Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
4
,
No
. 2,
J
une
2
0
1
4
,
pp
. 20
4~
21
1
I
S
SN
: 208
8-8
6
9
4
2
04
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
A
Novel Hybrid Negative Half Cy
cle Biased Modulation Scheme
for
Cascaded Multilevel Inverter
R. Hem
a
nt
ha
kumar
, V. R
a
gh
ave
ndr
aR
aj
an,
C.S.
Ajin Sekh
ar, M.
S
a
sikumar
Jeppiaar
Engineering Co
lleg
e
, Anna Un
iversity
,
Chennai – 600
1
19, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 29, 2014
Rev
i
sed
Mar
10
, 20
14
Accepted
Mar 25, 2014
This paper proposes a new
Mod
i
fied h
y
brid modulation scheme f
o
r cascaded
m
u
ltilevel inv
e
r
t
er.
The propos
ed m
e
thod em
plo
y
s nov
el sin
g
le carri
er
sinusoidal pulse
width modulatio
n with
its negative cy
cle bias
ed (
HNHCBM)
for reducing switching losses when comp
ared to
other sinusoidal
modulation
methods using a
h
y
brid
scheme.
This sc
heme is
a derivativ
e of v
a
rious single
carrier sinusoidal pulse width modulati
on sch
e
me and main adv
a
ntag
es are
reduced harmon
ics, enhan
ced o
u
tput voltag
e
, r
e
duced power loss in the
s
e
ries
cel
ls
and eas
e of im
plem
e
n
tation
.
The s
i
m
u
lation r
e
s
u
lts
a
r
e anal
ys
ed
with m
a
tlab/sim
u
link and com
p
a
r
ed with
experimental results obtain
e
d using
5-leve
l inv
e
rt
er
and th
e r
e
s
u
lts
ar
e s
u
m
m
a
rized.
Keyword:
Hy
brid Negative Half Cy
cle
Biased Mo
dulat
ion Sche
m
e
(HNHCBM)
5-level Ca
scad
e
d
Multilevel
Inverter
Circulating pul
ses
Circulating pul
se width
m
o
d
u
lation
Low har
m
oni
cs
Switching loss
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
R
.
Hem
a
nt
hak
u
m
ar
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
Jeppiaar E
n
gineering Colle
ge,
R
a
ji
v Ga
nd
hi
s
a
l
a
i
,
C
h
en
nai
– 60
0 11
9,
I
n
di
a
Em
a
il: h
e
m
a
n
t
h
a
ku
m
a
r1
8@gmail.co
m
1.
INTRODUCTION
Mu
ltilev
e
l in
v
e
rters are
g
a
in
i
n
g
im
p
o
r
tan
ce
main
ly d
u
e
to
redu
ced
h
a
rm
o
n
i
cs con
t
en
t in its o
u
t
p
u
t
.
Trad
ition
a
l voltag
e
sou
r
ce i
n
v
e
rters
(VSI) fed
syst
em
s
su
ffer
fro
m
h
i
gh
h
a
rm
o
n
i
cs, electro
m
a
g
n
e
tic
in
terferen
ce in th
e o
u
t
pu
t. Th
is led
to
th
e d
e
v
e
l
o
p
m
en
t
of con
cep
t of
m
u
l
tilev
e
l in
v
e
rter wh
ich
o
f
fers less
h
a
rm
o
n
i
c ou
tpu
t
vo
ltag
e
. The
m
a
j
o
r ch
allen
g
e
s in
th
e
d
e
v
e
lop
m
en
t o
f
m
u
l
tilev
e
l in
v
e
rter are
red
u
c
in
g
the
i
n
crease i
n
n
u
m
ber of swi
t
c
hes f
o
r eac
h l
e
vel
i
n
crease
of
out
put
, l
e
ss
harm
oni
cs, l
o
w el
ect
r
o
m
a
gnet
i
c
i
n
t
e
rfe
rence
,
l
o
w
swi
t
c
hi
ng
l
o
sses a
nd
hi
g
h
ef
fi
ci
ency
.
