Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
4, No. 4, Decem
ber
2014, pp. 419~
429
I
S
SN
: 208
8-8
6
9
4
4
19
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
A Fuzzy Logic Control Strat
egy for Doubly Fed Induction
Generator for Improved Perfor
mance under Faulty Operating
Conditions
G. V
e
nu
Ma
dhav
*, Y
.
P. Obulesu**
* Departm
e
nt
of
Ele
c
tri
cal
and
E
l
ectron
i
cs Eng
i
ne
ering,
Padm
asri
Dr. B.
V. R
a
ju
I
n
stitute
of
Te
chn
o
log
y
** Departmen
t
o
f
Electr
i
cal
and
Electronics Eng
i
neer
ing
,
LakiR
e
dd
y
BaliRedd
y
College of
Engineering
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 12, 2014
Rev
i
sed
May 21
, 20
14
Accepted
Jun 20, 2014
In this pap
e
r,
d
ecouple PI con
t
rol for outpu
t
activ
e and
reactive powers
which is t
he co
mmon
control technique for
power converter of Doubly
Fed
Induction Gen
e
r
a
tor (DFIG) is presente
d
.
But th
ere ar
e some disadvantages
with this control method like uncertainty
abou
t the exact model, behavior of
some parameter
s
or unpredictab
l
e wind
speed and tuning of PI
parameters
.
To overcome
th
e mentioned
dis
a
dvantag
es
a
fu
zz
y log
i
c
contro
l of DF
IG
wind turbin
e is
pres
ented
and
is
com
p
ared with
P
I
control
l
er
. To
val
i
dat
e
th
e
proposed scheme, simulation res
u
lts are pr
esented, these r
e
su
lts showed that
the
perfo
rmance of
fuzzy
control of
DFIG
is excellent
and it improves power
qualit
y
and st
ab
ilit
y
of wind tu
r
b
ine com
p
ar
ed t
o
PI control
l
er
.
The Fuz
z
y
logic contro
ller is applied to roto
r si
de converter
for activ
e power control and
voltag
e
regu
lat
i
on of wind
tur
b
ine.
The
en
tir
e work is
carr
i
ed out
in
MATLab/Simulink. Different f
a
ulty
op
er
ating conditions are
co
nsidered
to
prove th
e
effective implementation
of th
e propos
ed con
t
rol scheme.
Keyword:
W
i
nd
turb
in
e
Dou
b
l
y
f
e
d indu
ctio
n g
e
n
e
r
a
to
r
Fuzzy logic c
o
ntrol
PI con
t
ro
ller
Syn
c
hro
nou
s gen
e
r
a
t
o
r
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
G. Ve
nu
M
a
d
h
a
v,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
Pad
m
asri Dr.
B. V. Raju
In
stitu
te o
f
Tech
nolo
g
y
,
V
i
shn
upu
r, N
a
r
s
apur
,
Med
a
k D
i
st., 50
231
3, A
P
,
In
d
i
a.
Em
a
il: v
e
n
u
m
a
d
h
a
v
.
go
p
a
la@g
m
a
i
l
.co
m
1.
INTRODUCTION
W
i
n
d
ene
r
gy
i
s
one
o
f
t
h
e ex
t
r
a or
di
na
ry
so
urces
of
re
newable ene
r
gy
due to its clean character
a
nd
free
availability. More
over,
because
of re
duci
n
g the
co
st and im
proving techniqu
es, the
growt
h
of
wind
ener
gy
i
n
Di
st
r
i
but
ed
Ge
ne
rat
i
on (
D
G
)
uni
t
s
has de
vel
o
ped
rapi
dl
y
.
