Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
4, No. 4, Decem
ber
2014, pp. 567~
577
I
S
SN
: 208
8-8
6
9
4
5
67
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Advan
ced Cont
rol of Wi
nd Elect
ric Pumping Sys
t
em f
o
r
Isolated Areas Application
Mohamed B
a
rara*, Abderr
ahim Bennas
s
a
r*,
Ahme
d Abbou*,
Mohamed Akherr
az
*, Badre
Bos
s
ou
fi**
* Labor
ator
y
of
Power Electron
ic and
Contro
l,
Mohamed V University
Agdal
M
ohammadia Sch
ool of
Engin
eering,
Rabat
M
o
rocco
** Labor
ator
y
of
Electr
i
cal
Engin
eering
and
Main
tena
n
c
e,
Higher School
of Techn
o
log
y
, EST-Oujda,
University
of
Mohammed I, Mor
o
cco
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
J
u
l 27, 2013
Rev
i
sed
Sep
18
, 20
13
Accepte
d Oct 5, 2013
The supply
water in remote areas of wi
ndy
region is one of
mo
st attractiv
e
application of
wind energ
y
co
nversion.
This paper
proposes an
adv
a
nced
controller suitab
le for wind-
electric pump
in isolated
applications
in order
to
have
a d
e
sired
d
e
bit from variation of
referen
c
e
speed of
the pu
mp also the
control scheme
of DC voltage of SIEG
for feed the pump are presented under
step chang
e
in
wind speed.
The simulation
results showed a good
performance of
the glob
al
proposed con
t
rol s
y
stem.
Keyword:
DC Vo
ltag
e
PW
M Co
nv
er
ter
SIE
G
Wi
n
d
P
u
m
p
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M
oham
e
d B
a
r
a
ra,
Lab
o
rato
ry
of Po
wer Electro
nic
an
d
C
o
ntro
l,
Mo
h
a
m
e
d
V Un
iv
ersity Agd
a
l Mo
h
a
mm
ad
ia
Schoo
l of Engin
eering
,
R
a
bat
M
o
rocc
o.
Em
a
il: Mo
h
a
med
-
b
a
rara@ho
t
mail.fr
1.
INTRODUCTION
The clim
ate change
is a
com
p
lex
global c
h
allenge
i
t
s
i
m
pact
s o
n
t
h
e e
nvi
r
onm
ent
an
d
h
u
m
an heal
t
h
are now m
o
re unde
rstood re
qui
ring
real s
o
lutions t
o
re
duce gree
nhou
se
gas em
issions
and accelerat
e the
tran
sitio
n to
a lo
w-carbo
n
fu
ture.Ev
e
n
t
u
a
lly, th
e world
will run
o
u
t
of fo
ssil fu
els,
o
r
it
will b
ecome to
o
ex
p
e
n
s
i
v
e to
retriev
e
th
ose th
at rem
a
in
. Fo
ssil fu
els also
cau
ses air,
water and
so
il po
llu
tio
n
,
and
p
r
od
uce
gree
n
h
o
u
se
gas
e
s t
h
at
c
ont
ri
b
u
t
e
t
o
gl
o
b
al
w
a
rm
i
ng.
In
rece
nt
y
ears
,
wi
nd
h
a
s
bec
o
m
e
an i
n
cre
a
s
i
ngl
y
at
t
r
act
i
v
e
so
urce
of
re
ne
wabl
e e
n
e
r
gy
.
Whi
l
e
wi
n
d
po
we
r
hel
p
s t
h
e en
vi
r
onm
ent
by
p
r
od
uci
n
g e
l
ect
ri
ci
t
y
wi
t
hout
p
r
od
uci
n
g
p
o
l
l
u
t
i
o
n
,
great
reso
u
r
ce t
o
ge
nera
t
e
en
erg
y
in rem
o
te lo
catio
n
s
, Efficien
t and
reliab
l
e and
t
h
ey
will n
e
v
e
r
run
o
u
t
.
The wi
n
d
ene
r
gy
ca
n be use
d
fo
r p
u
m
p
i
n
g
wat
e
r
a
n
d are p
a
rticu
l
arly
usefu
l
in
rem
o
te lo
cation
s
whe
r
e access t
o
electrical utilities would
be
costly, diffe
re
nt types of
wind
water pum
p
s. Som
e
are straight
win
d
water
p
u
m
ps, suc
h
as
the
Aerm
otor
win
d
m
i
ll, whil
e ot
hers
are
wind-electric pum
ps. In this ca
se, the
spi
n
ni
n
g
of t
h
e wi
n
d
t
u
r
b
ine
creates electricity that is used to
po
w
e
r
a w
a
ter
p
u
m
p
.
