
t
h
e re
qui
re
d c
o
n
v
ersi
on
rat
i
o
.
In
a qu
est
fo
r h
i
gh
er vo
ltag
e
g
a
in
a
n
d efficiency, se
veral i
n
novativ
e sc
he
m
e
s have
bee
n
fo
rm
ul
at
ed
in recent literature. These c
o
m
p
rise appli
cation of m
u
lt
ipliers [23], switched ca
pa
c
itor/ induct
or hybrid
st
ruct
u
r
es [
24]
,
v
o
l
t
a
ge-l
i
f
t
[2
5]
,
a
n
d
cascad
ed bo
ost
c
o
nv
ert
e
rs [2
6]
. In
gene
ral
,
t
h
ese schem
e
s
bri
n
g
ab
ou
t
increase
d
c
o
mpone
n
t count
an
d
cost
i
n
a
d
di
t
i
on t
o
c
ont
r
o
l
com
p
l
e
xi
t
y
. Tap
p
e
d
I
n
duc
t
o
r
(TI
) i
s
ki
n
d
s
of
co
nv
er
ter
s
ar
e an
op
tio
n, w
h
i
c
h
p
r
ov
id
es si
m
p
le
cir
c
u
it an
d
lo
w
p
a
r
t co
un
t. Th
e TI
boost (
T
I
-
b
o
o
s
t)
co
nv
er
ter
[27
]
can accom
p
l
ish
m
u
ch
m
o
re g
a
in
t
h
an its fund
am
en
tal co
un
terp
art
si
m
p
ly b
y
adj
u
stin
g
t
h
e turn
s
ratio
. TI
can
be i
n
t
r
o
d
u
ced t
o
ot
her c
o
nve
nt
i
o
nal
dc
–
d
c c
o
n
v
ert
e
rs a
l
so. T
I
-
f
l
y
bac
k
[2
8]
,
[2
9]
, T
I
-
cascade
d
bo
ost
[3
0]
,
TI-
S
EP
IC
[3
1]
, [3
2]
, [
35]
an
d TI
-ZET
A [
3
3]
t
o
p
o
l
o
gi
es have
bee
n
reporte
d
. T
h
e leakage i
n
ductance ca
n
cause
high-vol
tage spi
k
e across the
swi
t
c
h
,
whi
l
e
di
ssi
pat
i
on
of t
h
e l
eak
age ene
r
gy impairs the
efficiency.
Furt
herm
ore, i
t
im
pedes secon
d
a
r
y
cur
r
e
n
t
, l
i
m
i
t
s
t
h
e p
o
wer tran
sfer t
o
th
e lo
ad
, and
m
a
k
e
s th
e vo
ltage
co
nv
ersion
ratio
lo
ad
d
e
p
e
nd
en
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
69
4
A N
o
vel
Hi
g
h
Gai
n
SEP
I
C
C
onve
r
t
e
r w
i
t
h
t
h
e T
I
-
S
EP
IC
-
D
C
M
f
o
r
PFC
(
Sat
hi
y
a
m
o
ort
h
y
S)
45
2
In
t
h
is
work, a no
v
e
l
SEPIC
co
nv
erter
with th
e Tap
p
ed
Ind
u
c
t
o
r m
o
d
e
l o
p
e
rating
in d
i
scon
tin
uou
s
con
d
u
ct
i
on m
ode
(TI
-
SE
PI
C
-
DC
M
)
i
s
p
r
o
p
o
sed
fo
r P
F
C
. The
pr
op
ose
d
TI-
S
EP
I
C
-DC
M
im
pr
ove
s t
h
e
v
o
ltag
e
g
a
in
throug
h
vo
ltag
e
m
u
l
tip
lier cell
an
d
ch
arg
e
pum
p
c
i
rcu
it. The v
o
ltag
e
m
u
lti
p
lier cell also
h
e
lp
s in
attain
in
g
th
e
zero-vo
ltag
e
switch
i
ng
(ZVS) and
zero
-
cu
rren
t switch
i
n
g
(ZCS), wh
ich
resu
lts in
h
ig
h
er
switching
fre
quency a
n
d size
reduction.
2.
PROP
OSE
D
METHO
D
OL
OGY
Schem
a
t
i
c
di
agram
of t
h
e
pr
op
ose
d
S
E
PIC
co
nve
rt
er
wi
t
h
T
I
m
odel
o
p
e
rat
i
n
g
i
n
DC
M
(TI
-
SE
PIC
-
DC
M
)
an
d ad
opt
e
d
co
nv
ent
i
on
of ci
rc
ui
t
v
a
ri
abl
e
s i
s
sh
o
w
n i
n
Fi
gu
re
3. T
h
i
s
co
nve
r
t
er ci
rcui
t
i
n
cl
ude
s a
Diod
e Bri
d
g
e
Rectifier (DBR); an inp
u
t
i
n
du
ctor
L1
; a main
switch
Q
; an
in
term
ed
iate
cap
acitor
C1
; A
v
o
ltag
e
m
u
ltip
lier cell is ad
d
e
d
in
to
t
h
e circu
it, wh
ich
in
clu
d
e
s
CM
,
DM
; a Tapp
ed
I
ndu
ctor
(TI
)
o
f
Lp
,
Ls
;
and a c
h
arge
pum
p
is adde
d i
n
to t
h
e circ
uit,
whic
h incl
ude
s
C2
,
D1
and
Do
, feed
ing
an
o
u
t
p
u
t
filter cap
acito
r,
Co
,
a
n
d
a lo
ad
,
RL
.
The T
I
’
s
tu
rn
’s
ratio,
n
i
s
gi
ve
n
as,
nN
2
/
N
1
(1
)
At th
is
po
in
t,
N1
and
N2
ar
e th
e pr
i
m
ar
y an
d th
e seco
nd
ar
y nu
mb
er of
turn
s, cor
r
e
spo
n
d
ing
ly.
