Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
3, No. 4, Decem
ber
2013, pp. 391~
399
I
S
SN
: 208
8-8
6
9
4
3
91
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Improved Torqu
e
Cont
rol Perf
ormance of Di
rect Torqu
e
Control for 5-Phase
Induction Machine
Logan Raj
Lourdes Victor Raj
1
, Auz
a
ni Jidin
2
,
Kasr
ul Ab
dul K
a
rim
3
, Tole S
u
tik
n
o
4
, R. Sun
dram
5
,
Mohd Hatta Jopri
6
1,2,3,5,6
Departm
e
n
t
of P
o
wer
El
ec
tr
onics
and
Drives
, Univer
si
ti
Tekn
ikal
Mala
ysi
a
M
e
lak
a
(UT
e
M),
Mala
y
s
ia
4
Department of Electrical
Eng
i
n
eering
,
Univ
ersitas Ahmad Dahlan (UAD), Indon
esia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
J
u
l 27, 2013
Rev
i
sed
O
c
t 10
, 20
13
Accepted Oct 23, 2013
In this paper
,
the contro
l of f
i
ve
-phase
induction machin
e u
s
ing Direct
Torque Control
(DTC) is presented.
Th
e gener
a
l D-Q
model of
five-phase
induction
machine is d
i
scussed. The de
-
c
oupled contro
l of
stator flux
an
d
ele
c
trom
agnet
i
c
torque b
a
sed on
h
y
ster
esis con
t
ro
ller
sim
ilar
to
co
nvention
a
l
DTC is app
lied
to maintain
the
simplicity
o
f
th
e s
y
stem. Thr
ee s
e
ts of
look-
up tab
l
es consist of voltage
vectors with diff
erent amplitude
that selects
th
e
m
o
st optim
al voltag
e
vec
t
ors accord
ing m
o
tor opera
tion c
ondition i
s
proposed. This provides excellent torque
d
y
n
a
mic control, red
u
ces torque
ripple, lower switching fr
equency (high
efficien
cy) and extension
of constant
torque.
Sim
u
lati
on results v
a
lid
a
t
e
the
im
provem
e
nt
achi
e
ved
.
Keyword:
Di
rect
t
o
rq
ue
c
ont
rol
Fiv
e
-ph
a
se indu
ctio
n m
ach
in
e
Lo
ok
-u
p t
a
bl
es
Mo
to
r driv
e
Op
tim
al switch
i
n
g
strateg
y
Copyright ©
201
3 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Log
a
n Raj
Lour
d
e
s V
i
ctor
Raj,
Depa
rtem
ent of Elect
ri
cal
E
n
gi
nee
r
i
n
g,
Un
i
v
ersiti Tekn
ik
al Malaysia Melak
a
(UTeM),
76100 Duria
n
Tunggal, Mala
cca, Malaysia.
Em
a
il: lo
g
a
n
068
8@stud
en
t.u
t
e
m
.ed
u
.
m
y
1.
INTRODUCTION
The
popularity of induction
machin
e ha
s been
on the
rise
and
becam
e the m
a
jor
drivi
n
g fact
ors i
n
t
h
e de
vel
o
pm
ent
of
hi
g
h
pe
rf
orm
a
nce cont
r
o
l
st
rat
e
gy
. Al
t
h
o
u
gh t
h
ere ar
e
m
a
ny
pro
p
o
s
e
d co
nt
r
o
l
st
rat
e
gi
es
avai
l
a
bl
e, Fi
el
d
Ori
e
nt
e
d
C
o
nt
r
o
l
(F
OC)
an
d
Direct T
o
r
q
u
e
Cont
rol
(D
T
C
)
are t
h
e m
o
st researc
h
e
d
[1,2].T
h
e
o
b
j
ectiv
e of bo
th
of th
e con
t
ro
l strateg
i
es are si
m
ila
r al
t
hou
g
h
t
h
ei
r o
p
e
r
at
i
on p
r
i
n
ci
pa
l
are di
ffere
nt
.
Thei
r
o
b
j
ectiv
es are to
p
r
ecisely con
t
ro
l th
e to
rque an
d
fl
u
x
o
f
ro
tary m
ach
in
e reg
a
rd
less of lo
ad
con
d
ition
and
ot
he
r ext
e
r
n
al
di
st
ur
ba
nce. F
.
B
l
aschke
pr
o
p
o
se
d t
h
e Fi
el
d
Ori
e
nt
ed C
o
nt
r
o
l
(F
OC
)
[3]
.
Thi
s
co
nt
r
o
l
st
rat
e
gy
im
it
at
es t
h
e co
nt
r
o
l
m
e
t
hod o
f
se
parat
e
l
y
ex
ci
t
e
d dc m
o
t
o
r
w
h
ere t
h
e st
at
or c
u
rre
nt
i
s
d
ecom
posed
i
n
t
o
fl
ux
and t
o
r
q
ue co
m
ponent
t
h
ro
u
gh t
h
e m
eans of c
o
or
di
nat
e
t
r
ans
f
orm
a
t
i
on and
r
o
t
o
r
fl
u
x
ori
e
nt
at
i
on
[3
,
4,
5]
. I
n
DTC
,
t
h
e
fl
u
x
and t
o
r
q
ue o
f
t
h
e r
o
t
a
t
i
ng
m
achi
n
e are c
ont
rol
l
e
d
di
rec
t
l
y
. Thi
s
m
e
t
hod
f
unct
i
o
ns
b
a
sed
on
space vector
theory whe
r
e by
selecti
ng the
optim
a
l space vector in eac
h s
a
m
p
ling
period, the stator fl
ux and
torque
are c
o
nt
rolled ef
f
ectiv
ely [
6
, 7,
8
]
.
The m
u
l
t
i
phas
e
was
o
r
i
g
i
n
at
ed i
n
t
h
e
l
a
t
e
1
9
6
0
’
s. M
u
l
t
i
pha
se
dri
v
es a
r
e
devel
ope
d i
n
or
der
t
o
ove
rc
om
e
t
h
e pr
o
b
l
e
m
i
n
t
h
ree phase si
x
-
st
ep i
nve
rt
er fe
d
m
achi
n
es whi
c
h are l
o
w fre
que
ncy
t
o
r
q
ue ri
p
p
l
e
[
9
,10
]
. M
u
ltip
h
a
se i
n
du
ction dr
iv
e
po
ssesses m
a
n
y
a
dva
ntages
com
p
ared to th
e conventional
t
h
re
e-phase
dri
v
e. T
h
ose a
dva
nt
age
s
are
red
u
ce
d am
pl
i
t
ude
an
d i
n
crea
sed
fre
q
u
ency
of t
o
r
q
ue
pul
s
a
t
i
on,
re
duce
d
rot
o
r
harm
oni
c c
u
r
r
e
n
t
,
re
d
u
ce
d cu
r
r
ent
per
ph
ase
with
ou
t in
crease in
v
o
ltag
e
p
e
r p
h
ase
an
d l
o
we
r
dc l
i
n
k c
u
r
r
ent
h
a
rm
o
n
i
cs
with
in
creased
reliab
ility [7
,9
,1
0
]
. Fig.