A
lth
oug
h
m
e
c
h
an
ical
wi
n
d
m
i
l
l
s
st
il
l pr
ovi
de a sensi
b
l
e
, l
o
w
-
co
st
opt
i
o
n f
o
r
pum
pi
ng
wat
e
r i
n
l
o
w
-
wi
n
d
areas, wi
nd
-e
l
ect
ri
c
p
u
m
p
i
n
g
system
s
is
an
e
m
erg
i
ng
tech
no
logy th
at co
m
b
in
es
m
o
d
e
rn
h
i
gh-reliab
ility s
m
all w
i
n
d
tu
rb
ines an
d
stan
d
a
rd
electric cen
trifug
al p
u
m
p
s
to
p
r
ov
id
e a reliab
l
e an
d
th
ey can
pu
m
p
. In
ad
d
ition
,
m
ech
an
ical
windm
i
lls
m
u
st be
placed directly above the well,
whic
h
may not take
the
best a
dva
nt
age
of availabl
e wi
nd
resources.
W
i
nd-electric pumping syst
e
m
s c
a
n be place
d
whe
r
e the wi
nd res
o
urce is the best and connecte
d
to
th
e
pu
m
p
mo
tor
with
an
el
ectric cab
le and
p
o
s
sib
ility to
con
t
ro
l th
e
pum
p
i
n
g
syste
m
[24
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
56
7 – 577
56
8
An overview of
com
p
lete
m
e
chan
ical and el
ectrical wind
p
u
m
p
i
ng sy
st
em
s i
s
prese
n
t
e
d i
n
Fi
g
u
re
1
an
d Figur
e
2
.
Figure 1.
Mechanical W
i
nd
Pum
p
Fi
gure
2.
W
i
nd electric pum
p
syste
m
s
In
t
h
i
s
c
ont
e
x
t
ou
r a
p
pl
i
cat
i
o
n
aim
s
t
o
m
a
ke go
o
d
use
of
t
h
e wi
n
d
el
ect
ri
c
p
u
m
p
sy
st
em
, i
n
cl
udi
ng
a
go
o
d
c
ont
rol
o
f
t
h
e
p
u
m
p
i
ng
spee
d, a
n
d
of c
o
u
r
se e
n
s
u
ri
ng
a co
nt
r
o
l
o
f
t
h
e
v
o
l
t
a
ge s
o
urce
o
f
t
h
e
ge
nerat
o
r
.
The i
n
d
u
ct
i
o
n m
achi
n
e i
s
a very
po
pul
a
r
ge
nerat
o
r
use
d
wind turbine syste
m
s
in isolated areas to
gene
rate electrical energy al
so for m
o
tor application beca
use of its
low price, m
echanical
si
m
p
lic
ity,
robu
st
structure, as c
o
m
p
ared to
othe
r m
ach
in
e.
Howev
e
r, th
e m
a
j
o
r
draw b
a
ck
of th
e SIEG
(Self Ex
cited Ind
u
ction
Gen
e
rator). A p
oor v
o
ltage reg
u
l
ation
un
d
e
r ch
ang
e
in
load
and
sp
eed
in
stan
d-alon
e
syste
m
. In
lite
ratu
re
man
y
r
e
sear
cher
s h
a
v
e
pro
p
o
s
ed
nu
m
e
r
o
us co
n
t
r
o
l fo
r
reg
u
l
ating
th
e ter
m
in
al v
o
ltag
e
[
1
]-[
2
]
,
[4
]-[5
],
[
8
],
[1
0]
, [1
2]
-[
1
3
]
.
Since the
aim
s
of the
propos
e
d system
consists of
a
SE
I
G
dri
v
en by
a
n
un
re
gul
at
ed
rot
o
r
s
p
ee
d
sup
p
l
i
e
s i
n
duct
i
on m
o
t
o
r l
o
a
d
ed wi
t
h
a ce
nt
r
i
fu
gal
pum
p (n
on l
i
n
ea
r l
o
a
d
).
The p
r
o
p
o
se
d cont
rol
s
h
o
u
l
d
hav
e
keep
s t
h
e DC
bus
v
o
l
t
a
ge at
a const
a
nt
val
u
e fo
r su
p
p
l
i
e
d i
nve
rt
er
whe
n
t
h
e spee
d
of t
h
e
wi
n
d
cha
n
g
e
and t
h
e
ap
p
lication
o
f
pu
m
p
, b
a
sed
in
th
is
regu
latio
n
t
h
en we
a
r
e m
o
re intere
sted towards a
desire
d state
whil
e
vary
i
n
g t
h
e
de
bi
t
fr
om
t
h
e va
ri
at
i
on
of
t
h
e
r
e
fere
nce s
p
ee
d
o
f
t
h
e
p
u
m
p
.
The i
n
di
rect
v
ect
or co
nt
r
o
l
u
s
i
ng r
o
t
o
r fl
u
x
ori
e
nt
at
i
on f
o
r
t
w
o co
nt
r
o
l
s
w
i
t
h
fuzzy
l
ogi
c
regul
at
i
o
n
ap
p
lied in or
der
to carr
y
ou
t
D
C
vo
ltag
e
of
SI
EG
an
d speed
o
f
th
e
pum
p
.