Th
is conv
er
ter is d
e
v
e
lop
e
d
fr
o
m
th
e b
a
sic SEPI
C topo
logy [
2
0
]
as in
Fi
g
u
r
e
2. Fro
m
t
h
e Figu
r
e
3
,
the inductor
L1
is swapp
e
d with
TI in
o
r
d
e
r to acco
m
p
lish
h
i
gh
er vo
ltag
e
g
a
i
n
.
Ad
d
ition
a
l i
n
crease in vo
ltag
e
gai
n
i
s
ac
hi
eve
d
t
h
r
o
u
g
h
t
h
e
pr
ocess
o
f
a
p
pl
y
i
ng a
v
o
l
t
a
g
e
m
u
l
tip
lier cell. As well, th
e i
n
corp
orated “vo
ltag
e
m
u
l
tip
lier cell”
assists th
e p
r
op
o
s
ed
conv
erter attain
i
ng Zer
o
-
V
ol
t
a
ge (ZV
)
and Ze
ro
-C
u
r
rent
(ZC
)
s
w
i
t
c
hi
n
g
,
whi
c
h e
nha
nce
t
h
e e
ffi
ci
ency
,
an
d
perm
i
t
hi
gher
swi
t
c
hi
ng
f
r
eq
ue
ncy
an
d s
i
ze red
u
ct
i
o
n.
Th
is co
nv
erter to
po
log
y
po
ssesses an
extra advanta
g
e.
In case if t
h
e
switch,
Q
is tu
rned
o
n
, th
e
charge pum
p
capacitor,
C1
fast
ens t
h
e a
n
ode
vol
t
a
ge
o
f
t
h
e out
put
di
o
d
e
,
Do
, to
g
r
ou
nd
. Th
er
efo
r
e, t
h
e
vol
t
a
ge
st
ress
of
Do
i
s
f
r
e
e
o
f
t
h
e
T
I
t
u
r
n
s
r
a
t
i
o
a
n
d
s
a
m
e
a
s
t
h
e
output vol
t
age. T
h
is less
ens t
h
e s
w
itchi
ng
losses of
Do
an
d
is an
ad
d
ition
a
l b
e
n
e
fit of th
i
s
con
v
e
rter. In add
itio
n
,
th
is
co
nv
erter is
d
e
sig
n
e
d
t
o
fun
c
tion
i
n
DC
M
i
n
o
r
der t
o
ac
hi
eve
alm
o
st
a uni
t
y
powe
r fact
or
and l
o
w T
o
t
a
l
Harm
oni
c Di
s
t
ort
i
o
n (T
HD
)
of t
h
e
in
pu
t cu
rren
t.
Th
e
DCM
o
p
eratio
n pro
v
i
d
e
s add
itio
n
a
l
be
n
e
fits lik
e si
m
p
le co
n
t
ro
l
circu
itry i.e. only o
n
e
v
o
ltag
e
sen
s
or
is n
e
ed
ed to
con
tro
l th
is co
nverter.
Fi
gu
re
3.
Sc
he
m
a
t
i
c
di
agram
of
t
h
e
pr
o
p
o
s
e
d
S
E
PIC
co
n
v
e
r
t
e
r
wi
t
h
t
h
e
T
I
m
odel
ope
rat
i
n
g
i
n
Di
sc
ont
i
n
u
o
u
s
Co
ndu
ctio
n Mo
d
e
(
T
I
-
SEPI
C
-
D
CM
)
3.
PRI
NCI
PLE OF
OPE
R
ATION
The propose
d
TI-SEP
IC- DCM
conv
erter
op
erating
in DCM p
r
esen
ts
three
operation stages. T
h
e
th
eoretical an
alysis is in
itia
ll
y d
e
v
e
lop
e
d
co
n
s
i
d
eri
n
g
t
h
e
o
p
e
ration
as a
d
c
–d
c co
nv
erter at stead
y state an
d
all circuit compone
n
ts are
c
o
nside
r
ed i
d
eal.
The voltages a
c
ross all cap
ac
itors are c
o
nsidere
d
consta
nt during
a switch
i
ng
p
e
riod
, as an
id
eal v
o
lta
g
e
sou
r
ce. Th
e DCM o
p
e
ration
o
c
curs wh
en
th
ere is th
e th
ird
op
eration
stage,
whe
r
e the powe
r switc
h is turned
o
f
f an
d
t
h
e cu
rren
ts in
all d
iod
es
of
the circ
uit are
null. T
h
e
r
efore, the
DCM
operation occurs when
and
di
o
d
es
ar
e bl
oc
ke
d
bef
o
re t
h
e
swi
t
c
h
t
u
rn
-o
n.
TI-SEPIC-DCM CONVERTER
Charge Pump
Voltage Mult
ipl
i
er
Cell
DBR
Tappe
d In
duc
t
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
450
–
4
59
45
3
Th
is circu
it presen
ts t
w
o
i
n
d
u
c
t
o
rs; acco
r
d
i
ng
ly
, d
i
fferen
t ind
u
c
t
o
r
v
a
lu
es co
m
b
in
atio
n
can
be
ad
op
ted fo
r
t
h
e D
CM op
er
ati
o
n
.
I
n
or
d
e
r
to
red
u
c
e th
e input cu
rr
en
t
r
ipp
le o
f
t
h
e
p
r
er
egulato
r
, a
r
e
lativ
e h
igh
value
for the i
n
ductor
is co
n
s
id
ered. A
relativ
e lo
w valu
e of th
e Tapp
ed
In
du
ctor
(TI
)
is
u
s
ed
fo
r th
e
co
nv
erter
op
eratio
n
i
n
DCM as a
vo
ltag
e
fo
llo
wer,
where th
e inpu
t
cu
rren
t
fo
llo
ws th
e i
n
pu
t
vo
ltag
e
wave
f
o
rm
. Accor
d
i
n
gl
y
, t
h
e pre
r
eg
ul
at
o
r
i
n
put
cu
rre
nt
fo
llo
ws th
e inpu
t v
o
ltag
e
wav
e
fo
rm
with
lo
w cu
rren
t
ripp
le,
with
ou
t
in
pu
t filter and witho
u
t
current-con
tro
l
l
o
o
p
.