The
basi
c t
y
p
e
s of
m
u
l
t
i
l
e
vel
i
nvert
e
r
s ar
e di
o
d
e
cla
m
p
e
d
,
flying
cap
acitor and
cascaded
m
u
ltilev
e
l in
v
e
rter
[1
]-[4
]. Ap
art
fro
m
th
ese are also
o
t
h
e
r topo
log
i
es
lik
e rev
e
rse
vo
ltag
e
topo
logy [5
], su
b
l
ev
el in
v
e
rter [6
],
etc. V
a
ri
o
u
s co
n
t
ro
l techn
i
qu
es [7
] fo
r m
u
ltilev
e
l
i
nve
rt
ers
have
been
pr
o
p
o
s
e
d
.
Am
ong t
h
e
abo
v
e,
d
u
e t
o
t
h
e a
dva
nt
a
g
e o
f
ease i
n
i
n
crease
of l
e
vel
,
n
o
cap
acito
r
b
a
lan
c
ing
prob
lem an
d
reliab
l
e (cell lik
e) stru
ctu
r
e, cascad
e
d
m
u
lti
lev
e
l i
n
v
e
rter is applied
to
med
i
u
m
an
d
h
i
g
h
pow
er app
licatio
n
s
as w
e
ll
as r
e
n
e
w
a
b
l
e en
erg
y
f
e
d
app
licatio
n
s
[
8
]-[1
0].
Seve
ral sinus
oidal
m
odulation t
echni
ques like Alternati
v
e
Phase
Opposi
tion Disp
osition (APOD),
Ph
ase Sh
ift
C
a
rrier (PSC
), m
u
l
tilev
e
l
sin
u
s
o
i
d
a
l-m
o
du
latio
n
(MSPWM
), Ph
ase sh
ifted
carrier PWM (PSC
P
W
M
)
, an
d Si
ngl
e C
a
rri
e
r
Si
nus
oi
dal
P
W
M
(SC
S
P
W
M
)
[
11]
et
c have b
een pr
o
p
o
s
ed
al
ready
.
He
re a new
hy
b
r
i
d
m
odul
a
t
i
on t
ech
ni
q
u
e
for
harm
oni
c
red
u
ct
i
o
n an
d red
u
ce
d swi
t
c
h
i
ng l
o
sse
s i
s
p
r
o
p
o
sed
.
Thi
s
pape
r
fi
rst
di
sc
uses
a
b
o
u
t
t
h
e
basi
c
pri
n
ci
pl
e
behi
n
d
t
h
e
t
ech
ni
q
u
e
,
t
h
e
n
hy
bri
d
s
w
i
t
c
hi
n
g
sc
he
m
e
for
re
duci
n
g st
res
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A N
o
vel
Hyb
r
i
d
N
e
gat
i
ve
Hal
f
C
ycl
e Bi
ased
Mo
dul
at
i
o
n
Sc
heme
f
o
r
C
a
sc
ade
d…
(
R
.
He
ma
nt
h
a
k
u
m
a
r)
20
5
o
n
switch
e
s as
well as its lo
sses u
s
i
n
g
5-lev
e
l cascad
ed
m
u
l
tilev
e
l in
v
e
rter, and
ex
ten
s
i
o
n to
N-lev
e
l syste
m
s
is d
i
scussed.
At last th
e sam
e
is si
m
u
lated
and
v
e
rified
with
ex
p
e
rim
e
n
t
atio
n
resu
lts.
Fig
u
re
1
.
5-level Cascad
ed mu
ltilev
e
l in
v
e
rter circu
it
2.
BASIC PRINCIPLE OF
MO
DULATION TECHNIQUE
Th
e b
a
sic pr
in
cip
l
e b
e
h
i
nd
th
e pr
opo
sed
N
e
ga
tive
Half Cycle B
i
ased M
o
dulation Sc
hem
e
(NHCBM) is
explaine
d usi
n
g t
h
e
5-le
vel c
a
scade
d
m
u
ltil
evel inverte
r
F
i
gure
1.