Detailed
Matlab
/
Si
m
u
li
n
k
-b
ased
sim
u
l
a
t
i
on st
u
d
i
es are ca
rri
e
d
out
t
o
dem
onst
r
ate the e
ffecti
v
ene
ss
of the
proposed sc
heme.
2.
SYSTE
M
DESC
RIPTIO
N AN
D CO
NTR
O
L
SC
HEME
A self-ex
c
ited
in
du
ctio
n g
e
n
e
rato
r u
s
i
n
g th
ree p
h
ase AC cap
acito
rs can
start its v
o
ltag
e
b
u
ildup
o
n
l
y
fro
m
a rem
n
an
t
m
a
g
n
e
tic fl
u
x
in
t
h
e co
re, the vo
ltag
e
bu
ildu
p
starts
wh
en
th
e indu
ctio
n gen
e
rat
o
r is driven
at
a give
n s
p
eed
and a
n
a
p
propriate capacitance connecte
d
at
its ter
m
in
als, Howev
e
r, fo
r a syste
m
with
a sin
g
l
e
DC cap
acito
r as propo
sed in
t
h
is pap
e
r it can
n
o
t
start
t
h
e
v
o
ltag
e
bu
ildup
fro
m
th
e rem
n
an
t flu
x
in
t
h
e co
re
[2]
.
The
pr
op
o
s
ed sy
st
em
st
art
s
i
t
s
exci
t
a
ti
on pr
ocess
from a charging circ
u
it an
ex
tern
al b
a
ttery. Sin
ce th
is
pape
r f
o
c
u
ses
on m
odel
i
n
g a
nd
be
havi
or
of
t
h
e el
ect
ri
cal
part
o
f
t
h
e sy
s
t
em
, t
h
e t
u
rbi
n
e i
s
not
t
a
ke
n
i
n
t
o
account. R
o
tor spee
d is ta
ke
n as a
n
inde
pendent a
n
d
va
ria
b
le input
into the m
odel. T
h
e
m
a
in com
p
onents
of
th
e pro
p
o
s
ed
syste
m
ar
e show
n in
Figu
r
e
3.
Fi
gu
re
3.
C
o
nt
r
o
l
st
r
u
ct
u
r
e
pr
o
pos
ed
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Adv
ance
d
C
ont
rol
of
Wi
n
d
El
e
c
t
r
i
c
Pum
p
i
n
g
Syst
em
f
o
r
Is
ol
at
ed
Area
s A
p
pl
i
c
at
i
o
n
(
M
o
h
a
me
d
Bar
a
r
a
)
56
9
The com
p
one
n
ts are Induction Ge
nerat
o
r, PW
M rectifier PW
M in
verter, and
In
ductio
n
Mo
tor
cou
p
l
e
d
wi
t
h
a
cent
r
i
f
ugal
p
u
m
p t
hose m
ode
l
l
i
ng are
ex
pl
ai
ned
bel
o
w
.
2.
1.
Mathematica
l
Mo
del
o
f
Induction
Ma
chine
The f
o
l
l
o
wi
n
g
equat
i
o
ns de
s
c
ri
be m
odel
of
t
h
e squi
r
r
el
-c
age i
n
d
u
ct
i
o
n
m
achi
n
e t
h
e st
at
i
onary
d
q
refe
rence
f
r
am
e:
sq
s
sd
sd
s
sd
dt
d
dt
d
i
R
V
.
(1
)
sd
s
sq
sq
s
sq
dt
d
dt
d
i
R
V
.
(
2
)
sd
rd
r
rd
i
M
i
L
.
.
(
3
)
sq
rq
r
rq
i
M
i
L
.
.
(
4
)
rq
r
rd
rd
r
rd
dt
d
dt
d
i
R
V
.
(
5
)
rd
r
rq
rq
r
rq
dt
d
dt
d
i
R
V
.
(
6
)
Electro
m
a
g
n
e
tic to
rqu
e
is ex
pressed
as:
)
.
(
sq
rq
sq
rd
r
e
i
i
L
M
P
C
(7)
2.
2.
Mathem
atical
Modeling
of
the c
o
ntro
l sc
heme
for
induction gener
a
tor
I
n
order to
m
odel any field
orie
nted control
system
, it is
necessa
ry to
choose the
synchronously
rot
a
ti
ng reference fram
e
(d, q) In t
h
e R
F
O cont
rol
sy
stem
, t
h
e rot
o
r fl
ux vect
or i
s
ali
gned wi
t
h
t
h
e d-axi
s
Figure
4, whi
c
h
m
eans:
Fi
gu
re
4.
d
q
a
n
d al
p
h
a
bet
a
fr
am
e
r
rd
(8)
0
rq
(
9
)
From
t
h
e
desi
r
e
d
val
u
e
o
f
t
h
e
DC
vol
t
a
ge, i
t
i
s
p
o
ssi
bl
e t
o
e
x
p
r
ess t
h
at
t
h
e
refe
rence
p
o
w
e
r
by
:
ref
dc
ref
dc
P
i
V
.