In
view of the
fact that the prop
o
s
ed
circu
it
is an
alysed
for th
e co
m
p
lete
switch
i
ng
p
e
ri
o
d
is shown
in
Fig
u
res.
4
.
Assu
m
i
n
g
th
at th
e th
ree in
ducto
rs are
o
p
e
ratin
g
in
DCM, th
en
th
e circu
it o
p
e
ration
du
ri
n
g
o
n
e
swi
t
c
hi
n
g
peri
od
Ts ca
n
be
d
i
vi
ded
i
n
t
o
t
h
r
ee di
st
i
n
ct
ope
rat
i
n
g
m
odes,
as sh
o
w
n
i
n
Fi
gu
re.
4
(
a)
–(c
)
,
and
i
t
can be descri
b
e
d
as
f
o
l
l
o
w
s
.
Mo
de 0
At
som
e
poi
nt
i
n
t
h
e co
n
duct
i
on
of
p
o
we
r s
wi
t
c
h Q
(i
.e.
)
whe
n
s
wi
t
c
h Q
i
s
t
u
rne
d
on
b
y
t
h
e cont
rol
si
gnal
, a
nd
bot
h di
o
d
es D
p
1 and
Dp
2 are f
o
r
w
ar
d bi
ase
d
,
C
onse
que
nt
l
y
, t
h
e i
nput
v
o
l
t
a
ge, Vac
, i
s
appl
i
e
d
acro
s
s th
e ind
u
cto
r
, L1 , and
th
e inp
u
t
curren
t
, iL1
,
starts ra
m
p
in
g
up
, whereas m
u
ltip
lie
r cell cap
acit
o
r Cm
st
art
s
di
scha
rg
i
ng vi
a swi
t
c
h
Q, t
h
erefore th
e v
o
ltag
e
app
lied
acro
ss TI(Lp
)
is equ
a
l
to
th
e v
o
ltage o
f
capaci
t
o
r C
m
m
i
nus t
h
e v
o
l
t
a
ge o
f
capaci
t
o
r C
1
, an
d t
h
e
di
ode
DM
i
s
bl
oc
ked
d
u
ri
n
g
t
h
i
s
ope
rat
i
o
n
st
age.
Furt
herm
ore, c
a
paci
t
o
r C
2
st
art
s
char
gi
n
g
f
r
om
TI(Ls) vi
a
swi
t
c
h Q, d
u
r
i
ng t
h
i
s
o
p
erat
i
on st
age
di
o
d
e
D1i
s
fo
rwa
r
d
bi
ased
as s
h
o
w
n i
n
Fi
gu
re
4(a
)
.
Fig
u
r
e
s 4(
a)
.
Th
e p
r
op
osed TI
-SEP
IC-
DC
M conve
rter
operating i
n
DCM pres
ents at
Mode
0 operati
o
n
Mo
de 1
In
case if th
e
p
o
wer switch
Q is tu
rn
ed
off, th
e supp
ly cu
rren
t and
th
e
en
erg
y
sto
r
ed
in
th
e in
pu
t
in
du
ctor L1
is
tran
sferred
t
o
t
h
e m
u
ltip
lier cell cap
acito
r C
M
v
i
a cap
acitor C1
and
TI(Lp
)
, and
bo
th
d
i
o
d
e
s
Dp
1 an
d D
p
2
are fo
rwa
rd
bi
ased
du
ri
n
g
t
h
i
s
ope
rat
i
o
n
stage. The
r
e is also en
ergy transfe
r
ence t
o
CM
cap
acito
r th
rou
g
h
d
iod
e
DM an
d th
e m
a
x
im
u
m
switc
h
v
o
ltag
e
is eq
u
a
l t
o
th
e C
M
cap
acito
r vo
ltag
e
.
Su
bseq
ue
nt
l
y
, t
h
e seco
nda
ry
si
de of t
a
p
p
e
d
i
n
d
u
ct
o
r
TI (Ls
)
keep
s di
scha
r
g
i
n
g t
h
e seco
n
d
ary
cu
rre
nt
, t
h
r
o
ug
h
diode
D0 to t
h
e output ca
pac
itor C0.
In thi
s stage
t
h
e ca
pacitor C0 vol
t
age in
c
r
ease
d
steeply,
beca
use t
h
e
energy stored i
n
the T
I(L
s),
c
a
pac
ito
r C
2
, en
erg
y
in
m
a
in
su
pp
ly(Vac),
in
pu
t ind
u
c
t
o
r
L1
an
d
cap
acito
r C
1
is
tran
sferred to
t
h
e cap
acito
r C
0
(i.e.
h
i
gh
g
a
i
n
is attain
ed
du
ri
n
g
t
h
i
s
o
p
erat
i
ng
st
age)
as s
h
ow
n i
n
Fi
gu
re
4(
b)
.
Fig
u
r
e
s 4(
b)
. Th
e p
r
op
osed TI
-SEPI
C
-
D
C
M
con
v
e
r
t
er
operating
i
n
DCM
pres
en
ts at
Mode
1 operati
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
69
4
A N
o
vel
Hi
g
h
Gai
n
SEP
I
C
C
onve
r
t
e
r w
i
t
h
t
h
e T
I
-
S
EP
IC
-
D
C
M
f
o
r
PFC
(
Sat
hi
y
a
m
o
ort
h
y
S)
45
4
Mo
de 2
In case i
f
t
h
e di
o
d
es D
0
an
d
DM
are bl
oc
k
e
d, t
h
e v
o
l
t
a
ge
appl
i
e
d acr
oss
t
h
e i
nput
i
n
du
ct
or L1 a
n
d
TI are
n
u
ll, m
a
in
tain
in
g
t
h
e in
du
ctors
c
u
r
r
e
n
t
s
co
nst
a
nt
as
prese
n
t
e
d i
n
(
2
) a
nd
(3
). T
h
e cur
r
ent
s
t
h
ro
ug
h t
h
e
i
n
p
u
t
i
n
duct
o
r
L1 a
n
d T
I
pres
ent
t
h
e
sam
e
val
u
e,
ope
rat
i
n
g
as a
free
w
heel
i
ng
st
age as
s
h
ow
n i
n
Fi
gu
re
4(c
)
.