In t
e
rm
s of wi
nd
po
wer
gene
rat
i
on t
ech
n
o
l
o
gy
, beca
use o
f
num
ero
u
s t
ech
ni
cal
bene
fi
t
s
(hi
g
her e
n
er
gy
y
i
el
d,
red
u
ci
n
g
po
we
r fl
uct
u
at
i
o
ns
and i
m
pro
v
i
n
g
var s
u
ppl
y
)
t
h
e m
oder
n
M
W-si
ze
wi
n
d
t
u
r
b
i
n
es al
way
s
us
e
v
a
r
i
ab
le sp
eed o
p
e
r
a
tion
which
is ach
iev
e
d
b
y
a conv
er
ter
system
[
1
]. Th
ese conver
t
er
s ar
e typ
i
call
y
associ
at
ed wi
t
h
i
ndi
vi
d
u
al
ge
nerat
o
rs a
nd t
h
ey
cont
ri
b
u
t
e
si
gni
fi
ca
nt
l
y
t
o
t
h
e cost
s o
f
wi
nd t
u
r
b
i
n
es. B
e
t
w
ee
n
vari
a
b
l
e
spee
d
wi
n
d
t
u
rbi
n
e
gene
rat
o
rs,
D
o
ubl
y
Fe
d I
n
du
ct
i
on
Gene
rat
o
rs (
D
F
I
Gs
) a
n
d Pe
rm
anent
M
a
gnet
Syn
c
hro
nou
s
G
e
n
e
r
a
tor
s
(
P
MSG
s
) w
ith pri
m
ar
y co
nv
er
ter
s
a
r
e em
erging as
the
pre
f
erred technologie
s
[2].
Do
u
b
l
y
Fed
I
n
duct
i
o
n
Ge
ner
a
t
o
r
(D
FI
G)
i
s
one
o
f
t
h
e m
o
st p
opu
lar
wind tu
rb
in
es wh
ich
in
cl
u
d
e
an
in
du
ctio
n
g
e
nerato
r
with
slip
ring
, a p
a
rtial s
cale power electronic
conve
r
ter and a co
mm
on DC-link
capacitor. Power electronic
conver
te
r which enc
o
m
p
asses a back t
o
back AC-DC
-
AC voltage source
con
v
e
r
t
e
r
has t
w
o m
a
i
n
part
s;
Gri
d
Si
de
C
o
n
v
ert
e
r
(
G
SC
) t
h
at
rect
i
f
i
e
s
gri
d
v
o
l
t
a
ge a
n
d
R
o
t
o
r
Si
de C
o
nve
rt
er
(RSC) w
h
ic
h f
eeds r
o
to
r circ
uit. Po
wer c
o
n
v
erter
o
n
ly
pr
ocesses slip power the
r
efor
e it’s d
e
sign
ed
in p
a
rtial
scale and
just
about 30%
of
gene
rator rate
d powe
r [3
] which m
a
kes it attractive from
econom
i
cal point of
vi
ew.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
41
9 – 429
42
0
M
a
ny
di
f
f
ere
n
t
st
ruct
ure
an
d
cont
rol
al
go
ri
t
h
m
can be
use
d
f
o
r c
ont
rol
o
f
p
o
w
er
co
n
v
e
r
t
e
r.
I
n
t
h
i
s
pape
r,
deco
u
p
l
e
PI co
nt
r
o
l
of
out
put
act
i
v
e a
nd
react
i
v
e p
o
w
er t
o
i
m
pro
v
e
dy
nam
i
c behavi
o
r
of
wi
n
d
t
u
r
b
i
n
e
whi
c
h i
s
o
n
e
of t
h
e m
o
st
co
m
m
on co
nt
rol
t
echni
q
u
es i
s
prese
n
t
e
d
.
B
u
t
due
t
o
unc
ert
a
inty about the exact
m
odel
and
be
havi
or
of
som
e
param
e
t
e
rs suc
h
as wi
nd
,
wi
n
d
t
u
rbi
n
e
,
et
c an
d al
so
param
e
t
e
rs v
a
l
u
es
di
ffe
re
nces
du
ri
n
g
o
p
e
r
at
i
o
n
beca
use
of
t
e
m
p
erat
ur
e, e
v
ent
s
o
r
un
pr
edi
c
t
a
bl
e wi
nd
spee
d, t
uni
ng
o
f
P
I
p
a
ram
e
ters is
o
n
e
o
f
t
h
e m
a
i
n
prob
lem
s
in
th
is co
n
t
ro
l m
e
th
od
. Based
on th
e an
alysis, fu
zzy lo
g
i
c co
ntro
ller
has
bee
n
desi
g
n
ed
t
o
i
m
pro
v
e
t
h
e
dy
nam
i
c perf
orm
a
nce o
f
DFI
G
.