_
(
1
0
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
56
7 – 577
57
0
The electrom
a
gnetic torque:
ref
em
P
C
(
1
1
)
Th
e co
n
t
ro
l voltag
e
V
dc
can b
e
do
ne
vi
a t
h
e
el
ect
rom
a
gnet
i
c
t
o
rq
ue c
ont
r
o
l
,
t
h
e
deri
vat
i
v
e o
f
r
o
t
o
r
fl
u
x
ca
n
be
wri
t
t
e
n as:
r
r
sd
r
r
i
M
dt
d
1
(
1
2
)
Th
e slip frequ
e
n
c
y can b
e
written
as:
r
sd
r
r
i
M
(
1
3
)
An
d,
r
s
(
1
4
)
The
n
,
r
sd
r
s
i
M
(
1
5
)
The
field a
n
gle is calculated a
s
:
dt
s
s
(16)
The electrom
a
gnetic torque
is expre
ssed from
the curre
nt
i
sq
by
:
sq
r
r
e
i
L
M
p
C
.
.
.
(
1
7
)
The fl
u
x
c
ont
r
o
l
l
e
d by
i
sd
an
d
el
ect
rom
a
gnet
i
c
t
o
r
que
co
nt
r
o
l
l
e
d
by
i
sq
.
sd
r
r
i
p
M
p
.
1
.
(
1
8
)
The se
veral
s
t
udies ca
rrie
d
out shows t
h
at the
fuzzy
logic c
o
ntrol
pr
o
v
ides
g
o
o
d
re
sults f
o
r
cont
ri
b
u
t
i
ons
t
o
c
o
n
v
e
n
t
i
onal
reg
u
l
a
t
i
o
n t
h
at
was i
n
t
r
od
uce
d
f
o
r t
h
i
s
t
y
pe
of
re
gul
at
o
r
i
n
or
der
t
o
ha
ve a
g
o
o
d
perform
a
nce in our application.
F
i
g
u
r
e
5. B
l
oc
k
di
ag
ram
cont
rol
sc
hem
e
of
SIE
G
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Adv
ance
d
C
ont
rol
of
Wi
n
d
El
e
c
t
r
i
c
Pum
p
i
n
g
Syst
em
f
o
r
Is
ol
at
ed
Area
s A
p
pl
i
c
at
i
o
n
(
M
o
h
a
me
d
Bar
a
r
a
)
57
1
3.
FUZ
Z
Y
LOGIC
CO
NTR
O
L
The F
L
C
co
n
s
i
s
t
s
of
f
o
u
r
m
a
jor
bl
o
c
ks
,
Fuzzi
fi
cat
i
o
n,
k
n
o
w
l
e
d
g
e
b
a
se, i
n
fere
nce
en
gi
ne a
n
d
defuzzification.
There a
r
e t
w
o
i
nput
s
,
t
h
e v
o
l
t
a
ge erro
r
e(k)
and t
h
e cha
n
ge o
f
v
o
l
t
a
ge err
o
r
ce(k)
. Th
e two
in
pu
t
varia
b
les are
c
a
lculated at e
v
ery sam
p
ling time as:
e(k) =
V
dc
(k
)*-V
dc
(
k
)
(19)
ce(k) =
V
dc
(k
)*-
V
dc
(
k
-
1
)
(
2
0
)
Whe
r
e
V
dc
*(
k)
den
o
t
e
s t
h
e re
f
e
rence
spee
d,
V
dc
(k
)
is the actual spee
d a
n
d
e(k-1)
is th
e v
a
lu
e of erro
r
at
pre
v
i
o
us
sa
m
p
li
ng t
i
m
e.
3.
1. Fuz
z
i
fi
cati
on
The cris
p input va
riables are
e(k
)
and
ce(k)
are transformed into fuzz
y
variables
ref
e
rre
d to a
s
l
i
ngui
st
i
c
l
a
bel
s
. The m
e
m
b
ershi
p
fu
nct
i
o
ns
associ
at
ed t
o
e
ach l
a
bel
ha
ve
been c
h
ose
n
w
i
t
h
t
r
i
a
ng
ul
ar s
h
ape
s
.
The following fuzzy sets are
use
d
,
NL
(N
ega
tiv
e
L
a
r
g
e)
,
NM
(Ne
g
at
i
v
e
M
e
di
um
),
NS
(Negative
Sm
all),
ZE
(Zer
o)
,
PS
(Positiv
e Sm
a
ll),
PM
(p
o
s
itiv
e
Med
i
u
m
), an
d
PL
(Po
s
itiv
e Larg
e). Th
e
u
n
i
v
e
rse
of d
i
sco
u
rse is set
bet
w
ee
n
–
1 a
n
d
1.