Fig
u
r
e
s 4(
c)
.
Th
e p
r
op
osed TI
-SEP
IC-
DC
M conve
rter
operating i
n
DCM pres
ents at
Mode
2 operati
o
n
Th
is op
eration stag
e is fin
i
shed
wh
en
t
h
e po
wer switch
is tu
rn
ed
on
,
retu
rn
ing
to
th
e fi
rst o
p
e
rati
on
stage
1
2
0
(2
)
1
2
0
(3
)
Contr
o
l of pr
oposed
TI
-SE
PIC-DCM
c
o
nver
ter
I
n
case if th
e pr
opo
sed conv
er
ter
o
p
er
ating
i
n
D
C
M present a th
ird
-
h
a
rm
o
n
ic d
ist
o
r
tion
i
n
th
e inpu
t
cur
r
ent
.
Thi
s
c
u
r
r
ent
di
st
ort
i
o
n i
s
a f
unct
i
o
n
of t
h
e v
o
l
t
a
ge
di
ffe
re
nce bet
w
een t
h
e i
n
put
and
o
u
t
p
ut
v
o
l
t
a
ge.
I
n
gene
ral
, t
h
e
o
u
t
put
v
o
l
t
a
ge i
s
i
n
crease
d
t
o
re
duce t
h
e t
h
i
r
d
-
harm
oni
c di
st
o
r
t
i
on t
o
m
a
i
n
t
a
i
n
hi
g
h
p
o
we
r
fact
or
,
howe
ver the s
e
m
i
conductors
losses are inc
r
eased.
W
ith
t
h
e aim
of red
u
ci
n
g
t
h
e t
h
i
r
d
-
ha
rm
oni
c di
st
ort
i
o
n
wi
t
h
o
u
t
i
n
c
r
eas
i
ng t
h
e
out
put
vol
t
a
ge
, a
n
o
p
e
n
-l
oo
p c
o
nt
rol
act
i
on
fo
r t
h
e c
l
assi
cal
bo
ost
c
o
n
v
e
r
t
e
r i
n
[
3
4
]
.
Fi
gu
re
5.
The
bl
oc
k
di
ag
ram
of
t
h
e
pr
o
p
o
s
e
d
c
o
n
v
e
rt
e
r c
o
nt
r
o
l
l
o
op
Third harmonic
reduction
PWM
Gener
a
t
o
r
X
2
.
1
PI voltage
controller
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
450
–
4
59
45
5
The sam
e
ope
n-l
o
o
p
t
ech
ni
q
u
e i
s
de
vel
o
pe
d i
n
t
h
i
s
T
I
-
S
EPIC
-
D
C
M
co
nve
rt
er
fo
r o
b
t
a
i
n
i
ng
hi
g
h
po
we
r
fact
or
. The pr
o
p
o
s
ed pre
r
eg
ul
at
o
r
o
p
erat
i
o
n
i
n
D
C
M
al
l
o
ws ob
t
a
i
n
i
ng nea
r
u
n
i
t
y
PF
a
n
d
l
o
w
T
H
D
without a current-c
ontrol l
oop and
only a voltage control
loop is n
eces
sa
ry [34]. T
h
e output voltage c
ont
rol
al
go
ri
t
h
m
used
i
n
t
h
e
p
r
o
p
o
s
e
d c
o
n
v
e
r
t
e
r i
s
base
d
on
t
h
e
cl
assi
cal
PI c
o
nt
r
o
l
l
e
r. T
h
e
b
l
ock
di
ag
ram
of t
h
e
con
v
e
r
t
e
r c
ont
r
o
l
l
o
op
i
s
prese
n
t
e
d i
n
Fi
gu
re
5, i
n
cl
u
d
i
n
g t
h
e t
h
i
r
d-
harm
on
i
c
red
u
ct
i
o
n t
e
chni
que
.
.
1
.
(4
)
Whe
r
e,
.
.
.
Onl
y
t
h
e
out
p
u
t
an
d i
n
put
v
o
l
t
a
ges ar
e ne
cessary
t
o
c
o
n
t
rol
t
h
e
pre
r
eg
ul
at
or
. Th
e se
nse
d
o
u
t
p
ut
v
o
ltag
e
sign
al
(V0
)
is co
m
p
ared to
an ou
tpu
t
vo
ltag
e
re
fe
rence
(
V
0 re
f)
and
the
er
ro
r
(
E
v)
is a
pplie
d
to a
PI
v
o
ltag
e
con
t
ro
l
l
er. Sim
u
ltan
e
o
u
s
ly, th
e sen
s
ed
rectified
inp
u
t
vo
ltag
e
(Vi) an
d
th
e
ou
tpu
t
v
o
ltag
e
reference
are app
lied
to
(4
) in
ord
e
r to
calcu
l
ate th
e d
u
ty-cycle
variation
fo
r the t
h
ird
-
ha
rm
onic red
u
ction
.
T
h
e res
u
lt o
f
th
e PI
ou
tpu
t
v
o
ltag
e
con
t
ro
ller and
th
e
resu
lt o
f
t
h
e th
ird-h
a
rm
o
n
i
c redu
ctio
n
are m
u
ltip
lied
ob
tain
in
g
t
h
e
pre
r
eg
ul
at
o
r
d
u
t
y
cy
cl
e and
gene
rat
i
n
g t
h
e
P
W
M
si
gnal
t
h
at
co
nt
r
o
l
s
t
h
e m
a
i
n
swi
t
c
h
Q. T
h
e e
x
peri
m
e
nt
al
setu
p of
M
A
TLA
B
/Sim
u
lin
k
d
i
agr
a
m
o
f
t
h
e pr
opo
sed TI-
S
EPI
C
- D
C
M co
nv
er
ter
is show
n in
t
h
e
f
i
gu
re 6
.