In f
u
zzy
l
ogi
c
cont
rol
t
h
ere i
s
no nee
d
o
f
a d
e
t
a
i
l
e
d
m
a
t
h
em
at
i
cal
m
odel
of t
h
e sy
st
em
and
just
u
s
i
n
g
th
e kno
wled
g
e
o
f
th
e to
tal op
eration
and
beh
a
v
i
o
r
of syste
m
is en
ou
gh in
d
e
sign
ing
th
e con
t
ro
ller. The
perform
a
nce of PI control is com
p
ar
ed
with
th
at o
f
fu
zzy lo
g
i
c co
n
t
roller an
d
it is i
n
v
e
stig
ated
that th
e
dy
nam
i
c perf
or
m
a
nce o
f
f
u
zz
y
l
ogi
c c
ont
rol
l
er i
s
qui
t
e
go
o
d
i
n
com
p
ari
s
o
n
wi
t
h
P
I
c
o
nt
r
o
l
l
e
r.
In th
is
p
a
p
e
r, th
e
d
y
n
a
m
i
c p
e
rfo
r
m
a
n
ce of
DFIG
un
d
e
r
d
i
fferen
t
fau
lt con
d
ition
s
is i
n
v
e
stig
ated
.
2.
THE SAMPL
E
TEST SYSTEM
Sam
p
le test sy
ste
m
is sh
own in
Fi
g
u
re
1
.
It
con
s
ists of t
h
ree m
a
in
feed
ers, two
DG un
i
t
s and
fi
v
e
local loads.
The two DG
unit
s
are a DFIG
and a sy
nc
hr
on
ou
s
g
e
n
e
r
a
tor. I
n
t
h
e pr
opo
sed
system
, d
i
f
f
e
r
e
n
t
cases of abno
rmal co
n
d
ition
s
are con
s
id
ered
,
w
h
en
th
ere i
s
a sin
g
l
e
p
h
a
se lin
e to
ground
fau
lt n
ear
DFIG, a
si
ngl
e p
h
ase l
i
ne t
o
gr
o
u
n
d
faul
t
on t
h
e
gri
d
an
d t
h
ree
phase l
i
n
e t
o
gr
ou
n
d
faul
t
near
DFI
G
et
c. The
con
f
i
g
urat
i
o
ns
and
pa
ram
e
t
e
r
s
of t
h
e D
F
I
G
and sy
nc
hr
on
o
u
s ge
ne
rat
o
r s
y
st
em
are ext
r
act
ed fr
om
[4]
.
M
a
i
n
gri
d
i
s
re
p
r
ese
n
t
e
d
by
a t
h
ree
p
h
ase
69
k
V
v
o
l
t
a
ge
sou
r
ce
with
1
000
MVA sh
ort circu
it cap
acity an
d X/R ratio
o
f
22
.2
.
C
o
n
n
ect
i
o
n p
o
i
nt
of m
a
i
n
and m
i
cro-
gri
d
sy
st
em
s i
s
cal
l
e
d Poi
n
t
of
C
o
m
m
on C
o
u
p
l
i
ng
(PC
C
)
.
2M
V
A
DF
IG
wi
n
d
t
u
r
b
i
n
e
c
onsi
s
t
s
o
f
po
w
e
r
el
ect
r
oni
c co
nv
erter co
n
t
ro
l un
it wh
ich feed
s
g
e
n
e
rator’s ro
t
o
r
and
gri
d
. P
o
w
e
r el
ect
roni
c c
o
n
v
e
r
t
e
r u
n
i
t
is t
o
cont
r
o
l
act
i
v
e and
react
i
v
e po
wer
of ge
nerat
o
r se
parat
e
l
y
and
to
im
p
r
o
v
e
power qu
ality and
stab
ility o
f
t
h
e
n
e
two
r
k
.