The
m
e
m
b
ershi
p
fu
nct
i
o
n
s
o
f
t
h
e
s
e
vari
a
b
l
e
s are
s
h
o
w
n
i
n
Fi
gu
res
6,
7
an
d
8.
Fi
gure 6. M
e
mbershi
p
funct
i
on for i
nput
e
Fi
gure 7.
M
e
m
b
ershi
p
funct
i
on for i
nput
ce
Fi
gure 8. M
e
mbershi
p
funct
i
on for o
u
t
put
u
3.2. Knowledge
Base
and Inference Engine
The
kn
o
w
l
e
d
g
e
base c
o
nsi
s
t
s
of
t
h
e
dat
a
base
an
d
th
e ru
le b
a
se. The
d
a
ta
base prov
id
es
th
e
in
fo
rm
atio
n
wh
ich
is u
s
ed
to
d
e
fi
n
e
th
e lin
gu
istic co
n
t
ro
l ru
les and
th
e fuzzy d
a
ta in
th
e fu
zzy lo
g
i
c
co
n
t
ro
ller.
Th
e ru
le
b
a
se specifies th
e con
t
rol g
o
a
l actio
ns
b
y
m
ean
s o
f
a
set o
f
ling
u
i
sti
c
co
n
t
ro
l ru
les [19
]
.
The i
n
fe
re
nce
engi
ne e
v
al
u
a
t
e
s t
h
e set
of IF-
T
H
E
N a
n
d exec
ut
es 7
*
7
rul
e
s as s
h
o
w
n i
n
Ta
bl
e 1. T
h
e
l
i
ngui
st
i
c
r
u
l
e
s
t
a
ke t
h
e
f
o
rm
as i
n
t
h
e f
o
l
l
o
wi
n
g
e
x
am
pl
e:
IF e
is N
L
AN
D ce is
NL
T
H
EN
u is
NL
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
56
7 – 577
57
2
Tabl
e 1.
Fu
zzy
Ru
les Base
ce/e
NL
NM
NS
ZE
PS
PM
PL
NL
NL
NL
NL
NL
NM
NS
ZE
NM
NL
NL
NL
NM
NS
ZE
PS
NS NL
NL
NM
NS
ZE
PS
PM
ZE
NL
NM
NS
ZE
PS
PM
PL
PS NM
NS
ZE
PS
PM
PL
PL
PM
NS
ZE
PS
PM
PL
PL
PL
PL
ZE
PS
PM
PL
PL
PL
PL
3.
2.
1.
Defuz
z
i
ficatio
n
In this sta
g
e, the
fuzzy
va
riables a
r
e c
o
nve
r
ted i
n
to cris
p
varia
b
les. T
h
e
r
e are
m
a
ny defuzzification
t
echni
q
u
es
t
o
pr
o
duce
t
h
e
fu
zzy
set
val
u
e
f
o
r t
h
e
out
p
u
t
f
u
zzy
va
ri
abl
e
.
In t
h
i
s
pape
r, t
h
e ce
nt
re
of
g
r
avi
t
y
def
u
zzi
fi
cat
i
o
n
m
e
t
hod i
s
a
d
opt
e
d
he
re a
n
d t
h
e i
n
fe
renc
e st
rat
e
gy
use
d
i
n
t
h
i
s
sy
st
em
i
s
t
h
e M
a
m
d
ani
alg
o
rith
m
.
3.
2.
2.
The Re
ferenc
e
Rotor Flux
Linkage Required
The re
fere
nce
rot
o
r fl
ux l
i
n
k
a
ge re
qui
red a
t
any
speed i
s
cal
cul
a
t
e
d ba
sed o
n
t
h
i
s
m
a
xi
m
u
m
fl
ux
lin
k
a
g
e
, wh
ich co
rrespon
ds to
th
e m
i
n
i
m
u
m ro
to
r sp
ee
d
hence at a
n
y
rot
o
r s
p
ee
d th
e refe
rence
rot
o
r
fl
u
x
l
i
nkage
i
s
gi
ve
n by
[
2
]
.
max
min
*
.
r
r
(
2
1
)
Fi
gu
re
9.
R
e
l
a
t
i
ons
hi
p
bet
w
ee
n
rot
o
r
spee
d a
n
d
r
o
t
o
r
fl
u
x
l
i
nka
ge
3.
2.
3.
Ma
them
a
t
ical
mod
e
l o
f
P
W
M
Co
nver
ter
Fig
u
r
e
10
.