1
illu
strates th
e
5
-
p
h
a
se VSI con
n
ected
to th
e
star
wi
n
d
i
n
g
s
o
f
5-
ph
ase indu
ctio
n m
ach
in
e. In eac
h inve
rter le
g, t
h
e
power switc
hes ar
e r
e
pr
esen
ted
w
ith
t
h
e
u
p
p
e
r and
lowe
r switches
which a
r
e com
p
le
mentary to each ot
her.
The switchi
ng state of an inverter le
g indi
cates 1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
IJPE
DS
V
o
l
.
3, N
o
. 4,
Dece
m
b
er
20
1
3
:
39
1 – 39
9
39
2
V
10
V
9
V
8
V
7
V
5
V
6
V
4
V
3
V
2
V
1
V
17
V
20
V
19
V
18
V
16
V
15
V
14
V
13
V
12
V
11
V
27
V
30
V
29
V
28
V
26
V
25
V
24
V
23
V
22
V
21
whe
n
t
h
e
up
pe
r swi
t
c
h
of t
h
e
i
nvert
e
r
l
e
g i
s
ON an
d t
h
e l
o
wer s
w
i
t
c
h i
s
OFF
,
an
d vi
ce-
versa
.
The s
w
i
t
chi
n
g
state is corres
ponds
to
[S
a
S
b
S
c
S
d
S
e
]. Th
e
co
m
b
in
atio
n
of switch
i
ng
st
a
t
es can
produc
e
30 non-zero active
voltage switchi
ng
space vectors
togethe
r
wit
h
2 ze
ro space
vectors which
is illu
strated in Fig.
2 togethe
r
wit
h
the voltage mode
s. In ge
ne
ral ter
m
s of switching stat
es,
the phase voltage space
v
ect
ors
of t
h
e 5-phase is
gi
ve
n as
f
o
l
l
o
w:
2
5
whe
r
e
/
an
d k=
0, 1,
2
,
….
.,
31
.
(1
)
In t
h
i
s
pa
per
,
t
h
e DTC
m
e
t
hod i
s
i
m
pl
em
ent
e
d
fo
r t
h
e
fi
ve-
p
hase i
n
du
ct
i
on m
achi
n
e.
It
can b
e
sho
w
n t
h
at
t
h
e
great
er
num
ber of s
w
i
t
c
hi
n
g
st
at
es pro
v
i
d
e
d
i
n
fi
ve-
p
hase
DTC
sy
st
em
can gi
ve m
o
re degree
s
of
free
d
om
t
o
sel
ect
t
h
e m
o
st
o
p
t
i
m
al
v
o
l
t
a
ge
vect
o
r
t
o
i
m
prove
f
u
rt
her
DTC
pe
rf
orm
a
nces.
The
m
e
t
h
am
et
i
c
al
m
odel
of fi
ve
pha
se m
achi
n
e i
s
gi
ven.
Ot
h
e
r t
h
an t
h
at
, a
det
a
i
l
e
d expl
a
n
at
i
on
rega
r
d
i
ng t
h
e
im
pact
of
vol
t
a
ge vect
or sel
ect
i
on i
n
i
n
fl
u
e
nci
n
g t
h
e
dy
nam
i
c t
o
rque
per
f
o
r
m
a
nce, ext
e
nsi
on
o
f
c
onst
a
nt
t
o
r
que
re
gi
o
n
,
m
i
nim
i
zat
i
on i
n
t
o
r
que
ri
p
p
l
e
and
swi
t
c
hi
n
g
fre
que
ncy
a
r
e
al
so
gi
ve
n.
S
a
V
DC
1
0
S
b
1
0
S
c
1
0
+
-
S
d
1
0
S
e
1
0
5-phase IM
5-phase VSI
e.g.
v
11
is switched
Fi
gu
re
1.
5-
ph
ase VS
I c
o
nne
ct
ed t
o
5
-
p
h
ase
i
n
d
u
ct
i
o
n m
o
t
o
r
.
Fi
g
ur
e
2
.
S
p
a
ce volta
g
e
vect
ors
available
in 5-
p
hase VS
I
V
1
[
1
1 0 0
1
]
V
2
[
1
1 0 0
0
]
V
3
[
1
1 1 0
0
]
V
4
[
0
1 1 0
0
]
V
5
[
0
1 1 1
0
]
V
7
[
0
0 1 1
1
]
V
8
[0
0
0 1
1
]
V
9
[
1
0 0 1
1
]
V
10
[
1
0
0 0 1
]
V
11
[
1
0
0 0 0
]
V
12
[1
1
1
0 1
]
V
13
[0
1
0
0 0
]
V
14
[
1
1
1 1 0
]
V
15
[
0
0
1 0 0
]
V
16
[0
1
1
1 1
]
V
17
[
0
0
0 1 0
]
V
18
[1
0
1
1 1
]
V
19
[0
0
0
0 1
]
V
20
[
1
1
0 1 1
]
V
21
[
0
1
0 0 1
]
V
22
[
1
1
0 1 0
]
V
23
[
1
0
1 0 0
]
V
24
[
0
1
1 0 1
]
V
25
[0
1
0
1 0
]
V
26
[1
0
1
1 0
]
V
27
[
0
0
1 0 1
]
V
28
[
0
1
0 1 1
]
V
29
[
1
0
0 1 0
]
V
30
[1
0
1
0 1
]
V
0
[1
1
1 1
1
]
V
31
[
0
0
0 0 0
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Im
pr
oved
T
o
rq
ue C
ont
r
o
l
Per
f
orm
a
n
ce
of
Di
rect
Tor
q
ue C
o
nt
rol
f
o
r .
.. (
L
o
g
a
n
Raj
Lo
ur
d
e
s Vi
ct
or R
a
j
)
39
3
2.
GENER
A
LIS
E
D D
-
Q
M
O
DEL OF
FI
V
E
PHA
S
E I
N
DU
CTIO
N
M
A
C
H
INE
Th
e
D-Q M
o
del o
f
Fiv
e
Ph
ase Indu
ction
M
ach
in
e is alm
o
st si
m
ilar to
th
e con
v
e
n
tion
a
l th
ree
ph
ase
mach
in
e. Th
e
d
i
fferen
ce b
e
t
w
een
th
em
are th
ere will b
e
fiv
e
n
e
w stator (curren
t
, vo
ltag
e
, and
stato
r
flu
x
)
with spatial displacem
ent
between any two consec
utiv
e stator phases
equals
α
= 2
π
/5 fo
r the five
phas
e
mach
in
e.Assumin
g
th
at th
e wind
ing
s
are
connected i
n
star with si
n
g
l
e
ne
ut
ral
p
o
i
nt
, zer
o seq
u
enc
e
com
pone
nt
d
o
e
s n
o
t
exi
s
t
i
n
fi
ve
phas
e
m
a
chi
n
e.
The
x
-
y
com
pone
nt
o
f
t
h
e m
achi
n
e can al
so
be
ne
g
l
ect
ed
d
u
e
to th
e si
nu
so
i
d
al
d
i
str
i
bu
tio
n of
t
h
e
f
l
u
x
arou
nd
t
h
e
air
gap.