The
m
odulating si
gnal is
g
e
n
e
rated
with resp
ect to
th
e carrier sign
al o
f
am
p
litu
d
e
A
tr
. If t
h
e am
p
l
i
t
ude of t
h
e
m
odul
at
i
ng si
n
u
soi
d
al
sig
n
a
l is
A
m
, t
h
en t
h
e
m
odul
at
i
ng
si
g
n
al
i
s
ge
nerat
e
d
usi
n
g t
h
e
fol
l
o
wi
n
g
f
o
rm
ul
as,
U
m
_p1
= A
m
sin
ω
t
(1)
U
m
_n1
= A
m
sin
ω
t +
A
t
r
(2
)
U
m
_p2
= A
m
sin
ω
t
-
A
tr
(3)
U
m
_n2
= A
m
sin
ω
t +
3
A
tr
(4)
Equations
1-4 represe
n
t the
positive cycle and
ne
gative cycle of two
m
odulating signal.
T
h
e
resu
lting
m
o
d
u
latin
g
and
carrier
wav
e
form
s fo
r 5-lev
e
l inv
e
rter are sh
own
in
Figure
2
.
Fi
gu
re
2.
Pr
o
p
o
se
d N
e
gat
i
v
e
Hal
f
C
y
cl
e B
i
ased M
o
d
u
l
a
t
i
o
n
(N
HC
B
M
) S
c
hem
e
There
f
ore in c
a
se of N-level
inverter, the positiv
e and negative cycle
of the m
odulating signal is
gi
ve
n by
:
U
m
_pN
= A
m
sin
ω
t
-
((
N-
3)
/2)A
tr
(5)
U
m
_nN
= A
m
sin
ω
t +
(N
-2
)A
tr
(6)
The m
o
d
u
l
a
t
i
on i
n
de
x
(M
) i
s
gi
ve
n
by
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
20
4
–
21
1
20
6
A
m
= (N-
1
)M
A
tr
/2
(7)
Fi
gu
re
2 i
s
d
u
e
t
o
m
odul
at
i
o
n
i
nde
x
of
M
=
8.
It
i
s
n
o
t
e
d
t
h
at
t
h
e p
r
op
ose
d
m
odul
at
i
on si
g
n
al
ha
s
negat
i
v
e
cy
cl
e
bi
ased
base
d
o
n
t
h
e
l
e
vel
of
o
p
erat
i
o
n a
n
d ca
n
be easi
l
y
ap
p
l
i
e
d t
o
N-l
e
vel
sy
st
em
3.
HYBRID SW
ITCHI
N
G
SCHEME
The bl
oc
k di
ag
ram
of
hy
bri
d
m
odul
at
i
on
s
w
i
t
c
hi
ng sche
m
e
i
s
sh
o
w
n
i
n
Fi
gu
re 3 fo
r 5-l
e
vel
i
n
vert
er
.
Th
is sch
e
m
e
is
b
a
sed
on
th
e
main
ai
m
o
f
circu
l
atin
g
th
e switch
i
ng
pu
lses b
e
tween
th
e
cascad
ed
m
u
lti
lev
e
l
i
nve
rt
er cel
l
s
.
Fo
ur
ki
n
d
s
of
si
gnal
s
A-
D i
s
gene
rat
o
r i
n
t
h
e ba
se m
odul
at
i
on ge
ne
rat
o
r an
d t
h
e
p
u
l
s
es fo
r
switches are
generate
d in hy
bri
d
m
odulation controlle
r for the each cell separately. Base P
W
M circulation
bl
oc
k i
s
use
d
t
o
m
odul
at
e t
h
e
si
gnal
C
a
nd
D w
h
i
c
h a
r
e t
h
e si
gnal
gene
ra
t
e
d usi
ng t
h
e p
r
o
p
o
sed m
o
d
u
l
a
t
i
o
n
schem
e
.
Fi
gu
re
3.
B
l
oc
k
di
ag
ram
of H
y
bri
d
swi
t
c
hi
n
g
sc
hem
e
3.
1.