PWM
Co
nv
er
ter
The DC
bus v
o
l
t
a
ge refl
ects
at
t
h
e out
put of t
h
e
i
nvert
er
in t
h
e for
m
of
t
h
e
t
h
ree-phase PW
M
AC
vol
t
a
ges V
sa
, V
sb
and V
sc
. These vol
t
a
ges
m
a
y
be expressed as:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Adv
ance
d
C
ont
rol
of
Wi
n
d
El
e
c
t
r
i
c
Pum
p
i
n
g
Syst
em
f
o
r
Is
ol
at
ed
Area
s A
p
pl
i
c
at
i
o
n
(
M
o
h
a
me
d
Bar
a
r
a
)
57
3
)
2
(
3
1
c
b
a
dc
sa
S
S
S
V
V
(
2
2
)
)
2
(
3
1
a
c
b
dc
sb
S
S
S
V
V
(
2
3
)
)
2
(
3
1
b
a
c
dc
sc
S
S
S
V
V
(
2
4
)
The deri
vati
ve
of t
h
e DC
bus vol
t
a
ge and when
non l
i
n
ear l
o
ad i
s
present
i
s
defi
ned as:
)
.
.
.
(
1
load
c
c
b
b
a
a
dc
i
i
S
i
S
i
S
C
V
dt
d
(
2
5
)
Wh
ile
i
lo
ad
curr
ent
drawn by
the pu
m
p
and
S
a
,
S
b
and
S
c
are t
h
e sw
i
t
chi
ng funct
i
ons for the ON/
OFF
p
o
s
itio
n
s
o
f
th
e
rect
ifier sw
it
ch
es S
1
-S
6
.
The rel
a
t
i
on of t
h
e i
nverter i
nput
and out
put
current
are gi
ven by
t
h
e fol
l
o
w
i
ng expressi
on:
c
c
b
b
a
a
load
i
S
i
S
i
S
i
.
.
.
(
2
6
)
S
a
, S
b
and
S
c
are t
h
e swit
ch
i
ng funct
i
ons for t
h
e ON/
OFF po
si
ti
ons of t
h
e i
n
vert
er swit
ches
S
1
-S
6
.
3.
2.
4.
Modeling
of the contr
o
l sc
heme for induc
tion motor
Fol
l
o
wi
n
g
t
h
e
sam
e
proced
u
r
e f
o
r t
h
e c
ont
r
o
l
o
f
t
h
e
gene
r
a
t
o
r,
b
u
t
i
n
t
h
i
s
case
ou
r
reg
u
l
at
i
on ba
sed
t
o
co
nt
r
o
l
r
o
t
o
r
spee
d,
t
h
e
bl
ock
di
a
g
ram
expl
ai
n
t
h
e
co
nt
rol
st
rat
e
gy
as
sho
w
i
n
Fi
g
u
re
6.
It
becom
e
s po
ssi
bl
e t
o
co
nt
r
o
l
t
h
e t
o
r
q
ue i
nde
pe
nde
nt
l
y
by
t
h
e q
-
axi
s
s
t
at
or cu
rre
nt
, a
nd t
h
e r
o
t
o
r
flux
can
b
e
co
ntro
lled
with
t
h
e d-ax
is
stato
r
cu
rren
t
with
a delay. In th
is case, th
e to
rqu
e
can
b
e
ex
pressed
as:
sq
r
r
e
i
L
M
p
C
.
.
.
(
2
7
)
B
y
keepi
n
g
t
h
e
r
o
t
o
r
fl
ux
co
ns
t
a
nt
, t
h
e
ex
pre
s
si
on
o
f
t
h
e
r
o
t
o
r fl
ux
can
be
gi
ven
by
:
sd
r
r
i
p
M
.
1
(28)
Fi
gu
re
1
1
. B
l
o
c
k
di
ag
ram
cont
r
o
l
schem
e
o
f
i
n
d
u
ct
i
o
n
m
o
t
o
r
In
o
r
d
e
r t
o
o
p
e
rate the
m
o
tor at
hig
h
e
ffici
ency
, t
h
e inve
rter works
on the
pri
n
ciple
of ba
ng-bang
co
n
t
ro
l
with three ind
e
p
e
nd
ent h
y
steresis con
t
ro
llers.
Th
e
calculated
values of t
h
e t
h
ree
-
pha
se stator c
u
rre
nts
are
com
p
are
d
with
the refe
re
nce va
lues a
nd the inverter e
l
e
m
ents ar
e s
w
itched accordingly to im
press the
n
ecessary termin
al vo
ltag
e
s t
o
th
e m
o
to
r
ph
ases [1
5
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
56
7 – 577
57
4
4.
PU
MP MO
D
EL
The p
u
m
p
used i
s
of cent
r
i
f
ugal
t
y
pe whi
c
h can be de
s
c
ri
be
d by
an aero
d
y
n
am
i
c
l
o
ad w
h
i
c
h i
s
characte
r
ized
by the fo
llowing lo
ad equ
a
tion
:
2
*
K
C
r
(29)
Whe
r
e
K
is th
e pu
m
p
co
nstan
t
5.