Ass
u
ming that t
h
e
machine e
quat
i
on a
r
e
t
r
ans
f
o
r
m
e
d i
n
t
o
an ar
bi
t
r
ary
fram
e
of refe
rence r
o
t
a
t
i
n
g at
angul
a
r
spe
e
d
ω
e
, t
h
e m
odel
of
n-
pha
se
(fi
ve
)
m
achi
n
e
wi
t
h
s
i
nus
oi
dal
wi
n
d
i
ng di
st
ri
b
u
t
i
o
n
can be gi
ve
n a
s
f
o
l
l
o
w:
St
at
or ci
rc
ui
t
e
quat
i
o
ns:
(2
)
(3
)
Ro
to
r circu
it eq
u
a
tion
s
:
(4
)
(5
)
Fl
ux
l
i
nka
ge
e
x
p
r
essi
on
i
n
t
e
rm
s of c
u
r
r
ent
:
(6
)
(7
)
(8
)
(9
)
(1
0)
(1
1)
(1
2)
(1
3)
(1
4)
(1
5)
Tor
q
ue e
quat
i
o
n
:
(1
6)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
IJPE
DS
V
o
l
.
3, N
o
. 4,
Dece
m
b
er
20
1
3
:
39
1 – 39
9
39
4
Spee
d e
quat
i
on
:
2
(1
7)
whe
r
e Lis, Lir
and Lm
are the is
th
e to
tal leak
ag
e fact
o
r
,
J is in
ertia
, P
i
s
t
h
e
num
ber
o
f
p
o
l
e
pai
r
s a
n
d
ω
r
is
the rotor electric angular spe
e
d
in ra
d/s.
3.
OPTIMAL DTC
SWITCHING STRATEGY
Thi
s
sect
i
o
n di
scusses t
h
e o
p
t
i
m
a
l
sel
e
ct
i
on of
v
o
l
t
a
ge vect
ors t
o
achi
e
ve
hi
g
h
-
p
er
f
o
rm
ance D
T
C
f
o
r
5-phase induction m
achine.
S
i
nce t
h
e
5
-
p
h
as
e VS
I
pr
o
v
i
d
es
m
o
re num
ber
of
swi
t
c
hi
ng
v
ect
ors,
i
t
i
s
t
h
e
r
ef
or
e
g
i
v
e
m
o
re
op
tio
n
s
to select the m
o
st o
p
tim
a
l
vo
ltag
e
v
ector fo
r ev
ery op
eratin
g
co
nd
ition.
By applying
5-phase
VSI, the traj
ect
ory
of
fl
u
x
vect
o
r
i
n
st
at
or
fl
u
x
pl
a
n
e ca
n
be m
a
pped
i
n
t
o
10
sect
ors
w
h
i
c
h
are
e
qual
l
y
di
v
i
ded by
3
6
0
, as illu
strated
i
n
Fig
.
3
.
Figu
re
3
also
sh
ows po
ssib
le vo
ltag
e
vecto
r
s
to
b
e
selected
wh
en
ev
er th
e flu
x
lies with
in
a Secto
r
1
,
in
co
n
t
ro
lling
b
o
t
h flu
x
and
to
rque. It sh
ou
ld
b
e
n
o
t
ed
t
h
at
;
t
h
e cont
r
o
l
of fl
ux
vect
or i
s
di
rect
l
y
affect
ed
by
t
h
e appl
i
e
d
v
o
l
t
a
g
e
vect
or
(b
ot
h
wi
t
h
sam
e
di
rect
i
on)
,
wh
ile th
e co
n
t
ro
l o
f
t
o
rqu
e
is main
ly d
e
ter
m
i
n
ed
b
y
th
e lo
ad
ang
l
e (
). As
sum
i
ng the traject
o
r
y of
f
l
ux
v
ect
or
fo
rm
i
ng a ci
rcul
ar l
o
c
u
s i
n
c
o
u
n
t
e
r
-
cl
oc
kwi
s
e di
rect
i
o
n. To i
n
c
r
ease b
o
t
h fl
u
x
an
d t
o
r
que
(
I,T
I), v
o
ltage
vectors v
21
, v
11
and
v
1
are ch
osen
. If th
e torqu
e
is m
a
in
tain
ed
to in
crease
,
o
n
th
e
o
t
h
e
r
h
a
n
d
th
e
flux
n
e
ed
s
t
o
be dec
r
ease
d
(
D,
TI
), v
o
l
t
a
ge vect
ors
v
22
, v
12
and
v
2
ar
e chose
n
. T
h
e
vol
t
a
ge
vect
o
r
v
1
has t
h
e longest
am
pl
i
t
ude whi
c
h gi
ves t
h
e
m
o
st si
gni
fi
ca
nt
im
pact
on fl
ux an
d t
o
r
q
ue
i
n
crease fol
l
o
wed
by
v
11
(m
edium
am
pl
i
t
ude) an
d v
21
(s
h
o
rt
est
am
pl
i
t
ude). I
n
an
ot
her case
,
t
h
e vol
t
a
ge
vect
o
r
v
2
h
a
s
th
e lo
ng
est am
p
l
itu
d
e
whi
c
h gi
ves t
h
e m
o
st
si
gni
fi
cant
im
pact
o
n
fl
u
x
dec
r
eas
e and torque increase
,
foll
owed
by V
12
(med
iu
m
am
pl
i
t
ude) a
n
d
V
22
(s
ho
rt
est
am
pli
t
ude).
Am
on
g
of t
h
ree
p
o
ssi
bl
e
voltage
vectors stated
in both cases, there
i
s
o
n
l
y
o
n
e
vol
t
a
ge vect
or
t
h
a
t
coul
d
be t
h
e
m
o
st
opt
im
al
vect
or t
o
be c
h
o
s
en t
o
i
m
prove
DTC
pe
rf
orm
a
nces.
In
ord
e
r to id
en
tify th
e m
o
st op
ti
m
a
l v
ecto
r
, it is d
e
sirab
l
e to
stud
y th
e
effects
o
f
to
rqu
e
slop
e
du
e t
o
th
e
appl
i
cat
i
o
n
vol
t
a
ge v
ect
or
s f
o
r
di
ffe
re
nt
o
p
er
at
i
ng c
o
ndi
t
i
o
n
s
. T
h
e
rat
e
of c
h
an
ge
o
f
t
o
r
q
u
e
can
be
co
nt
r
o
l
l
e
d
by
ap
pl
y
i
ng
t
h
e m
o
st
opt
i
m
al vect
o
r
(ei
t
h
er
t
h
e o
n
e
t
h
at
ha
s t
h
e l
o
n
g
est
a
m
pli
t
ude,
or
m
e
di
um
am
pl
i
t
ude,
o
r
sh
ortest am
p
lit
u
d
e
) accord
i
n
g
to
t
h
e
o
p
e
ratin
g cond
iti
o
n
s
, so th
at it can i
m
p
r
ov
e t
h
e sw
itch
i
ng
f
r
e
quen
c
y,
t
o
r
que ri
ppl
e, t
o
r
q
ue reg
u
l
a
t
i
o
n an
d t
o
r
que
d
y
n
am
i
c
cont
rol
.