B
a
se M
o
d
u
l
a
ti
on Si
gn
al
Gener
a
t
o
r
The bl
oc
k di
a
g
ram
of
base
m
odul
at
i
on
si
gnal
ge
ne
rat
o
r
i
s
gi
ven
i
n
F
i
gu
re
4. B
a
se
m
odul
at
i
o
n
gene
rat
o
r ge
ne
rat
e
s fo
u
r
si
g
n
a
l
s
A-D
base
d
on t
h
e c
ont
ro
l
param
e
t
e
rs l
i
ke m
odul
at
i
o
n
i
nde
x (M
),
o
u
t
p
ut
vol
t
a
ge
f
r
eq
ue
ncy
(
f
o
) a
n
d ca
rrier
f
r
eq
ue
ncy
(f
c
).
Fi
gu
re
4.
B
l
oc
k
di
ag
ram
of B
a
se m
odul
at
i
o
n
si
g
n
al
ge
nerat
o
r
The si
g
n
al
A
and B
i
s
i
nde
p
e
nde
nt
of t
h
e
num
ber
of l
e
v
e
l
of i
n
ve
rt
er
as i
t
i
s
based
on t
h
e
out
put
fre
que
ncy
(
f
o
)
.
The si
gnal
A a
nd B
i
s
a
sq
ua
r
e
wa
ve ge
ne
rat
e
d wi
t
h
5
0
per
cent
p
u
l
s
e
wi
dt
h a
nd
fre
q
u
enc
y
(f
o
)
and (f
o
/
2
)
res
p
ect
i
v
el
y
and
i
s
i
nde
pen
d
e
n
t
of
t
h
e num
ber of
l
e
vel
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A N
o
vel
Hyb
r
i
d
N
e
gat
i
ve
Hal
f
C
ycl
e Bi
ased
Mo
dul
at
i
o
n
Sc
heme
f
o
r
C
a
sc
ade
d…
(
R
.
He
ma
nt
h
a
k
u
m
a
r)
20
7
The
si
g
n
al
C
an
d
D
are
m
odul
at
ed si
g
n
al
s
fr
om
t
h
e p
r
o
p
o
se
d m
odul
at
i
o
n sc
he
m
e
as al
ready
di
scuss
e
d
i
n
ca
se o
f
5 l
e
vel
i
n
vert
er
i
n
p
r
evi
ous
sect
i
o
n.
3.
2.
B
a
se P
W
M
Ci
rcul
a
ti
on
an
d
Hybri
d
M
o
d
u
l
ati
o
n
Co
ntr
o
l
l
er
W
i
t
h
t
h
e
ai
m
of
re
duci
n
g
swi
t
c
hi
n
g
l
o
ss
es base
P
W
M
ci
rcul
at
i
o
n c
a
n
be i
m
pl
em
ent
e
d
usi
n
g
m
u
lt
i
p
l
e
xer as
sho
w
n i
n
Fi
gu
r
e
5.
T
h
e si
gnal
s
C
and D are
circulated at
the rate
of frequency f
o
/
4
t
o
p
r
od
uce
si
gnal
s
C
’
a
n
d
D’ as out
put
f
o
r 5-l
e
vel
i
n
v
e
rt
er.
Fi
gu
re
5.
B
a
se
P
W
M
ci
rc
ul
at
i
o
n
sc
hem
e
s for
5
-
l
e
vel
i
n
ve
rt
er
This schem
e
c
a
n be im
ple
m
e
n
ted to N-leve
l by
circulating each signal at the rate of f
o
/(N-1
)
. The
out
put
si
gnal
s
C
’
an
d
D’ a
r
e
com
b
i
n
ed l
o
gi
cal
l
y
wi
t
h
A a
nd B
i
n
t
h
e
hy
bri
d
co
nt
r
o
l
l
e
r
t
o
ge
nerat
e
s
w
i
t
chi
ng
pul
ses
f
o
r
t
h
e i
nve
rt
er.
T
h
e l
o
gi
cs
used
f
o
r
5
-
l
e
vel
i
n
ve
rt
er
i
s
sh
ow
n
bel
o
w:
From
the a
b
ove logics
it can
be
observed that these
log
i
cs
can
b
e
ex
tend
ed
to N-lev
e
l i
n
v
e
rter easily
by
j
u
st
repl
aci
ng
t
h
e m
o
d
u
l
a
t
e
d si
gnal
ge
ner
a
t
e
d i
n
e
ach
set
o
f
e
quat
i
o
ns.