Fi
gu
re
6.
M
A
T
L
AB
/
S
i
m
ul
i
nk ex
peri
m
e
nt
al
set
up
o
f
t
h
e
p
r
o
pos
ed
TI
-SE
P
I
C
- DC
M
c
o
nv
ert
e
r
4.
RESULTS
A
N
D
DI
SC
US
S
I
ON
The
perform
a
nce of the
proposed
TI-SEPIC- DCM conv
ert
e
r is sim
u
lated
in
a MATLAB
/ Si
m
u
lin
k
en
v
i
r
o
n
m
en
t u
s
in
g
th
e Sim
P
o
w
er
-System
Too
l
bo
x. Th
e
p
r
op
o
s
ed
conver
t
er
p
e
r
f
o
r
m
a
n
ce is ev
alu
a
t
e
d
fo
r
b
o
t
h
rated
and d
y
n
a
m
i
c co
nditio
n
s
an
d th
e
ach
iev
e
d
po
wer
q
u
a
lity in
d
i
ces ob
tain
ed
at
ac m
a
in
s. Parameters
suc
h
as
s
u
ppl
y
vol
t
a
ge
(
V
), s
u
p
p
ly
cu
rr
ent
(
i
),
main
switch curren
t
i
,
m
a
in
swi
t
ch
v
o
ltag
e
(
V
), con
v
e
r
ter
out
put
v
o
l
t
a
ge
,
out
put
cu
rre
nt
a
n
d
out
put
po
we
r
V
,
I
andP
resp
ectiv
ely, of th
e
p
r
op
o
s
ed
co
nv
erter are ev
alu
a
ted
to
d
e
m
o
n
s
trate its
p
r
op
er fun
c
tion
i
n
g
. Mo
reov
er,
p
o
wer q
u
a
lity i
n
d
i
ces su
ch
as
p
o
wer
facto
r
(PF) [36], To
tal
H
a
rm
o
n
i
c D
i
st
o
r
tion
(THD
)
o
f
supply cu
rren
t
are
an
alysed
for
fi
n
d
i
n
g
pow
er qu
ality
at
ac m
a
i
n
s. Th
e co
nve
rt
er
spe
c
i
f
i
cat
i
ons
fo
r
sim
u
l
a
t
i
ons are
gi
ve
n i
n
Ta
bl
e
1.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A N
o
vel
Hi
g
h
Gai
n
SEP
I
C
C
onve
r
t
e
r w
i
t
h
t
h
e T
I
-
S
EP
IC
-
D
C
M
f
o
r
PFC
(
Sat
hi
y
a
m
o
ort
h
y
S)
45
6
Table 1. Speci
fication
Para
m
e
ters
Valu
es
_
8.
484 V
_
6 V
_
22.
27 A
_
15.
75 A
I
nput Power
94.
54 W
a
tts
Output Voltage
90 V
Output Cur
r
e
nt
1 A
Output Power
90 W
a
tts
Ef
f
i
ciency 95.2%
Power
Factor
(PF)
0.
9991
A
.
S
t
ea
dy
-S
tat
e
P
e
rf
o
r
ma
n
c
e
Fig
u
r
e
7(
a)-
(
e
) sh
ow
s th
e prop
o
s
ed
co
nv
er
ter
op
er
ates at r
a
ted
sup
p
l
y vo
ltag
e
of
(
8
.48
V)
and
r
a
ted
po
we
r o
n
loa
d
(9
0
W)
respe
c
tively
.
As s
h
ow
n in t
h
ese fi
gu
res, t
h
e
l
o
a
d
v
o
l
t
a
ge, l
o
ad c
u
rre
nt
an
d l
o
a
d
po
w
e
r
is
m
a
in
tain
ed
at th
e d
e
si
red referen
ce
v
a
lu
e as sh
own in
Fig
u
res
7
(
c-e).
Here
p
a
ram
e
te
rs lik
e
V∗
,
I∗
and
P∗
desire
d
refe
re
nce
voltag
e
, c
u
rre
nt an
d
p
o
we
r
of l
o
ad
res
p
e
c
tively
.
(a)
(b
)
(c)
(d
)
(e)
Fi
gu
re
7(a
)
-
(
e)
. T
h
e
pr
op
ose
d
co
nve
rt
er
o
p
er
at
es at
rat
e
d
su
ppl
y
vol
t
a
g
e
of
(
8
.
4
8
V
)
B. Dynamic P
erform
a
nce
As
gi
ve
n i
n
t
h
i
s
Fi
gu
res
8 t
h
e pr
o
pose
d
c
o
nve
rt
er
du
ri
n
g
cl
osed l
o
o
p
c
o
nt
r
o
l
cor
r
es
p
o
ndi
ng t
o
t
h
e
sup
p
l
y
v
o
l
t
a
ge
i
s
reduce
d
f
r
o
m
6 V t
o
5 V at
i
n
st
ant
of
0.7 sec as s
h
ow
n i
n
Fi
g
u
r
e
8(a)
. The
rat
e
d l
o
ad
v
o
ltag
e
o
f
9
0
V
is
m
a
in
tain
ed
con
s
tan
t
and th
e co
r
r
espond
ing
supp
ly cu
r
r
e
n
t
v
a
r
i
ation
is d
e
p
i
cted
in
Fig
u
r
e
8(c
)
an
d (b
).
As sh
o
w
n i
n
t
h
i
s
Fi
gure
8(c
)
,
t
h
e l
o
ad v
o
ltage is
m
a
in
tain
ed at th
e d
e
sired
referen
ce
v
a
lue with
l
i
m
i
t
e
d o
v
ers
h
oot
a
n
d
u
nde
rs
ho
ot
s.