Th
e
p
a
ram
e
ters o
f
5
M
VA syn
c
h
r
on
ou
s
g
e
n
e
rato
r are
gi
ve
n i
n
Ta
bl
e
1.
Figure
1. Sam
p
le test syste
m
3.
M
O
D
ELING
OF BASIC COM
P
ON
EN
TS
3.
1. Wind an
d
Wind
Tu
rbin
e
W
i
nd effect pl
ays a fundam
e
ntal
ru
le in
win
d
t
u
rb
in
e m
o
d
e
lin
g
esp
ecial
ly fo
r in
teractio
n
an
alysis
b
e
tween
wind tu
rb
in
es an
d
th
e power syste
m
to
wh
ic
h
they are c
o
nnected.
Wind
m
odel descri
bes wi
nd
fl
uct
u
at
i
o
n i
n
wi
n
d
spee
d w
h
i
c
h causes p
o
w
er fl
uct
u
at
i
o
n i
n
ge
nerat
o
r. F
o
r wi
n
d
m
odel
fou
r
com
pone
nt
s can
b
e
co
nsid
er
ed
,
as d
e
scr
i
b
e
in
(1
) [5
]:
wind
bw
gw
r
w
nw
VV
V
V
V
(
1
)
Whe
r
e, V
bw
=
B
a
se wi
n
d
c
o
m
ponent
(
m/s
);
V
gw
= Gust
wind com
p
onent
(
m/s
); V
rw
= R
a
m
p
w
i
nd
co
mp
on
en
t
(
m/s
);
V
nw
=
No
ise
w
i
nd
co
mp
on
en
t (
m/s
).
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Fu
zzy L
o
gi
c
C
ont
r
o
l
St
r
a
t
e
gy f
o
r
Do
u
b
l
y
Fed
In
d
u
ct
i
o
n
Gene
rat
o
r f
o
r
Im
pr
oved…
(
G
. Ve
nu
Ma
d
hav
)
42
1
The
base c
o
m
pone
nt
i
s
a c
o
n
s
t
a
nt
spee
d;
wi
n
d
gust
c
o
m
pon
ent
m
a
y
be exp
r
esse
d as a si
n
e
or
cosi
ne
wave
function or their com
b
ination
[6]; a sim
p
le ram
p
function
will be use
d
for
ra
m
p
co
m
pone
nt
and
a
triangle wa
ve for
noise function
whic
h it’s freque
ncy a
nd a
m
pl
itude will be accordi
ngly
adjusted. The
si
m
p
le
b
l
o
c
k
d
i
ag
ram
for g
e
n
e
ration
of wi
n
d
speed
is illu
strated
in
Fi
g
u
re
2
and
wh
ich
in
clu
d
e
s all of fo
ur
com
pone
nt
s m
e
nt
i
one
d a
b
o
v
e
.
For electrical analysis, a
sim
p
lified aerody
nam
i
c
m
o
del
o
f
wi
nd
t
u
r
b
i
n
e i
s
no
r
m
al
ly
used.
Accord
ing
l
y win
d
b
l
ad
e torque fro
m
win
d
speed
will b
e
p
r
od
u
c
ed
wh
ich
is as fo
llows:
ro
t
wi
n
d
R
V
(
2
)
23
wp
w
i
n
d
1
PR
C
,
V
2
(
3
)
23
p
wi
n
d
w
w
ro
t
RC
,
V
P
T
2
(
4
)
Whe
r
e T
w
is an
aerod
yn
am
ic
to
rq
u
e
ex
tracted
fro
m
th
e win
d
(
Nm
),
is t
h
e air
d
e
n
s
ity (
kg/m
3
),
R is
th
e wind
tu
rb
ine ro
tor rad
i
u
s
(
m
),
Vwi
nd i
s
t
h
e eq
ui
val
e
nt
wi
n
d
spee
d (m
/
s
),
is th
e p
itch
an
g
l
e o
f
the ro
tor
(
de
g
),
is t
h
e tip
sp
eed rati
o
,
rot
is
the mechanical
speed of
the ge
nerat
o
r (
r
ad/
s
) and
C
p
is t
h
e po
wer
coefficient.