4.
SIMULATION RESULTS
The proposed t
echnique
is si
mulated u
s
ing
Matlab
software
a
nd the re
sult
s ar
e stu
d
ied b
e
low
at
switchin
g
fre
que
ncy
of
1
0
0
K
H
z.
T
h
e si
m
u
li
nk ci
rc
ui
t
di
ag
ram
of t
h
e
5-l
e
vel
i
n
vert
er
i
s
sh
o
w
n
bel
o
w i
n
Fi
g
u
r
e
6.
Fi
gu
re
6.
Si
m
u
l
i
nk c
o
n
s
t
r
uct
i
on
casca
ded
5
-
l
e
vel
i
n
v
e
rt
er
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
20
4
–
21
1
20
8
Fi
gu
re
7.
Hy
br
i
d
co
nt
r
o
l
l
e
r l
o
gi
cs i
m
pl
em
entat
i
o
n
The
hy
b
r
i
d
m
odul
at
i
o
n c
o
nt
ro
l
l
e
r l
ogi
cs
are i
m
pl
em
ent
a
t
i
on i
n
si
m
u
l
i
nk i
s
sho
w
n i
n
Fi
gu
r
e
7.
The swi
t
c
hi
n
g
pul
ses S
1
t
o
S
4
an
d S
1
’ t
o
S
4
’
gene
rat
e
d
fr
om
t
h
e l
ogi
cs are sh
ow
n i
n
Fi
gu
re 8
.
Fr
om
t
h
e fi
g
u
re i
t
i
s
obse
r
ve
d t
h
at
t
h
e pul
ses co
nt
ai
n b
o
t
h
fi
xe
d p
u
l
s
e wi
dt
h
m
odul
at
i
on (F
P
W
M
)
a
nd
Ne
gat
i
v
e
Half Cycle Biased Modulation
(NH
CBM) sig
n
a
ls
form
i
n
g
a
h
ybrid
co
m
b
in
atio
n
.
Th
e ou
tpu
t
vo
ltag
e
is
applied t
o
loa
d
resistance
of 10ohm
s
and each of
casca
ded cells has
input voltage
of
200V. T
h
e
out
put
vol
t
a
ge
an
d
cu
rre
nt
wa
ve
fo
r
m
s of t
h
e i
n
ve
r
t
er wi
t
h
m
odul
at
i
on i
n
de
x
(M
=0.
8
)
are
sh
o
w
n i
n
Fi
g
u
r
e
9.
Fi
gu
re 8.
Hy
br
i
d
m
odul
at
ed
s
w
i
t
c
hi
n
g
pul
se
s
Fi
gu
re 9.
O
u
t
p
ut
cu
rre
nt
(I
o)
and
o
u
t
p
ut
vol
t
a
ge (V
o)
wave
f
o
rm
s
The
Tot
a
l
Har
m
oni
c Di
st
ort
i
on
an
al
y
s
i
s
(T
HD
)
of
t
h
e
p
r
o
pos
ed
sch
e
m
e
reveal
s
t
h
at
t
h
e
ha
rm
oni
cs i
s
redu
ced
to n
e
arly h
a
lf
fro
m
th
e resu
lts of THD sh
own
in Fi
g
u
re
10
an
d 11.
Fi
gu
re
1
0
. T
H
D i
n
o
u
t
p
ut
vol
t
a
ge d
u
e t
o
pr
o
pos
ed
Fi
gu
re
1
1
. T
H
D i
n
o
u
t
p
ut
vol
t
a
ge wi
t
h
o
u
t
H
y
bri
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A N
o
vel
Hyb
r
i
d
N
e
gat
i
ve
Hal
f
C
ycl
e Bi
ased
Mo
dul
at
i
o
n
Sc
heme
f
o
r
C
a
sc
ade
d…
(
R
.