Taki
n
g
i
n
t
o
a
ccou
n
t
t
h
at
t
h
e t
o
rq
ue va
ri
at
i
on (
o
r
sl
ope
) i
s
affect
ed by
t
h
e ap
pl
i
e
d vol
t
a
ge
ve
ct
or as wel
l
as ope
rat
i
ng c
o
n
d
i
t
i
ons
whi
c
h was re
po
rt
ed i
n
[1
1]
.
The torque slope equation can be
used to a
n
alyze the
eff
ect
s of v
o
l
t
a
ge
vect
or a
ppl
i
c
at
i
on an
d o
p
er
at
i
n
g
co
nd
itio
ns as
giv
e
n
i
n
(18
)
.
(
I,
T
D
)
V
21
V
11
V
1
V
2
2
V
1
2
V
2
V
2
7
V
17
V
7
V
6
V
16
V
26
s
r
(
I,
T
I
)
(
D,TI)
(
D,T
D
)
2
3
4
5
6
7
8
9
10
Fig
u
re
3
.
Selectio
n
o
f
vo
ltage v
ectors
fo
r co
n
t
ro
lling
stator fl
u
x
in
Sector 1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Im
pr
oved
T
o
rq
ue C
ont
r
o
l
Per
f
orm
a
n
ce
of
Di
rect
Tor
q
ue C
o
nt
rol
f
o
r .
.. (
L
o
g
a
n
Raj
Lo
ur
d
e
s Vi
ct
or R
a
j
)
39
5
,
,
∆
,
1
1
3
2
,
,
∙
,
(1
8)
whe
r
e P i
s
t
h
e
num
ber o
f
p
o
l
e
pai
r
s,
ω
r
is the rotor electric angular s
p
ee
d in ra
d./s, L
s
, L
r
and L
m
a
r
e the
σ
is
the total leaka
g
e factor,
τ
s
and
τ
r
are th
e ti
m
e
co
nstan
t
, and
τ
r
is th
e ro
t
o
r fl
u
x
.
Eq
uat
i
on
(1
8
)
i
ndi
cat
es t
h
at
t
h
e t
o
r
que sl
ope
depe
n
d
s
on t
h
e
rot
o
r s
p
eed a
n
d ap
pl
i
e
d
vol
t
a
ge vect
or
,
whe
r
e
b
y
t
h
e rest
of param
e
ters can be ass
u
m
e
d t
o
ha
ve
const
a
nt
val
u
es. Acco
r
d
i
n
g
t
o
(18
)
, t
h
e t
o
r
q
ue
increases
ra
pidly at low s
p
ee
d operations, thus a
n
activ
e
v
o
l
t
a
ge vect
or t
h
at
has t
h
e sm
all
e
st
am
pl
i
t
ude
need
s
t
o
be c
h
ose
n
i
n
or
der
t
o
sl
owe
r
d
o
w
n t
h
e rat
e
of i
n
crea
se.
Hence, it can m
i
nimize
the swi
t
ching freque
ncy as
well as switchin
g
losses.
Furth
e
rm
o
r
e, it can
prev
en
t rev
e
rsed
v
o
l
t
a
ge v
ect
ors t
o
be
se
lected whene
v
er the
out
put
t
o
r
q
ue
excee
ds
bey
o
n
d
t
h
e
hy
st
eresi
s
ban
d
,
es
peci
al
l
y
i
n
di
gi
t
a
l
im
pl
em
ent
a
t
i
on,
whi
c
h
causes
ext
r
em
e t
o
rq
u
e
sl
ope a
n
d c
ons
eq
ue
nt
l
y
pr
od
uces a l
a
rg
er t
o
r
q
ue ri
pp
l
e
[1
2]
. I
n
t
h
e
case o
f
hi
gh
spee
d
o
p
e
ration
s
, voltag
e
v
ect
o
r
s th
at
h
a
v
e
th
e
lo
ng
est am
p
lit
u
d
e
sh
ou
ld b
e
cho
s
en
.
Th
is selectio
n n
a
t
u
rally
enha
nces t
h
e
o
u
t
p
ut
v
o
l
t
a
ge t
o
m
eet
hi
gher
dem
a
nd i
n
c
o
n
t
rol
l
i
ng t
o
r
q
ue
at
hi
g
h
spe
e
d
o
p
erat
i
o
ns
[1
3,
1
4
]
.
B
y
appl
y
i
n
g
t
h
e l
o
nge
st
am
pl
it
ud
e of
vol
t
a
ge
ve
ct
or, i
t
al
so ca
n i
m
prove
dy
n
a
m
i
c cont
rol
p
e
rf
orm
a
nce fo
r
ent
i
r
e
spee
d
ra
n
g
e of
ope
rat
i
o
ns.
In this
pape
r, three
di
ffe
re
nt
look-up tables were
introduce
d
where
each of
the
l
o
ok up
table
rep
r
ese
n
t
s
a gr
ou
p o
f
sel
ect
i
o
n o
f
v
o
l
t
a
ge v
ect
ors, as t
a
b
u
l
a
t
e
d i
n
Tabl
e
1. T
h
e fi
rst
l
o
o
k
-
u
p t
a
bl
e rep
r
esent
s
t
h
e l
o
nge
st
am
pl
i
t
ude
(Ta
b
l
e
1(a
)
)
,
sec
o
n
d
l
o
o
k
-
u
p
t
a
bl
e r
e
prese
n
t
s
m
e
di
um
am
pl
i
t
ude (Tabl
e
1
(
b
)
)
a
n
d
t
h
e
th
ird loo
k
-up
tab
l
e rep
r
esen
t
s
th
e sho
r
test
a
m
p
litu
d
e
(T
a
b
le 1(c)). Eac
h
set
of volta
ge
vector
poss
eses a
certain c
r
iteria according t
o
the desire
d im
provem
e
nt
s and
spee
d
ope
rating c
o
nditions, a
s
disc
usse
d a
b
ove
.
Tabl
e
1.