A
sm
oo
t
h
cl
ose
d
l
o
o
p
cont
rol
i
s
o
b
t
a
i
n
ed
, m
o
reo
v
e
r
Fi
gu
re
8(
d
)
a
n
d
8(e
)
sho
w
s t
h
e ha
r
m
oni
c spect
ra
of s
u
ppl
y
cu
rre
nt
at
ac m
a
i
n
s at
rat
e
d l
o
a
d
v
o
l
t
a
ge (
9
0V
) w
i
t
h
su
ppl
y
v
o
l
t
a
ge as
6
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
450
–
4
59
45
7
V and 5 V, res
p
ectively. An acceptable THD of s
u
pply cu
rre
nt is obtaine
d for both the
cases whic
h show
a
n
i
m
p
r
ov
ed power
q
u
a
lity op
eratio
n
o
f
th
e
prop
o
s
ed
TI-SEPIC- DCM con
v
erter at
u
n
i
v
e
rsal ac m
a
in
s.
(a)
(b
)
(c)
(d
)
(e)
Fi
gu
re
8(a
-e
).
The
dy
nam
i
c perf
orm
a
nce o
f
t
h
e p
r
op
ose
d
c
o
n
v
e
r
t
e
r
du
ri
n
g
a
st
ep c
h
a
nge
(a)
(b
)
(c)
(d
)
Fi
gu
re
9.
The
pr
o
pose
d
TI
-S
EPIC
-
D
C
M
c
o
nve
rt
er
pe
rf
or
m
a
nce i
s
com
p
ared
wi
t
h
an
d
wi
t
h
o
u
t
t
h
e
im
pl
em
ent
a
t
i
o
n
of
t
h
e t
h
i
r
d
-
h
a
rm
oni
c red
u
ct
i
on t
e
c
hni
q
u
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A N
o
vel
Hi
g
h
Gai
n
SEP
I
C
C
onve
r
t
e
r w
i
t
h
t
h
e T
I
-
S
EP
IC
-
D
C
M
f
o
r
PFC
(
Sat
hi
y
a
m
o
ort
h
y
S)
45
8
C.
Perform
a
nce Comparison of Th
ird
Or
der Re
duc
tion
Contr
o
l L
o
op
The p
r
op
ose
d
TI-S
EPIC
-D
C
M
conv
ert
e
r
per
f
o
r
m
a
n
ce is co
m
p
ared
with
and
with
ou
t th
e
i
m
p
l
e
m
en
tatio
n
of
th
e t
h
ir
d-
h
a
r
m
o
n
i
c r
e
du
ctio
n
techn
i
qu
e is show
n
i
n
Figur
es 9.
W
h
en
th
e
pr
op
o
s
ed
con
v
e
r
t
e
r o
p
er
at
i
ng wi
t
h
rat
e
d
s
u
ppl
y
v
o
l
t
a
ge of
6
an
d
r
a
ted
l
o
ad
p
o
w
e
r on 90W
th
en th
e
cor
r
es
po
n
d
i
n
g
su
ppl
y
cu
rr
en
t
of t
h
e p
r
op
o
s
ed c
o
n
v
e
r
t
e
r
wi
t
h
a
nd
wi
t
h
out
i
m
pl
em
entat
i
on
of t
h
i
r
d
or
der
red
u
ct
i
o
n t
ech
ni
q
u
e i
s
sho
w
n i
n
Fi
gu
re 9
(
a). The t
o
t
a
l
i
n
put
cu
rre
nt
har
m
oni
c di
st
ort
i
on i
s
eq
ual
t
o
11
.3
5%
wi
t
h
o
u
t
t
h
e ap
pl
i
cat
i
on o
f
t
h
e t
h
i
r
d-
ha
rm
oni
c reduct
i
o
n t
echni
que a
nd t
h
e con
v
ert
e
r
po
wer fact
or i
s
equal
t
o
0.
95
5
2
i
s
sh
o
w
n i
n
Fi
g
u
re
9
(
d
)
an
d 9
(
b) re
spect
i
v
el
y
.
Th
e t
o
t
a
l
i
nput
c
u
r
r
ent
harm
oni
c di
st
ort
i
o
n i
s
red
u
ce
d
to
4
.
42
%
with th
e app
licatio
n
of th
e th
ird
-
h
a
rm
o
n
i
c
r
e
ductio
n
techn
i
que an
d th
e co
nverter power
factor is
in
cr
eased
to 0.9
841
is sho
w
n
in
Figur
e
9
(
c)
an
d 9(b
)
r
e
sp
ectiv
ely.
D.
Soft Switching Operation
o
f
Pr
op
osed
Co
nver
ter
Th
e Figur
e 10 sh
ow
s the obtain
e
d
vo
ltag
e
an
d
cu
rr
en
t at th
e ac
m
a
in
s for th
e
o
p
e
ratio
n
of th
e
p
r
op
o
s
ed
conver
t
er
at v
a
r
i
ou
s v
a
lu
es of
ou
tpu
t
v
o
ltag
e
s. Mo
r
e
ov
er
so
f
t
sw
itch
i
ng
op
er
atio
n
i.e. ZVS an
d
ZC
S
i
s
achi
e
ve
d
fo
r
pr
o
p
er c
o
nt
r
o
l
of
t
h
e c
o
nve
rt
e
r
i
s
s
h
o
w
n i
n
F
i
gu
re
10
(a)
an
d
1
0
(
b
)
res
p
ect
i
v
el
y
.
(a)
(b
)
Fig
u
r
e
10
. Th
e sof
t
-
s
w
itch
i
ng op
er
ation
o
f
pr
opo
sed TI-
S
EPI
C
-D
CM conv
er
ter
5.
CO
NCL
USI
O
N
Thi
s
pape
r
pre
s
ent
e
d a
n
o
v
el
PFC
C
o
n
v
ert
e
r wi
t
h
m
i
nimal
THD
.
T
h
e
pr
o
pose
d
T
I
-
S
EPIC
-
DC
M
in
trodu
ced
th
e
tapp
ed
ind
u
c
t
o
r
m
o
d
e
l
to
allev
i
ate th
e s
w
itch
i
ng
vo
ltag
e
stress and
to
i
m
p
r
o
v
e
con
v
e
rter
p
e
rform
a
n
ce.