He
ma
nt
h
a
k
u
m
a
r)
20
9
hy
b
r
id sc
hem
e
(H
NHCBM
)
schem
e
((N
HC
BM
)
The va
ri
at
i
on
of T
o
t
a
l
Harm
oni
c Di
st
ort
i
o
n
(TH
D
) wi
t
h
t
h
e m
odul
at
i
on
i
nde
x (M
) i
s
p
l
ot
t
e
d and i
s
sho
w
n i
n
Fi
gu
r
e
1
2
.
Fi
gu
re
1
2
. M
o
dul
at
i
o
n i
n
de
x
(Vs
)
T
H
D
From
t
h
e g
r
a
p
h a
n
d
TH
D a
n
al
y
s
i
s
, i
t
i
s
cl
ear t
h
at
t
h
e
p
r
o
p
o
sed
hy
bri
d
m
e
t
hod i
s
m
o
st
effi
ci
ent
SP
W
M
m
e
thod.
5.
HARDWARE
IMPLE
M
ENTATION
Fig
u
r
e
13
.
H
a
rd
w
a
r
e
set
u
p of
cascad
ed
f
i
v
e
l
e
v
e
l
i
nve
rt
er
Fi
gu
re
1
4
.
DS
O m
easured
fi
ve l
e
vel
o
u
t
p
ut
v
o
l
t
a
ge
Fi
gu
re
1
5
.
Har
m
oni
c spect
r
u
m
of o
u
t
p
ut
v
o
l
t
a
ge
The Pr
op
ose
d
Hy
bri
d
Ne
gat
i
v
e Hal
f
C
y
cl
e B
i
ased
M
o
d
u
l
a
t
i
on
Sc
hem
e
(HN
H
C
B
M
)
i
s
im
pl
em
ent
e
d
i
n
ha
r
d
wa
re
u
s
i
n
g
F
G
A
2
5N
12
0
I
G
B
T
f
o
r
t
h
e
ful
l
bri
d
g
e
i
nve
rt
er
an
d
C
S
D
1
00
0
6
0
di
o
d
e as
t
h
e
s
w
i
t
c
hi
n
g
devi
ces a
nd t
h
e gat
e
pul
ses
are ge
nerat
e
d usi
n
g t
h
e TM
S3
20
F2
4
07 c
o
nt
r
o
l
l
e
r. The e
xpe
ri
m
e
nt
al
set
up i
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
20
4
–
21
1
21
0
sho
w
n i
n
Fi
gu
re
13
an
d t
h
e
o
u
t
p
ut
v
o
l
t
a
ge
wave
f
o
rm
obt
a
i
ned a
c
r
o
ss t
h
e
l
o
ad
re
si
st
anc
e
1
0
o
h
m
i
s
sh
ow
n i
n
Fi
gu
re
1
4
.
Fr
om
Fi
gure
13
an
d
1
4
i
t
i
s
evi
d
ent
t
h
at
t
h
e
o
u
t
p
ut
v
o
l
t
a
ge
wa
vef
o
rm
obt
ai
ned
du
ri
n
g
expe
ri
m
e
nt
al
anal
y
s
i
s
i
s
sim
i
lar t
o
sim
u
l
a
t
i
on an
d t
h
e harm
oni
c sp
ect
rum
of t
h
e o
u
t
put
o
b
t
a
i
n
ed i
s
sh
o
w
n i
n
Fi
gu
re
1
5
.
Fr
o
m
t
h
e p
r
act
i
cal
res
u
l
t
s
i
t
i
s
evi
d
ent
t
h
at
t
h
i
s
m
e
t
hod i
s
ef
fi
ci
ent
t
h
an
n
o
r
m
a
l
SP
W
M
m
e
tho
d
s.
6.