Sel
e
c
t
i
on
of
V
o
l
t
a
ge
Vect
o
r
fo
r
(a)
Lo
ngest
- (
b
) M
e
di
um
- an
d (c
)
Sm
al
l
e
st
A
m
pl
i
t
ude
(a)
Flu
x
erro
r statu
s
S
T
o
r
que er
r
o
r status
S
T
Sector
1 2
3 4
5 6
7 8
9
10
1
1
V1 V2
V3 V4
V5 V6
V7
V8
V9
V10
0
V31
V0
V31
V0
V31
V0
V31
V0
V31
V0
-1
V7
V8
V9
V0
V1
V2
V3
V4
V5
V6
0
1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V1
0
V0
V31
V0
V31
V0
V31
V0
V31
V0
V31
-1
V6
V7
V8
V9
V10
V1
V2
V3
V4
V5
(b
)
Flu
x
erro
r statu
s
S
T
o
r
que er
r
o
r status
S
T
Sector
1 2 3 4 5 6 7 8 9
10
1
1
V1
1
V1
2
V1
3
V1
4
V1
5
V1
6
V1
7
V1
8
V1
9
V2
0
0
V0
V3
1
V0
V3
1
V0
V3
1
V0
V3
1
V0
V3
1
-1
V1
7
V1
8
V1
9
V2
0
V1
1
V1
2
V1
3
V1
4
V1
5
V1
6
0
1
V1
2
V1
3
V1
4
V1
5
V1
6
V1
7
V1
8
V1
9
V2
0
V1
1
0
V3
1
V0
V3
1
V0
V3
1
V0
V3
1
V0
V3
1
V0
-1
V1
6
V1
7
V1
8
V1
9
V2
0
V1
1
V1
2
V1
3
V1
4
V1
5
(c)
Flu
x
erro
r statu
s
S
T
o
r
que er
r
o
r status
S
T
Sector
1 2 3 4 5 6 7 8 9
10
1
1
V2
1
V2
2
V2
3
V2
4
V2
5
V2
6
V2
7
V2
8
V2
9
V3
0
0
V0
V3
1
V0
V3
1
V0
V3
1
V0
V3
1
V0
V3
1
-1
V2
7
V2
8
V2
9
V3
0
V2
1
V2
2
V2
3
V2
4
V2
5
V2
6
0
1
V2
2
V2
3
V2
4
V2
5
V2
6
V2
7
V2
8
V2
9
V3
0
V2
1
0
V3
1
V0
V3
1
V0
V3
1
V0
V3
1
V0
V3
1
V0
-1
V2
6
V2
7
V2
8
V2
9
V3
0
V2
1
V2
2
V2
3
V2
4
V2
5
Figure
4 de
pi
cts the struct
ure of DTC of 5-phase
ind
u
ctio
n
m
ach
in
e. Mo
st
com
p
onents em
ployed in
co
nv
en
tio
n
a
l
DTC are m
a
in
tain
ed
in
ord
e
r to
retain
si
m
p
le stru
ctu
r
e
o
f
DTC. Min
o
r m
o
d
i
ficatio
n
s
o
n
the
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
IJPE
DS
V
o
l
.
3, N
o
. 4,
Dece
m
b
er
20
1
3
:
39
1 – 39
9
39
6
Voltage
sour
ce
inver
t
er
(
V
S
I)
+
IM
S
a,
S
b
,…,S
e
Ψ
sd
S
n
-
T
e,ref
+
-
Ψ
s,
r
e
f
T
e
Ψ
s
S
E
Te
S
T
V
dc
i
a
i
b…
.
i
e
Sector
detection
Ψ
sq
v
sd
v
sq
i
sd
i
sq
-
+
d-
q cur
r
e
nt
calculation
0
1
0
1
-1
HB
Ψ
HB
Te
E
Ψ
Voltage
calculation
Stator
flux and electr
o
m
a
gnetic
tor
q
ue esti
m
a
tors
Opti
m
a
l
L
ook-
up
Tab
l
e
(3
sets)
Fi
g
u
r
e
4.
St
r
u
c
t
ure
of
D
T
C
o
f
fi
ve
-
p
h
a
se indu
ctio
n m
ach
in
e
ω
r
ori
g
i
n
al
DTC
s
t
ruct
u
r
e we
re d
one
, pa
rt
i
c
ul
arl
y
i
n
i
n
t
r
o
duci
n
g t
h
ree
set
s
of
l
o
o
k
-
u
p t
a
bl
e (
a
s gi
ve
n i
n
Ta
bl
e I
)
an
d calcu
lating
t
h
e
d
-
ax
is an
d
q
-
ax
is co
mp
on
en
ts
o
f
currents
and voltages base
d on 5-phase system
.
Note
t
h
at
, t
h
e r
o
t
o
r spee
d i
n
f
o
rm
at
i
on (
o
bt
ai
ne
d f
r
om
speed se
n
s
or
) i
s
re
qui
re
d t
o
det
e
rm
i
n
e t
h
e opt
i
m
al
vect
or t
o
achi
e
ve desi
re
d
i
m
pro
v
em
ents.
4.
SIMULATION RESULTS
Sim
u
lat
i
o
n
s
w
e
r
e
condu
cted
u
s
ing
Matlab
/
Sim
u
lin
k
to
co
m
p
ar
e D
T
C
p
e
r
f
o
r
m
a
n
ces f
o
r
d
i
f
f
e
r
e
n
t
appl
i
cat
i
o
ns
o
f
vol
t
a
ge
vect
ors
(i
.e
. s
h
o
r
t
e
st
am
pl
it
ude,
m
e
di
u
m
am
pl
i
t
ude a
n
d
l
o
n
g
est
am
pl
i
t
ude).
Fo
r
sim
p
l
i
f
i
cat
i
on i
n
com
p
ari
ng t
h
e pe
rf
orm
a
nces, a st
ep cha
n
ge o
f
re
fere
nc
e t
o
rq
ue f
r
o
m
0.
5 p.
u t
o
1.
0
p.
u i
s
applied for every applicatio
n o
f
am
p
litu
d
e
v
ector
, as show
n in
Fi
g
.
5.
The z
oom
ed images of the
result
s
sho
w
n i
n
Fi
g.
5, a
r
e al
s
o
gi
ve
n i
n
Fi
g
.
6 t
o
p
r
esent
cl
ea
rl
y
t
h
e e
ffect
s
of
t
o
rq
ue
reg
u
l
a
t
i
o
n
/
sl
ope.
Fi
gu
re
5.
Si
m
u
l
a
t
i
on res
u
l
t
s
o
f
out
put
t
o
r
que
, st
at
or
fl
ux
an
d st
at
o
r
c
u
r
r
ent
s
wi
t
h
a st
ep
c
h
an
ge
o
f
re
fere
nce
t
o
r
que
f
o
r
di
f
f
e
r
ent
am
pl
i
t
ude
of
v
o
l
t
a
ge
vect
or
(a
) sm
al
l
e
st
am
pl
i
t
ude,
(b
)
m
e
di
um
am
pl
itude
an
d
(c)
l
o
n
g
est
am
pl
i
t
ude.
From
t
h
e resu
l
t
s
obt
ai
ne
d, t
h
e t
o
r
q
ue an
d
fl
ux
ri
p
p
l
e
s
were
red
u
ce
d
wi
t
h
t
h
e a
ppl
i
cat
i
on o
f
t
h
e
sm
a
llest
v
o
ltage v
ecto
r
. Mo
reo
v
e
r, th
is selectio
n
of
v
ector resu
lts in
lo
wer switch
i
ng
freq
u
e
n
c
y wh
ich
m
a
y
i
m
p
r
ov
e th
e efficien
cy o
f
DTC d
r
iv
e system
.
Ho
wev
e
r,
th
e DTC p
e
rfo
r
man
ce in
co
n
t
ro
lling
th
e to
rq
u
e
at
rated
cond
itio
n d
e
terio
r
ates if th
e s
m
alles
t
a
m
p
l
itu
d
e
o
f
v
e
cto
r
app
lied
,
particu
l
arly at h
i
g
h
sp
eed
op
eratio
n
s
.
In
su
ch
con
d
itio
n, it is clearly
seen
th
at th
e to
rqu
e
re
gu
lation
is ex
cellen
t
with
th
e app
licatio
n
of th
e lon
g
e
st
0.
5
0.
5
5
0.
6
0.