C
p
can be exp
r
essed as a fu
n
c
t
i
on o
f
t
h
e Ti
p Spee
d R
a
t
i
o
(TSR
) a
nd
pi
t
c
h an
gl
e whi
c
h i
s
gi
ven
by
(5
) [7]
,
[
8
]
:
i
12
.5
p
i
11
6
C
,
0
.
22
0.4
5
e
i
3
1
1
0
.035
0.
0
8
1
(
5
)
By increasing
pitch a
ngle, power c
o
e
fficien
t
and the
r
efore t
o
rque decrease
s
m
o
reove
r C
p
gr
owt
h
rat
e
chan
ges
i
n
di
f
f
e
rent
s
p
ee
d
by
.
3.
2. DFI
G
Mo
del
As illu
strated
in
Figu
re
3
,
DFIG system
is
a wo
und
ro
tor in
du
ction
g
e
n
e
rat
o
r wit
h
slip
ring
, wit
h
stator directly connected to t
h
e gr
i
d
and with rotor interf
aced through a back to ba
c
k
partial scale power
c
o
nv
er
te
r
.
Th
e c
o
nv
er
te
r
co
ns
is
ts
of t
w
o c
o
nve
nt
i
o
nal
v
o
l
t
a
ge s
o
u
r
ce c
o
nve
rt
ers t
h
at
are cal
l
e
d R
o
t
o
r Si
de
C
o
n
v
ert
e
r (R
S
C
) and
Gri
d
Si
de C
o
nve
rt
er (
G
SC
) a
nd a co
m
m
on DC
-l
i
n
k
[3]
.
C
o
nseq
ue
nt
l
y
t
h
e DFI
G
can
b
e
reg
a
rd
ed
as a trad
itio
n
a
l i
n
du
ctio
n
m
ach
in
e
with
a
no
n
z
ero ro
to
r vo
ltag
e
.
Usi
n
g t
h
e
C
o
n
c
or
di
a an
d
Par
k
t
r
a
n
sf
o
r
m
a
tion
al
l
o
ws
t
o
wri
t
e
a
dy
nam
i
c
m
odel
i
n
a
d-
q r
e
fe
renc
e
fram
e
fro
m
th
e trad
ition
a
l a-b-c fram
e as fo
ll
o
w
s [9
]:
Electro
m
a
g
n
e
tic to
rqu
e
:
e
m
ds
qs
q
s
ds
3
Ti
i
2
(
6
)
Activ
e an
d reactiv
e po
wer
o
f
stato
r
:
sd
s
d
s
q
s
q
s
3
PV
i
V
i
2
(
7
)
s
d
sd
s
q
sq
s
3
QV
i
V
i
2
(
8
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
41
9 – 429
42
2
Tabl
e 1. Sy
nc
h
r
o
n
ous
ge
ne
rat
o
r
pa
ram
e
t
e
rs
Rated Power
5 M
V
A
Ra
ted Voltage
13.
8 kV
R
a
0.
0052
p.
u
X
ls
0.
2
p.
u
X
d
2.
86
p.
u
X
q
2.
0
p.
u
X
d
0.
7
p.
u
X
q
0.
85
p.
u
X
d
0.
22
p.
u
X
q
0.
2
p.
u
T
do
3.
4
s
T
q
o
0.
05
s
T
do
0.
01 s
H
2.