SIM
U
LATI
O
N
RESULTS
AN
D DIS
C
US
SION
The
gl
o
b
al
o
f
a
l
l
ci
rcui
t
com
pone
nt
s. T
h
e sy
st
em
i
s
im
pl
em
ent
e
d usi
ng
M
A
TLAB
/
S
I
M
U
LI
NK
.T
he
dy
nam
i
c perfo
rm
ance of t
h
e
wh
ol
e sy
st
em
for
di
f
f
ere
n
t
ope
rat
i
n
g co
n
d
i
t
i
ons i
s
st
u
d
i
ed;
t
h
e seq
u
e
n
ce o
f
si
m
u
latio
n
is as fo
llo
ws:
a)
Th
e sim
u
latio
n co
m
p
leted
w
i
t
h
in 30
seconds.
b)
Th
e
reference
DC vo
ltag
e
is set at 6
00V.
c)
Th
e
vo
ltag
e
b
u
ild
up
p
r
o
cess is un
der
no
lo
ad con
d
ition
.
d)
The
p
u
m
p
appl
i
e
d t
o
t
h
e i
n
d
u
c
t
i
on
gene
rat
o
r
at
t
=
2s.
e)
The system
was sim
u
lated for varia
b
le
wind
spee
d afte
r c
o
nnected t
h
e
pum
p
as show i
n
Figure
12
.
f)
The
n
re
fere
nce
p
u
m
p
speed
i
s
set
t
o
di
ffe
re
n
t
val
u
e
of
1
2
0
rad/
s
t
o
1
70
ra
d/
s, a
n
d
1
4
0
r
a
d/
s, as
sh
ow
i
n
Fi
gu
r
e
17
.
Th
e SEIG
o
u
t
pu
t vo
ltag
e
is co
nv
erted
i
n
to
DC vo
lta
ge
by
usi
n
g t
h
e c
ont
rol
l
e
d
rect
i
f
i
e
r
ci
rcui
t
s
. T
h
e
o
u
t
p
u
t
v
o
ltag
e
o
f
th
e
rectifier
is 6
0
0
vo
lts. Th
is DC vo
ltag
e
is g
i
v
e
n
to
th
e so
urce inv
e
rter to
produ
ce req
u
i
red
out
put
v
o
l
t
a
ge of
t
h
e p
u
m
p
.
Th
e
In
du
ction
m
o
to
r lo
ad
ed
with
a cen
t
r
ifug
al
p
u
m
p
.
su
dd
en
ly is app
lied
at
t=2
s
it is
o
b
s
erv
e
d t
h
at
th
e v
a
lu
e
o
f
the DC b
u
s vo
ltag
e
is m
a
in
tain
ed
at a co
n
s
ta
nt value e
v
en if t
h
e wi
nd s
p
eed changes at 14s and
18s
a
n
d
vari
at
i
on
o
f
pum
p s
p
eed
at
12
s a
n
d
20
s.
The
f
u
z
z
y
vol
t
a
ge c
o
n
t
rol
l
e
r
pr
o
v
i
d
e
s
a
rapi
d a
n
d
a
ccurat
e
resp
o
n
se f
o
r th
e refe
rence
.
T
h
e refe
rence
flu
x
an
d estim
at
e i
s
sho
w
n i
n
Fi
gu
ra
14
. Al
s
o
Fi
gu
re
15 s
h
o
w
s t
h
e
v
a
riation
in d-ax
is,
q
-
ax
is stat
o
r
curre
n
t
s in th
e
ro
tating
referen
c
e fram
e.
Th
e Figu
r
e
16
sh
ow
s
th
e
stat
or cu
rren
t at t
h
e
termin
als o
f
the in
du
ction
g
e
n
e
rat
o
r.
Fi
gu
re 1
2
. Vari
at
i
on of
wi
nd
s
p
eed
(
r
ad/
s
)
Fi
gu
re 1
3
.
DC
capaci
t
o
r vol
t
a
ge pr
ofi
l
e
of
t
h
e
S
I
E
G
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Adv
ance
d
C
ont
rol
of
Wi
n
d
El
e
c
t
r
i
c
Pum
p
i
n
g
Syst
em
f
o
r
Is
ol
at
ed
Area
s A
p
pl
i
c
at
i
o
n
(
M
o
h
a
me
d
Bar
a
r
a
)
57
5
Figu
re
1
4
. Re
f
e
rence
an
d esti
m
a
te rotor
fl
ux
o
f
the
SI
EG
(a)
(b
)
Fig
u
re
15
.