CO
NCL
USI
O
N
In t
h
i
s
pa
per,
Negat
i
v
e
Ha
l
f
C
y
cl
e B
i
ased M
o
dul
at
i
o
n Sc
hem
e
(NHC
B
M
) i
s
pr
op
ose
d
a
n
d
im
pl
em
ent
e
d usi
ng
hy
bri
d
m
odul
at
i
o
n (
H
N
H
C
B
M
) t
echni
q
u
e. T
h
e ha
rm
oni
cs spect
r
u
m
of t
h
e
o
u
t
p
ut
v
o
l
t
a
ge
fo
r R
l
o
ad i
s
a
n
al
y
s
ed an
d t
h
e out
put
obt
ai
n
e
d d
u
ri
ng
N
H
C
B
M
and H
N
H
C
B
M
i
s
com
p
are
d
. F
r
om
t
h
e abo
v
e
co
m
p
ariso
n
it is ev
iden
t t
h
at ou
tpu
t
vo
ltag
e
harm
o
n
i
cs is imp
r
ov
ed
u
s
i
n
g th
e
h
y
b
r
i
d
techn
i
qu
e.
Th
e Harm
o
n
i
c
per
f
o
r
m
a
nce o
f
t
h
i
s
p
r
o
p
o
se
d
schem
e
i
s
pl
ot
t
e
d a
g
ai
nst
m
odul
at
i
o
n i
nde
x
and
i
t
seem
s t
o
be
ef
fi
ci
ent
.
P
W
M
ci
rcul
at
i
on i
n
hy
b
r
i
d
sc
hem
e
l
eads t
o
bal
a
n
ced
po
wer
d
i
ssip
atio
n
i
n
th
e switch
e
s
within
th
e cell as
well as
series c
o
nnecte
d
cells. T
h
is sc
hem
e
can be
ea
sily exte
nde
d t
o
hi
g
h
er
v
o
l
t
a
g
e
l
e
vel
s
a
n
d
t
o
3
pha
se sy
st
em
s.
REFERE
NC
ES
[1]
E Babaei. A cascade multilevel
converter topolo
g
y
with re
duced number of switches.
IEEE T
r
ans. Power Ele
c
tro
n
.
,
2008; 23(6): 265
7–2664.
[2]
Nabae, I Takahashi,
H Akagi.
A
new
neutralpoint-clamped PWM inverter.
I
EEE Trans. Ind. Appl
., 1981; IA-17(5)
:
518-523.
[3]
TA M
e
y
n
ard, H
F
o
ch.
Multi-level chopp
ers for high voltag
e
ap
plications.
Proc. Eur. Conf. Pow
e
r Electron
.
App
l
.,
1992; 2: 45–50.
[4]
C Govindaraju,
K Baskaran. Effi
cien
t h
y
br
id carr
i
er base
d space vector m
odulat
io
n for cascaded
m
u
ltilevel inver
t
er
.
Journal of Power Electronics
. 20
10; 10(3): 277–2
84.
[5]
K Srinivas, K R
a
m
e
shbabu, CH
Ram
b
abu. A Ne
w Multilevel To
polog
y
for Induction Motor Drive.
in ije
tae
. 2012;
2(12).
[6]
R Kalai
a
rasi
,
T
Manokaran. A Novel Topo
log
y
o
f
Reduced
Com
ponents b
y
usin
g Sub Multil
evel
Convert
er for D
C
Motor.
Journal
of Ad
vanced
Technology
in Eng
i
neering
. 2012; 1
(
1): 54-56.
[7]
R Sey
ezhai, B
a
nuparvath
y
K
a
l
p
ana. Design and Developm
en
t of H
y
b
r
id M
u
ltil
evel
Inver
t
er em
plo
y
ing D
u
al
Referen
ce Modu
lation
Techniqu
e
for Fuel Cel
l
A
pplic
ations.
In
ternational Journ
a
l of
Pow
e
r Electronics and Drive
Systems
.
2011; 1
(
2): 104-112
.
[8]
G Nageswara Rao,
P Sangameswara Raju
, K Chandra sekhar
.
Multilev
e
l Inve
r
t
er Based Act
i
v
e
Power Filter f
o
r
harm
onic E
lim
in
ation
.
Internatio
nal Journal of Powe
r Electronics and Drive Systems
. 2013; 3(3)
:
271-278.
[9]
Sasikumar M, C
h
enthurPandian S. Modeli
ng and
Anal
y
s
is
of Cas
caded H-Bridg
e
Inverter for W
i
n
d
Driven Is
olate
d
Self – Ex
cited In
duction Gen
e
rators.