9 s
Tabl
e 2. In
d
u
ct
i
on ge
nerat
o
r p
a
ram
e
t
e
rs
of w
i
nd
t
u
r
b
i
n
e
(
D
FIG
)
Rated Power
2 M
V
A
Rated Voltage
0.
69 kV
Stator
/r
otor
ratio
0.
4333
Angular
m
o
m
e
nt of iner
tia (
J
=2H)
1.
8293 p.
u
M
echanical da
m
p
ing
0.
02 p.
u
Stator
r
e
sistance
0.
0183 p.
u
Rotor
r
e
sistance
0.
0205 p.
u
Stator
leakage ind
u
ctance
0.
2621 p.
u
Rotor
leakage indu
ctance
0.
3152 p.
u
M
u
tual inductance
5.
572 p.
u
Fi
gu
re
2.
M
o
d
e
l
of
wi
nd
spee
d
Fi
gu
re
3.
Sc
he
m
a
t
i
c
represe
n
t
a
t
i
on
of
a
DFI
G
wi
n
d
tu
rb
in
e
Tab
l
e
2
sh
ows th
e
p
a
ram
e
ters of th
e
DFIG wh
ich
is
u
s
ed in
th
is
p
r
op
osed
system
. Th
e ro
t
o
r sid
e
conve
r
ter operates at the slip
fre
que
ncy. T
h
e
power c
o
nv
erter p
r
o
cesses only th
e slip
p
o
w
er, thu
s
if th
e
DFIG
to
b
e
v
a
ried with
in
abou
t ±30
%
slip, th
e ratin
g
o
f
pow
er
co
nv
er
ter
is
only ab
ou
t 30
%
o
f
r
a
ted pow
er of
the
wind
turb
in
e
[1
0
]
.
Settin
g
th
e stato
r
flux
v
ect
o
r
to
alig
n
with
d
-axi
s an
d as
sum
i
ng t
h
e per pha
se st
at
or
resi
st
ance
negl
i
g
i
b
l
e
, we have:
sd
s
s
q
s
,V
V
(
9
)
ss
s
s
s
Vr
i
d
t
(
1
0
)
Substitution (9) in
(7) a
n
d (8), th
e
active
and
reactive powe
r of stat
or flow int
o
the
gri
d
ca
n
be
expresse
d as:
m
ss
q
r
ms
L
3
PV
i
2L
L
(
1
1
)
ss
sm
d
r
ms
s
VV
3
QL
i
2L
L
(
1
2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Fu
zzy L
o
gi
c
C
ont
r
o
l
St
r
a
t
e
gy f
o
r
Do
u
b
l
y
Fed
In
d
u
ct
i
o
n
Gene
rat
o
r f
o
r
Im
pr
oved…
(
G
. Ve
nu
Ma
d
hav
)
42
3
Whe
r
e, i
qr
a
nd i
dr
are rotor c
u
rrent (A) i
n
d-
a
nd
q-a
x
i
s
re
spe
c
t
i
v
el
y
,
L
ls
and L
m
are stator leakage a
nd
m
u
t
u
al
i
nduct
a
nce (
H
),
s
is the electrical angula
r
velo
city (rad
/
s) and
V
s
i
s
t
h
e m
a
gni
t
u
d
e
of
t
h
e
st
at
or
pha
se
v
o
ltag
e
(V).
Th
is m
ean
s th
at u
s
ing
v
ect
or con
t
ro
l with
d-a
x
i
s
o
r
i
e
nt
ed st
at
or
fl
u
x
vect
o
r
i
n
rot
o
r si
de
co
nv
erter, activ
e and
reactiv
e po
wer can b
e
co
n
t
ro
lled
sep
a
rately. Th
is wi
ll b
e
ach
i
ev
ed
b
y
regu
latin
g i
qr
and
i
dr
respectively.