Vari
atio
n
in d-ax
is, q-ax
is
stato
r
cu
rren
ts in
t
h
e ro
tatin
g
reference fram
e
(a)
(b
)
Fi
gu
re 1
6
. St
at
or
cu
rre
nt
of
t
h
e
SIE
G
Fi
gu
re
1
7
. R
e
f
e
rence
p
u
m
p
speed
an
s
pum
p spee
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
56
7 – 577
57
6
5.1. Re
gulation
of the Pump
Speed
After c
o
nnecti
ng t
h
e pum
p
we can say that the pum
p
spee
d
fol
l
o
w t
h
e
gi
ven
refe
re
nce
as sh
ow
n i
n
Fig
u
r
e
1
8
at
12
s an
d 20
s
,also
is
ob
serv
ed
t
h
at pu
m
p
sp
ee
d
not affected by t
h
e
variation of
wind s
p
eed
of
the ge
nerat
o
r
,then t
h
e system becam
e
m
o
re stable a
nd
m
o
re robust.
T
h
e Figure 19 s
h
ows t
h
e va
ria
tion
of
stator c
u
rrents
of the
pum
p
.
Fi
gu
re
1
8
. R
e
f
e
rence
p
u
m
p
speed
an
s
pum
p spee
d
Fi
gu
re
1
9
.
St
at
or
C
u
rre
nt
o
f
t
h
e P
u
m
p
6.
CO
NCL
USI
O
N
Thi
s
pa
per i
n
t
r
o
d
u
ces t
h
e m
odel
i
n
g a
nd si
m
u
l
a
t
i
on o
f
t
h
e wi
n
d
el
ect
ri
c pum
pi
ng sy
st
em
s usi
n
g
M
a
t
l
a
bSim
ul
i
nk t
h
e st
udi
es a
r
e
m
a
de by
f
o
r
m
ul
at
i
ng t
h
e m
a
t
h
em
ati
cal
model
s
a
n
d co
nt
rol
f
o
r gl
obal
s
y
st
em
.
It
has
been
de
m
onst
r
at
ed t
h
a
t
t
h
e sy
st
em
is abl
e
t
o
feed
pum
p sy
st
em
by
re
gul
at
ed
DC
b
u
s
vol
t
a
g
e
a
n
d
sat
i
s
fact
ory
de
si
red
debi
t
f
r
o
m
vari
at
i
on
ref
e
rence s
p
ee
d o
f
t
h
e
pum
p u
n
d
er
vari
a
b
l
e
wi
nd s
p
ee
d.
Al
l
resul
t
s
obt
ai
ne
d c
o
nfi
r
m
t
h
e effect
i
v
eness
of t
h
e
pr
op
ose
d
c
ont
rol
l
ers an
d i
t
has
been
f
o
u
n
d
t
o
be sat
i
s
fact
o
r
y
suc
h
wind electric
pum
p
ing s
u
cces
sfully
in
windy
rem
o
te locations.
REFERE
NC
ES
[1]
Ahmed T, Nishida K, Nakaoka
M, Tana
k
a
. Adv
a
nced Control of
a Boost ACDC
PWM
Rectifier f
o
r Variable-Speed
Induction
Gener
a
tor.
K
Appli
e
d
Power E
l
ec
troni
cs Conferen
ce
a
nd Exposi
tion.
APEC
'06.
Tw
enty
First Annual
IEEE. 2006
; 956
-962.
[2]
D S
e
y
oum
, M
F
Rahm
an C Gr
antham
.
Termin
al voltage
control of a wind
turbine driven isolated indu
ctio
n
generator using
stator or
ient
ed f
i
e
ld
control.
Proc. IEEE APEC’03, Miami Be
ach,
FL, USA. 2003;
2: 846–852
[3]
Mic
h
a
ł
Knapczy
, kr
zy
s
z
tof Pienkowski.
Analysis of pulse width modulatio
n
techniqu
es for AC/DC line-side
conver
t
e
r
s
.
Prace Naukowe Insty
t
u
t
u Maszy
n
,
Napedów i
Pomiarów Elektr
y
czn
y
c
h Politechn
i
ki Wroc
ł
awskie
j.
2006
[4]
Raja Singh Khela, KS Sandhu.
ANN
Model
for Estimation of Capacitan
ce Requ
ir
ements to maintain Constant Air-
Gap Voltag
e
of
Self-Exc
ited
Ind
u
ction
Gener
a
tor
with Var
i
ab
le
L
o
ad.
IJ
C
S
T
. 201
1; 2(4).
[5]
K Premalatha, S Sudha. Self-Ex
c
itati
on and Voltage Contro
l of an Inducti
on Generator in an In
dependen
t
Wind
Energ
y
Conv
ersion S
y
stem.
International
Journal of Mod
e
rn
Eng
i
neering
Research (
I
JMER)
. 2012
; 2(2): 454-461.
[6]
ML Elhaf
y
ani, S Zouggar
,
Y Zid
a
ni,
M
Benkadd
our. Permanent
and D
y
n
a
mic
Behaviours of Self
excited Indu
ctio
n
Generator
in
Balanced
Mode.
M.
J. Cond
ensed M
a
ter
. 2006
; 7
:
49
- 53
.
Evaluation Warning : The document was created with Spire.PDF for Python.