ZVS and
ZC
S are attain
ed in
th
is
wo
rk th
rou
g
h
vo
ltag
e
m
u
ltip
lier cell. Th
e con
v
e
rter
per
f
o
r
m
a
nce i
s
im
pro
v
e
d
by
vol
t
a
ge
gai
n
a
n
d
ch
ar
ge
pu
m
p
ci
rcui
t
wi
t
h
hi
g
h
er
s
w
i
t
c
hi
n
g
fre
q
u
enc
y
. T
h
e
THD
res
u
l
t
s
a
r
e obt
ai
ne
d fo
r
t
h
i
r
d o
r
de
r h
a
rm
oni
c
red
u
c
t
i
on whe
r
ei
n
t
h
e onl
y
4.
4% THD
.
Si
m
i
l
a
rly
,
t
h
e
significa
nce of the converte
r perfor
m
a
n
ce is v
a
lid
ated
throu
g
h
ZVS and
ZCS si
m
u
latio
n
resu
lts. Thu
s
, th
e
pr
o
pose
d
c
o
nv
ert
e
r
resul
t
s
i
n
near
u
n
i
t
y
PF i
m
provem
e
nt
t
h
ro
u
g
h
t
h
i
r
d
or
d
e
r
harm
oni
c re
duct
i
o
n.
REFERE
NC
ES
[1]
Harmonic
Curre
nt Emissions Guide
line
s
,
Euro
pean Power Supply
Manuf
actur
es
Association Stan
dard EN 61000-
3–2, 2010
.
[2]
Wang, H.,
et al.,
2013. “A bridgeless boost rectifier for lowvo
ltage energ
y
harv
esting application
s
”.
IEEE T
r
ans.
Power Electron.
, 28(11), pp. 520
6–5214.
[3]
Choi, W
.
,
et al.
, 2007. “Bridgeless boost rectifier with
lowcond
ucti
on
losses an
d reduced diod
e reverse-r
ecov
e
r
y
problems”.
I
E
EE Trans. Ind. Electron.
, 54(2)
, p
p
. 769–780
.
[4]
Purna Chandra
Rao, A., Obules
h, Y.P., Sai B
a
bu Ch 2015.
“Power Factor Co
rrection in Two
Leg Inver
t
er F
e
d
BLDC Drive U
s
ing Cuk Dc-Dc Converter”,
I
n
ternational Jo
urnal of Power
Electronics an
d Drive Systems
(
I
JPEDS)
,
6(2).
[5]
Jang, Y.,
and Jo
vanovic, M., 20
09.
“A Bridgl
ess PFC boost rectifier w
ith
optim
ized
m
a
gneti
c u
t
ilization
”
.
IE
EE
Trans. Power Electron.
, 24(1)
, p
p
. 85–
93.
[6]
Sim
onetti, D. S.
L.,
et al.
, 1999
. “Modeling of the high-power-f
actor d
i
scontinu
ous boost rectifiers”.
IE
EE T
r
ans
.
Ind. Electron.
, 4
6
(4), pp
. 788–79
5.
[7]
Wang, H.,
et al.
, 2014. “Design
and analy
s
is of a full bridge LLC
based PEV ch
arger optimized for wide batter
y
voltag
e
rang
e”.
I
EEE Trans. Veh
.
Technol.
, 63(4), pp. 1603–1613.
[8]
Yao,
K.
,
et al.
,
2012. “Reducin
g storage capacitor of a DCM boost PFC converter”
I
EEE T
r
ans. Power El
ec
tron.
,
27(1), pp
. 151–1
60.
[9]
H
u
, Y
.,
et a
l
.
,
2
012. “Single-stage, univ
e
rsal-
i
np
ut AC/DC LED
driv
er with
curr
ent-con
t
rolled v
a
riab
le PFC boo
st
inductor
”
.
IEEE
Trans. Power Electron.
,27(3), pp
. 1579–1588
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
450
–
4
59
45
9
[10]
Fardoun, A. A.,
et a
l
.
, 2012. “Acomparison between thr
e
e pro
posed
bridgeless Cuk topologies
and conv
ention
a
l
topologies
for p
o
wer factor
corr
ection”.
IE
EE
T
r
ans. Power
El
ect
ron.
, 27(7)
, pp
. 3
292–3301.
[11]
Jingquan, C.,
et al.
, 2006. “Analy
s
i
s and desig
n
of a low-stress
buck-boost converter in un
iv
ersal-inpu
t PFC
applications”.
IE
EE T
r
ans. Pow
e
r Ele
c
tron.
, 21
(
2
), pp
. 320–329
.
[12]
Abramovitz, A., and Smedley
,
K. M., 2011
. “Analy
sis
and design of a tapped
i
nductor bu
ck–b
oost PFC rectifier
with low bus vo
l
t
age
”
.
IEE
E
T
r
a
n
s. Power
El
ectr
on.
, 26(9), pp. 2
637–2649.
[13]
Kamnarn, U., and Chunkag, V., 2009. “A
naly
sis and design of
a modular thre
ephase AC-to-DC converter using
CUK rectifier module with n
early
unity
pow
er f
actor
and fast d
y
namic response”.
IE
EE T
r
ans.
Power El
ectron.
,
24(8), pp
. 2000–
2012.
[14]
Mahdavi, M., and Farzanehf
a
r
d
, H., 2011
. “Bridgeless
SEPIC PFC rectifier with reduced
components and
conduction losses”.
IEEE Trans.
Ind. Electron.
, 5
8
(9), pp
. 4153–4
160.
[15]
Fardoun, A.,
et al.
, 2014
. “Brid
g
eless resonant
pseudo boost PFC rectifier
”
.
I
E
EE Trans. Power Electron.
, 29(11
),
pp. 5949–5960
.
[16]
Kim,
Y,
et al.
,
2014. Comparative performance analy
s
is of hi
gh density
and ef
ficiency
PFC topologies”.
IEEE
Trans. Power Electron.
, 29(6)
, p
p
. 2666–2679
.