G
r
i
d
sid
e
conver
t
er
is p
r
esen
t
e
d
fo
r
k
eep
i
n
g D
C
lin
k
vo
ltag
e
of
cap
acitor co
n
s
tan
t
r
e
g
a
rd
less to
th
e
m
a
gni
t
ude a
n
d
di
rect
i
on
of r
o
t
o
r p
o
we
r. N
e
gl
ect
i
ng
po
w
e
r l
o
sses i
n
t
h
e con
v
ert
e
r, ca
paci
t
o
r c
u
r
r
ent
can be
descri
bed
as
fo
l
l
o
w:
dc
dc
g
c
d
d
c
r
dV
3
iC
m
i
i
dt
4
(
1
3
)
Whe
r
e i
gcd
stan
ds
fo
r the
d
-ax
i
s
cur
r
ent
fl
o
w
i
ng bet
w
ee
n gr
i
d
an
d gri
d
si
d
e
co
nve
rt
er (
A
),
i
dcr
is th
e
rot
o
r side
DC cur
r
ent (
A
), C is the DC-link
capacitance (
F
) an
d m
i
s
t
h
e P
W
M
m
odul
at
i
on i
n
dex
of t
h
e gri
d
side c
o
nverte
r.
The reactive powe
r flow
i
n
t
o
t
h
e g
r
i
d
f
r
om
GSC
ca
n
be e
x
press
e
d
as:
gg
g
c
q
3
QV
i
2
(
1
4
)
Whe
r
e V
g
i
s
t
h
e
m
a
gni
t
ude
o
f
gri
d
p
h
ase
vol
t
a
ge (
V
) an
d i
gcq
is
q
-a
xi
s cu
r
r
ent
of
gri
d
si
d
e
con
v
e
r
t
e
r
(
A
). Th
erefore it is seen
from (1
3) and
(14
)
, b
y
ad
ju
stin
g
i
gcd
and i
gcq
, DC
-l
i
n
k
vol
t
a
ge an
d Q
g
ca
n
be
co
n
t
ro
lled respectiv
ely.
3.
3. Pi
tch C
o
n
t
rol
To
pr
o
duce a
m
a
xim
u
m
ener
gy
, t
h
e
bl
ade
a
ngl
e m
u
st
be t
une
d
wi
t
h
wi
n
d
st
rai
ght
f
o
rwa
r
d
usi
ng
pi
t
c
h
angle control of wi
nd turbine blades
. It is wo
rt
h
no
ticing
th
at we can u
s
e th
is ch
aracteristic in
ab
n
o
rm
al
co
nd
itio
ns su
ch
as g
r
id
fau
lts to
p
r
o
t
ect g
e
n
e
rat
o
r fro
m
o
v
e
r sp
eed
i
n
g. In
two
d
i
fferen
t
cases, an
in
creasin
g
rot
o
r
spee
d m
a
y
be
occu
rre
d;
a wi
n
d
spee
d a
s
i
n
put
p
o
we
r a
n
d an abnorm
al case due t
o
a
fault e
x
istence.
These m
u
st be
distinguis
h
ed
first,
before
a cont
rol
ta
kes place. Wh
en the output term
inal voltage
falls un
d
e
r
0
.
9
p
.
u
an
d th
e
ro
to
r sp
eed
is in
creased
, it m
ean
s a fau
lt is h
a
ppen
e
d.
To
act
u
a
te th
e ev
en
t an
d to
d
ecrease th
e ro
tor sp
ee
d, t
h
e pi
t
c
h
an
gl
e
m
u
st
be m
a
nipul
at
ed
.
A
n
em
ergency
pi
t
c
h
a
ngl
e sh
o
u
l
d
be
a
dde
d wi
t
h
rat
e
o
f
+
1
0
(
de
g/
s/
1
0
0
0
r
p
m
)
for over s
p
eed protection.
4.
A F
U
ZZ
Y LO
GIC
A
N
D
PI
CO
NTR
O
L S
T
RATEG
Y
The
four m
a
in com
ponents
of fu
zzy l
ogic c
ont
roller are
fuzzificatio
n
,
f
u
zzy
i
n
fere
nce
en
gi
ne
, r
u
l
e
base a
n
d
def
u
zzi
fi
cat
i
on.