6
5
0.
7
0.
75
0.
8
0.
85
0.
9
0.
5
1
0.
5
0.
5
5
0.
6
0.
6
5
0.
7
0.
75
0.
8
0.
85
0.
9
0.
99
0
.
995
1
1
.
005
0.
5
0.
5
5
0.
6
0.
6
5
0.
7
0.
75
0.
8
0.
85
0.
9
-1
0
1
Torque (p.u)
Flux (p.u)
Currents (p.u)
1.0
0.5
1.0
0.99
1.0
-1.0
(a)
(b
)
(
c)
0.
5
0.
55
0.
6
0.
6
5
0.
7
0.
75
0.
8
0.
85
0.
9
0.
5
1
0.
5
0.
55
0.
6
0.6
5
0.
7
0.
7
5
0.
8
0.
8
5
0.
9
0.9
9
0.
9
9
5
1
1.
0
0
5
0.
5
0.
55
0.
6
0.
6
5
0.
7
0.
75
0.
8
0.
85
0.
9
-1
0
1
0.
5
0.55
0.6
0.
65
0.
7
0.
7
5
0.
8
0.
8
5
0.9
0.
5
1.
0
0.
5
0.
55
0.
6
0.
65
0.
7
0.
75
0.
8
0.
85
0.
9
0.
99
0.
99
5
1
1.
00
5
0.
5
0.55
0.6
0.
65
0.
7
0.
7
5
0.
8
0.
8
5
0.9
-1
0
1
Torque (p.u)
Flux (p.u)
Currents (p.u)
1.0
0.5
1.0
0.99
1.0
-1.0
Torque (p.u)
Flux (p.u)
C
u
rrent
s
(p
.u
)
1.0
0.5
1.0
0.99
1.0
-1.0
T
i
m
e
/div.
=
0
.
05
T
i
m
e
/div.
=
0.
0
5
T
i
m
e
/div.
=
0.
0
5
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Im
pr
oved
T
o
rq
ue C
ont
r
o
l
Per
f
orm
a
n
ce
of
Di
rect
Tor
q
ue C
o
nt
rol
f
o
r .
.. (
L
o
g
a
n
Raj
Lo
ur
d
e
s Vi
ct
or R
a
j
)
39
7
a
m
plitude of vector.
Thus,
the capa
b
ility of torque
regulated at its
rated during
m
o
tor acceleration ca
n be
f
u
r
t
h
e
r
ex
tend
ed
b
y
app
l
yin
g
th
e long
est am
p
litu
d
e
of
vo
ltage v
ector
.
Fi
gu
re
7 com
p
ares t
h
e t
o
r
que
dy
nam
i
c perf
o
r
m
a
nce of t
h
e t
h
ree a
p
pl
i
cat
i
ons
un
der
t
h
e sa
m
e
t
e
st
(as
per
f
o
r
m
e
d i
n
Fi
gu
res.
5 and
6). It
can be
cl
earl
y
not
i
ced
from
t
h
e fi
gu
re t
h
at
t
h
e fast
est
t
o
rque
dy
nam
i
c
per
f
o
r
m
a
nce can
be ac
hi
eve
d
wi
t
h
ap
pl
i
cat
i
o
n
o
f
t
h
e l
o
n
g
e
st
am
pl
it
ude
of
vect
or
.
As
di
scuss
e
d
i
n
p
r
evi
o
us
sect
i
on,
t
h
e l
o
nge
st
am
pl
i
t
ude of
vect
or
res
u
l
t
s
i
n
t
h
e hi
gh
est
t
o
r
que
sl
o
p
e
or
rat
e
of
t
o
r
que
i
n
c
r
eases.
B
a
sed
on t
h
e
res
u
l
t
s
obt
ai
ne
d, i
t
can al
so su
g
g
est
t
h
at
t
h
e sel
ect
ion
of m
e
di
um
am
pl
i
t
ude of
v
ect
or i
s
pre
f
era
b
l
e
t
o
obt
ai
n
bet
t
e
r
t
o
rq
ue
reg
u
l
a
t
i
o
n
,
pa
rt
i
c
ul
arl
y
at
m
i
ddl
e s
p
eed
ope
rat
i
o
ns.
Figu
re
6.
M
a
g
n
ified
o
u
tp
ut t
o
r
q
ue
wave
fo
r
m
s for (a
) T
e,re
f
= 0.5 p.u and
(b
) T
e,ref
=
1
.
0
p.
u.,
co
rre
sp
o
ndi
ng
t
o
t
h
e res
u
l
t
s
obt
a
i
ned i
n
Fi
gs.
5
(
a),(
b
)
a
n
d
(c
),
r
e
spect
i
v
el
y
(i
,e
. area
m
a
rked
by
d
o
t
t
e
d l
i
ne).
Fi
gu
re
7.
C
o
m
p
ari
s
on
o
f
t
o
r
q
ue
dy
nam
i
c perf
orm
a
nce f
o
r
di
ffe
re
nt
ap
pl
i
cat
i
on
of
v
o
l
t
a
g
e
vect
o
r
s
(a)
l
o
nge
st
am
pl
i
t
ude,
(b
)
m
e
di
um
am
pl
itude
(c
) s
h
ort
e
s
t
am
pl
i
t
ude.
5.
CO
NCL
USI
O
N
Thi
s
pa
per ha
s prese
n
t
e
d an
opt
i
m
al
DTC
swi
t
c
hi
ng st
r
a
t
e
gy
for fi
ve-
pha
se i
n
d
u
ct
i
o
n m
achi
n
e.
Th
ree look
-up
tab
l
es co
n
s
isti
n
g
o
f
vo
ltag
e
v
ectors with
d
i
fferen
t
am
p
litu
d
e
were u
s
ed
to
ob
tain
th
e op
ti
m
a
l
swi
t
c
hi
n
g
st
rat
e
gy
. It
has s
h
o
w
n t
h
at
t
h
e
D
T
C
per
f
o
rm
ances can
be i
m
pro
v
e
d
by
sel
e
c
t
i
ng t
h
e m
o
st
opt
i
m
al
vecto
r
w
h
ich is
diffe
re
nt fo
r e
v
ery
r
a
ng
e of
sp
eed
op
er
ation. Mo
tor
m
o
d
e
l
i
ng of fi
ve p
h
as
e
i
n
d
u
ct
i
on
m
achi
n
e
i
s
al
so
di
scu
sse
d.T
h
e si
gni
fi
cance
of
t
h
e
rese
arch
i
s
t
o
hi
ghl
i
ght
t
h
e
pot
e
n
t
i
a
l
of
u
s
i
n
g fi
ve
-p
hase
DTC
sy
st
em
t
h
at
of
fers m
o
re o
p
t
i
o
ns (i
.e.
num
ber o
f
s
w
i
t
c
hi
ng
vect
o
r
s
)
i
n
sel
ect
i
ng t
h
e m
o
st
opt
im
al
vect
or t
o
ac
hi
ev
e
su
per
i
or
p
e
rfo
rman
ce.