Internationa
l Journal on
Electrical
Engin
eering and Informatics (
I
JEEI)
.
2011;
3(2): 132-145
.
[10]
Muham
m
a
d
Jamil. Com
p
arison of Multileve
l Inverters for the R
e
duct
i
on of Com
m
o
n Mode
Vo
ltage. Internatio
nal
Journal of Power Electronics
an
d Dr
ive S
y
s
t
em (
I
JPEDS)
. 2013;
3(2): 170~178.
[11]
BP McGrath, DG Holm
es. Mult
icarr
i
er PW
M st
rateg
i
es for m
u
ltilev
e
l inver
t
ers.
IEEE T
r
ans. Ind. Ele
c
tron.
, 2002;
49(4): 858-867
.
BIOGRAP
HI
ES
OF AUTH
ORS
M
r
. R. Hem
a
nth
a
Kum
a
r has
rec
e
ived
the Ba
che
l
or degree
in E
l
e
c
tri
cal
and E
l
ec
t
r
onics
Engin
eeri
n
g
from Thangav
e
lu Engin
eering
College, Ann
a
Univer
sity
, India in
2011. He is pursuing Master of
Engineering in
Power Electronics and Drives fr
om
Jeppiaar En
gineer
ing Colleg
e, Anna Univ
ersity
,
India. His area f
o
r inter
e
st in
clu
d
es in th
e fi
eld
of Power Converters for R
e
new
a
ble
energ
y
, P
W
M
techn
i
ques
an
d m
u
ltilevel converters.
V. Raghavendr
aRajan has received the Bachelo
r
de
gree in Electrical and Electr
onics Engineering
from Aurora’s
Seethaiah engin
eering co
lleg
e
,
`Jaw
aharlal Nehru University
,
H
y
der
a
bad
,
India in
2011. He is pu
rsuing Master
of Engineering
in
Power Electronics and
Drives from Jeppiaar
Engineering College, Anna Univer
sity
, Ind
i
a.
His area for interest
includes in the field of Wind
Energ
y
and
PWM
techn
i
ques in converters.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A N
o
vel
Hyb
r
i
d
N
e
gat
i
ve
Hal
f
C
ycl
e Bi
ased
Mo
dul
at
i
o
n
Sc
heme
f
o
r
C
a
sc
ade
d…
(
R
.
He
ma
nt
h
a
k
u
m
a
r)
21
1
M
r
.C.S
.Ajin S
e
khar re
ce
ived
t
h
e B.
E deg
r
ee
i
n
el
ectr
i
c
a
l
and
el
ectron
i
cs
eng
i
neer
ing from
S
R
R
engineering Co
llege, Anna Univ
ersi
ty
, Ch
ennai 2
012, India, He is
pur
suing Master
of Engin
eer
ing in
Power Electronics and Driv
es fr
om Jeppiaar
En
gin
eer
ing Col
l
eg
e, Anna
Univers
i
t
y
,
India
.
His
ar
ea
for interest
includes in th
e field
of Renew
a
bl
e
Energ
y
, Power
Converters, AC-AC Converters
and
PWM techniques.
Dr.M
.S
as
ikum
ar has
rec
e
ived
th
e Bach
elor d
e
gr
ee in
El
ectr
i
c
a
l
and El
ect
ronics
Engine
ering fro
m
K.S.Rangasam
y
College
of Tech
nolog
y
,
Madr
as Univ
ersity
, India in 1999
, and
the M.Tech deg
r
ee
in
power electronics from VIT Univ
ersity
,
in 2006.
He
has obtain
e
d
his Ph.D. degree from Sath
y
a
b
a
ma
University
, Chennai in 2011.
Currently
he
is
working as a Professor and
Head in Jeppiaar
Engineering College, Chennai Tamiln
adu, Ind
i
a.
His
area of inte
res
t
includ
es
in the fie
l
ds
of wind
energ
y
s
y
stems, Hy
br
id s
y
stem
s and power convert
er and soft-switching techn
i
ques. He is a life
me
mbe
r
of IST
E
.
Evaluation Warning : The document was created with Spire.PDF for Python.