[17]
S
a
bzal
i, A.,
et al.
, 2011. “A new bridgeless PFC Se
pic and
Cuk rectifiers with
low conduction and switching
losse
s”
.
IEEE Trans. Ind. Appl.
,
47(2), pp
. 873–8
81.
[18]
Ismail, E. H., 2
009. “Bri
dgeless SEPIC rectifier
with unity
pow
er
factor
and r
e
duced
conductio
n
losses”.
IE
EE
Trans. Ind. Electron.
, 56(4)
, pp
. 1
147–1157.
[19]
Yang, J.-W., an
d Do, H.-L., 2013.
“Bridgeless SEPIC converter with
a ripple-f
r
ee input
curren
t
”.
I
EEE T
r
ans
.
Power Electron.
, 28(7), pp. 3388
–3394.
[20]
de
Me
l
o
, P.
F.,
et al.
, 2010. “A modified SEPIC converter f
o
r high-
power-f
actor
rectif
ier
and universal inp
u
t
voltag
e
app
l
i
cat
i
ons
”.
IE
EE
T
r
ans. Power
El
ectro
n.
, 25(2), pp. 31
0–321.
[21]
Sathiy
amoorth
y
,
S.,
and M. Gop
i
nath
., 2015
."A
Survey
on
Conv
erter
Topolog
ies
in Various App
lications", ARP
N
Journal of
Engin
eering
and
Applied Sciences, 10(
7), pp
. 2796-280
1.
[22]
Da
s,
M.
,
et a
l
.
,
2015. “Impro
vement of th
e
Performance of
PV
Sy
stem with CUK Converter
b
y
MPPT
Techno
log
y
”.
International Journ
a
l of
Computer
Applica
tions
, 12
7(5), 33-36
.
[23]
Prudente, M.,
et al.
, 2008
. “Voltage m
u
ltip
lier
cel
ls applied
to
non-isolated D
C
–DC converter
s”.
IEEE Trans.
Power Electron.
, 23(2), pp. 871–
887.
[24]
Axelrod, B
.
,
et al.
, 2008. “Switched-capacitor
/
switc
hed
i
nductor
structur
es for g
e
tting
tr
ansform
e
rless h
y
brid
DC-
DC PWM converters”.
IEEE Trans. Circuit S
y
st.
, 55(2), pp. 687–
696.
[25]
Zhu, M.,
and
Luo, F.
L., 2008
.
“Ser
ies SEPIC implementing voltage-
lift te
chniq
u
e for DC–DC p
o
wer conversion”.
IET
Power
El
ect
ron.
, 1(1)
, pp
. 10
9–121.
[26]
Luo, F.
L.,
and
Ye, H., 2004. “Pos
itive outpu
t
cascad
e boost
converters”.
I
EE Proc. Ele
c
tr. Po
wer
Appl.
, 151(
5),
pp. 590–606
.
[27]
Vazquez,
N
.,
et al.
, 2007
. “The tappedindu
ctor
boost converter”.
Proc. I
E
EE Int. Symp. Ind
.
Electron.
, pp
. 538–
543.
[28]
Liang
,
T. J. and Tseng, K. C
., 20
05. “Analy
sis of integrated
boost-fly
b
ack step-up
converter
,”
Pr
o
c
. Ins
t
. El
ectr
o
n
.
Eng.: Elect. Pow
e
r
Appl.
, 152(2), pp. 217–225.
[29]
Lin, B. R., and Hsieh, F. Y., 2007.
“Soft-switching zeta-fly
b
ack converter w
ith a buck–boost ty
p
e
of active clamp”.
IEEE Trans. Ind
.
Electron.
, 54(5
)
, pp
. 2813–282
2.
[30]
Kim,
K.
D.
,
et al
, 2011
. “Improved non-isolated high voltage
gain
boost
conv
erter
using coup
led indu
ctors”. in
Pr
oc. I
E
E
E
In
t.
Conf.
Ele
c
tr
.
Ma
ch. S
y
s
t
.
, pp
. 20–
23.
[31]
Axelrod, B
.,
and
Berkovich
, Y.,
2011. “New cou
p
led-indu
ct
or SEPIC converter with ver
y
high
con
v
ersion ratio and
reduced
voltage
stress
on the
s
w
i
t
ches
”
.
in
Pro
c
. I
EEE 33rd Telecommun. Energy
Conf.
, pp. 1–7.
[32]
Park, K.-B.,
et
al
.
, 2010
. “Nonisolated high step-
up boost convert
er integrated with SEPIC converter”.
I
E
EE Trans.
Power Electron.
, 25(9), pp. 2266
–2275.
[33]
Chen, S.-M.,
et al.
, 2013. “A boost convert
er
with capacitor
m
u
ltiplier
and
coupled indu
ctor
for AC m
odule
applications”.
IEEE Trans. Ind
.
Electron.
, 60(4), p
p
. 1503–1511
.
[34]
Lazar, J., and C
uk, S., 1995. “
O
pen loop contr
o
l of a
unity
po
wer factor
, disconti
nuous condu
ction mode boo
st
rect
ifier
”
.
in
Pr
o
c
. In
t.
T
e
l
ecom
m
un. En
ergy Con
f
.
, pp. 671–677.
[35]
Ferrera, M. B.,
et al.,
2015. “A
SEPIC-Cuk converter combination fo
r bipolar DC microgrid applications”. 2015
IEEE Internatio
nal C
onference on
Industria
l Technology (
I
CIT)
,
pp. 884-889.
[36]
Tom
a
s
A. Gonza
l
ez
, Dani
el O.
M
e
rcuri
,
Hern
an E
.
Ta
cc
a,
M
a
ximo E. Pupar
e
li 201
6.
“
S
ingle-Switc
h Soft-Switched
Boost Power Factor Corrector
f
o
r Modular App
lications”,
International Journal
of
Power
Electronics and Drive
Sy
ste
m
s (IJ
PED
S),
2(2).
Evaluation Warning : The document was created with Spire.PDF for Python.