ACKNOWLE
DGE
M
ENTS
Th
e au
tho
r
s wo
u
l
d
lik
e t
o
th
an
k th
e
Un
i
v
ersiti Tek
n
i
k
a
l M
a
laysia Melak
a
(UTeM)
for
prov
id
i
n
g
t
h
e
ERG
S
/201
2
/
FK
E/TK02
/02
/
2/E0
001
0f
or
t
h
is r
e
sear
ch.
T
o
rque
(p.
u
)
Tim
e
(s)
(a)
(b)
(c)
0.
5
6
0
.
56
05
0.
5
6
1
0.
56
15
0.
5
6
2
0.
56
25
0.
5
6
3
0
.
56
35
0.
5
6
4
0
.
56
45
0.
5
6
5
0.
4
0.
5
0.
6
0.
8
0
.
80
05
0.
8
0
1
0.
80
15
0.
8
0
2
0.
80
25
0.
8
0
3
0
.
80
35
0.
8
0
4
0
.
80
45
0.
8
0
5
0.
9
1.
0
1.
1
0.
56
0.
5605
0.
561
0.
5615
0.5
6
2
0
.
5625
0.
563
0.
5635
0.
564
0.
5645
0.
565
0.
4
0.
5
0.
6
0.
8
0.
8005
0.8
0
1
0.
80
1
5
0.
80
2
0.
80
25
0.
803
0.
8035
0.
804
0.
8045
0.
8
0
5
0.9
1.0
1.1
(a)
(b
)
(c)
0.
56
0
.
5605
0.
561
0.
5615
0.
562
0
.
5625
0.
563
0.
5635
0.
56
4
0.
56
45
0.
565
0.4
0.5
0.6
0.
8
0.
8005
0.
801
0
.
8015
0.
802
0.
8025
0
.
803
0.
80
35
0.
804
0.
8045
0
.
805
0.
8
1.
0
1.
2
0.5
1.0
0.4
0.6
0.8
0.5
1.0
0.4
0.6
0.9
1.1
0.5
1.0
0.4
0.6
0.9
1.1
T
e,
re
f
=0
.5
p
.
u
T
e,
re
f
=0
.5
p
.
u
T
e,
re
f
=1
.0
p
.
u
T
e,
re
f
=1
.0
p
.
u
Ti
m
e
/
d
i
v
.= 0
.
000
5
Ti
m
e
/
d
i
v
.= 0
.
000
5
Ti
m
e
/
d
i
v
.= 0
.
000
5
Ti
m
e
/
d
i
v
.= 0
.
000
5
Ti
m
e
/
d
i
v
.= 0
.
000
5
Ti
m
e
/
d
i
v
.= 0
.
000
5
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
IJPE
DS
V
o
l
.
3, N
o
. 4,
Dece
m
b
er
20
1
3
:
39
1 – 39
9
39
8
REFERE
NC
ES
[1]
L
.
-
H
.
Hoang,
"
C
om
p
a
r
i
son of
field-
or
iented contr
o
l an
d dir
ect tor
que con
t
r
o
l for
induction
m
o
tor drives
," in
Industry A
pplicati
o
ns
Conference,
1999.
Thirty-
F
ourth I
A
S
A
nnual Meeting.
Conference R
ecord of the 1999 I
E
E
E
,
1999,
pp.
12
45-
12
52 vol.
2
.
[2]
Z
.
Yu, J. Z
h
enhua,
and Y.
Xunwei,
"I
ndi
r
ect field-
or
ien
t
ed contr
o
l of indu
ction
m
achines based on sy
ner
g
etic
contr
o
l theor
y
,"
in
P
o
wer and E
n
erg
y
Society General Meeting -
Conversion an
d De
livery of E
l
ectrical
E
n
ergy in the 21st C
e
ntury,
2008 I
E
EE
,
2008,
pp.
1-
7.
[
3
]
Blasch
k
e
,
F.,
The
Principle of Field
Orientation Appli
e
d To The Tr
ansvector Closed-Loop Control System For Rotating Field
Machines.
Siem
en
s Rev,
M
a
y
1972.
34: p.
217-
22
0
[4]
M
.
M
i
ng,
"
V
oltag
e
Vector
Contr
o
ller
for
Rotor
Field-
Or
ie
nted Contr
o
l of I
nductio
n M
o
tor
Based on M
o
tional E
l
ectr
o
m
o
tiv
e
Force,"
in
I
ndustrial E
l
ectronics and A
pplications,
200
7
.
I
C
IE
A 2007.
2nd
I
E
EE
Conference
on
,
2007,
pp.
15
31
-
1534.
[5]
J.
N.
Nash,
"
D
ir
ect tor
que contr
o
l,
i
nductio
n
m
o
tor
vector
contr
o
l witho
u
t an encoder
,
"
in
P
u
lp and
P
aper I
ndustry Technical
Conference,
1996.
,
Conference R
ecor
d
of 1996 A
n
n
ual
,
1996,
pp.
86-
9
3
.
[6]
I. Takahashi and T. Noguchi, "Take a
look back
upo
n th
e past decade of di
rect
torque control [o
f inducti
on
m
o
tors],"
in
I
ndustrial
E
l
ectronics,
Control and I
n
strumenta
tion,
1997.
I
E
CON 97.
23rd I
n
ternati
onal Conference o
n
,
1997,
pp.
546-
5
51 vol.
2
.
[7]
H.
A.
T
o
liy
a
t and X.
Huangsheng,
"
A
novel dir
ect tor
que
contr
o
l (
D
T
C
)
m
e
thod for
five-
p
hase inductio
n
m
a
chines,
"
in
A
pplied
Power Electronics
Conference and Exposition,
20
00. APEC 2000. Fifteenth Annual IEEE
,
2000,
pp.
162-
168 v
o
l.
1.
[8]
X.
Huangsheng,
H.
A.
T
o
liy
a
t,
and L
.
J.
Peter
s
en,
"
F
iv
e-
phase inductio
n
m
o
to
r
dr
ives w
ith DSP-
based control sy
stem
,"
Po
wer
E
l
ectronics,
IE
EE
Transaction
s
on,
v
o
l.
17,
pp.
524-
533
,
2002.
[9]
H.
A.
T
o
liy
a
t,
"
A
naly
sis and sim
u
lati
on of
five-
phase var
i
able-
s
p
eed induction
m
o
tor
dr
ives unde
r
asym
m
e
tr
ical connections,
"
P
o
wer E
l
ectronics, I
E
E
E
Transaction
s
on,
vol.
13,
pp.
748-
756,
19
98.
[10]
E. Levi, R
.
Bojoi, F. Profu
m
o, H
.
A. Toliyat, and S. W
illia
m
s
on, "Mu
ltiphase
inductio
n
m
o
tor drives - a
technology
status
rev
i
ew,
"
Ele
c
tric
P
o
wer Applications,
IET
,
vol.
1,
pp.
48
9-
516,
200
7.
[11]
Casadei,
D.,
Ser
r
a, G.
, and T
a
ni, A.
Anal
y
tical investigation of tor
que and
flux r
i
pple in DTC schem
e
s
for
induction
m
o
tor
s
. 23
rd
I
n
ter
n
ational Conf
er
ence on I
ndustr
ial E
l
ectr
onics,
Contr
o
l and I
n
str
u
m
e
ntation,
1997.
I
E
CON 97.
1997.
[12]
Jidin A.
,
Nik I
d
r
i
s
N.
R,
M
ohd Ya
tim
A.
H.
,
Sutikno T
,
and E
l
buluk M
.
E
.
,
“E
xtending Switching F
r
equenc
y for Torque R
i
ppl
e
Reduction Utilizing a Constant
Frequency Torque C
ont
roller
in DTC of Induction Mot
o
rs”,
J
our
nal of
Power
E
l
ectr
onics,
vol.
11,
no.
2,
pp.
148-
15
5,
2011.
[13]
Jidin,
A.B.; Idris, N.R.B.N
.
;
Y
a
ti
m
,
A. H
B M.; Sutik
no, T.,
"A
W
i
de
-S
peed Hi
gh Torque Capability
Uti
lizi
ng Overm
odulation
Str
a
tegy
in DT
C of I
nductio
n M
achines W
ith
Constant
Switching Fr
equency
Contr
o
ller
,
"
Power E
l
ectronics,
I
E
EE
Transaction
s
on
,
vol.
27,
no.
5,
pp.
2566,
2
575,
M
a
y
2012
[14]
L
.
R.
L
.
V. Raj,
A.
Jidin,
C.
W
.
M
.
F.
Che W
a
n M
ohd Z
a
la
ni,
K.
Abdul Kar
i
m
,
G.
W
e
e Yen,
and M
.
H.
Jopr
i,
"
I
m
p
r
oved
per
f
orm
a
nce of D
T
C of
five-
phase
induction
m
achines,
"
in
Power
E
ngineer
ing and Opti
m
i
zation Confer
en
ce (
P
E
O
C
O
)
,
2013
I
E
EE
7th I
n
ter
n
ational,
2013,
pp.
61
3-
618.
BIOGRAP
HI
ES
OF AUTH
ORS
Logan Raj Lourdes Victor R
a
j
was born
in
1988 in
Selan
gor, Malay
s
ia.
He receiv
ed th
e
B.Eng. degr
ee (
H
ons) fro
m
the
Universiti Tekn
i
k
al
Malay
s
i
a
Melak
a
, Malay
s
i
a
in 2012, where
he is curren
t
ly
p
u
rsuing the M.S
c
degree.His ar
eas
of res
ear
ch in
teres
t
includ
e ve
ctor con
t
rol of
ac m
a
chines
and
power
ele
c
troni
cs
.
Au
z
a
ni Jidin
rece
ived
the B
.
Eng.
degr
ees
,
M
.
E
ng.degr
ees
and Ph.D. d
e
g
r
ee
in power
electroni
cs and
drives from
Universiti
Teknolog
i Malay
s
i
a
, Joh
o
r Bahru, M
a
lay
s
ia, in
2002
,
2004 and 2011
, respectiv
ely
.
He is curren
t
ly a
Lectur
er with the Dep
a
rtm
e
nt of Power
Ele
c
troni
cs and Drives, Facult
y
of
Elec
tric
al En
gineer
ing, Unive
r
siti Tekn
ikal M
a
la
ysi
a
Melak
a
,
Durian Tunggal, Malay
s
ia. His re
search
interests
includ
e the f
i
eld of power electronics, motor
drive s
y
stems, f
i
eld-programmable g
a
te
arr
a
y,
an
d DSP applic
atio
ns.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Im
pr
oved
T
o
rq
ue C
ont
r
o
l
Per
f
orm
a
n
ce
of
Di
rect
Tor
q
ue C
o
nt
rol
f
o
r .
.. (
L
o
g
a
n
Raj
Lo
ur
d
e
s Vi
ct
or R
a
j
)
39
9
K
a
sr
ul Abdul
K
a
r
i
m
re
ce
ived
the M
.
S
c
. from
Univers
i
t
y
o
f
Bradford and P
h
.
D
. degrees
from
the University
o
f
Nottingham,
UK, in 2003 and 2011,
respectiv
ely
.
He
is
currently
a Lectu
r
er
with the Depar
t
m
e
nt of P
o
wer Elec
tronics
an
d Drives
, F
acul
t
y
of E
l
ec
tri
cal
Engineer
ing,
Universiti T
e
kni
kal Malay
s
i
a
Melak
a
, Duri
an T
ungga
l, Malay
s
i
a
. His resear
ch i
n
terests include
ele
c
tri
cal
m
achi
n
e des
i
gn
, power
el
ectron
i
cs
,
and
ele
c
tri
c
v
e
hic
l
e
.
Tole
Sutikno
is an exp
e
rt in
the
field of
power elect
ron
i
cs,
Industrial Electron
ics &
Informatics,
Embedded S
y
stems and Electr
ic
Drives. Sin
c
e 2001 he has
been a lecturer in Electrical
Engineering Department, Univ
er
sitas Ahmad D
a
hlan (UAD), Indonesia. He is
an Associate
Professor at the above Universit
y
sinc
e 2008. He
receiv
e
d his B.Eng. and M.Eng. degre
e
in
Electrical Engin
eering
from Diponegoro Universi
ty
, Indon
esia
and Gadjah Mada University
,
Indonesia, in 1
999 and 2004, respectiv
ely
.
Cu
rrently
, h
e
is
pursuing PhD degree at the
Universiti T
e
kn
ologi Mala
ysi
a
(
U
TM), Mala
ysi
a
. He is an Ed
it
or-in-Chief of T
ELKOMNIKA
Indonesian Jour
nal of
Electrical
Engin
eering
,
and also
acts as
an Ed
itor
in so
me intern
ation
a
l
journals
in e
l
e
c
t
r
ica
l
and
com
p
uter
engine
ering
,
power
el
ectro
nics
, m
o
tor dr
iv
e s
y
s
t
em
s
and
F
P
GA applicat
io
ns
areas
.
R.
Su
ndr
am
was born in 1989
in Penang, Malay
s
ia. He
received the B.Eng. degree (Hons) in
Electri
cal
Engin
eering from
Universiti Teknik
a
l Ma
lay
s
ia Melak
a
, Malay
s
ia
in 2
012 and now h
e
is
currentl
y
purs
u
ing the M
.
S
c
degree in P
o
wer
Electron
i
cs
and
Drive. His
area
s
of res
earch
inter
e
s
t
in
clud
e
Direct
Torqu
e
C
ontrol of
M
u
lti
P
h
as
e S
y
s
t
em
and
P
o
wer El
ec
troni
cs
.
M
o
hd H
a
tta Jopr
i
rec
e
ived
Bache
l
or of El
e
c
tri
cal
Engine
er
ing from
Universiti Tekno
logi
Mala
y
s
ia in 200
1; and the MSc.
Ele
c
tr
ica
l
Power Engineering f
r
om
Rheinis
c
h-W
e
s
t
faelis
ch
e
Techn
i
sche Hochschule Aachen
(RWTH), Ger
m
an
y
in 2011
.
He is a lecturer at Univ
ersiti
Teknik
a
l Malaysia Melak
a
(UTeM)
since 2005. His resear
ch in
tere
st is
power electronics
and
m
achine dr
ives
.
Evaluation Warning : The document was created with Spire.PDF for Python.