I
n
put
s
are
f
u
zzi
f
i
ed, t
h
en
bas
e
d
on
r
u
l
e
base
an
d i
n
fe
rence
sy
st
em
, o
u
t
p
u
t
s are
pr
o
duce
d
an
d f
i
nal
l
y
t
h
e fuzzy
out
p
u
t
s
are d
e
fuzzi
fi
e
d
an
d appl
i
e
d t
o
t
h
e
m
a
i
n
cont
r
o
l
sy
st
em
. Error
of
i
nput
s
fr
om
t
h
ei
r refe
rences
an
d
er
r
o
r
de
vi
at
i
ons
i
n
a
n
y
t
i
m
e interval a
r
e c
h
os
en as
inputs.
Ma
m
d
ani type
fuzzy
l
ogi
c c
ont
rol
i
s
co
nsi
d
e
r
ed
he
r
e
.
Fi
gu
re
4.
R
o
t
o
r
si
de c
o
nve
rt
er
fuzzy
c
o
nt
rol
l
e
r
uni
t
st
r
u
ct
u
r
e
Fi
gu
re
4 s
h
o
w
s t
h
e
bl
oc
k
di
ag
ram
of r
o
t
o
r si
d
e
co
n
v
e
r
t
e
r wi
t
h
f
u
zz
y
cont
r
o
l
l
e
rs.
Sim
i
l
a
rl
y
,
PI
cont
rollers are
used in place of fuzzy cont
rollers. The m
a
in objectives of this part are active power c
ont
rol
an
d
v
o
ltag
e
reg
u
l
ation
of DFIG wi
n
d
turb
ine u
s
in
g
o
u
t
p
u
t
reactiv
e po
wer co
n
t
ro
l. As illu
strated
in
Fi
gu
re 6
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
41
9 – 429
42
4
rot
o
r side c
o
nv
erter m
a
nages
to foll
ow
refe
r
e
nce active (
P
ref
) p
o
we
r
an
d v
o
ltage
(
V
re
f
) sep
a
rately u
s
ing
fu
zzy
cont
rol
l
e
rs
,
hy
st
eresi
s
cu
rre
n
t
cont
rol
l
e
r c
o
nve
rt
er a
n
d
ve
ct
or c
o
nt
rol
al
go
ri
t
h
m
.
B
a
sed
on
(
1
1
)
,
(
1
2
)
a
n
d
Fi
gu
re
6,
i
n
put
s o
f
fuzzy
co
nt
rol
l
e
r
are
error in active
a
n
d
reactive
powe
r
or v
o
ltage
an
d
th
e rate o
f
chan
g
e
s
in
errors in an
y
ti
m
e
in
terv
al.
After th
e
p
r
odu
ctio
n of re
feren
ce
d
-
and
q-ax
is ro
tor cu
rren
ts, th
ey con
v
e
rted
to
a-b
-
c re
fere
nce
fram
e
usi
n
g fl
ux a
n
gl
e,
rot
o
r
angl
e a
n
d
fi
na
l
l
y
sl
i
p
angl
e c
a
l
c
ul
at
i
on a
n
d
C
onc
or
di
a a
n
d
Par
k
tran
sform
a
t
i
o
n
m
a
trix
. Th
en th
ey ap
p
lied
to
a h
y
ster
esis curre
nt controller to be com
p
ared with actual
cu
rren
ts and
p
r
o
d
u
ce
switch
i
ng
tim
e in
terv
als of co
nv
erter.
Fi
gu
re
5.
I
n
p
u
t
an
d
out
put
m
e
m
b
ershi
p
fu
nct
i
ons
o
f
vol
t
a
ge
co
nt
r
o
l
l
e
r
Fi
gu
re
6.
I
n
p
u
t
an
d
out
put
m
e
m
b
ershi
p
fu
nct
i
ons
o
f
act
i
v
e
p
o
we
r c
o
nt
rol
l
e
r
Tabl
e 3.
R
u
l
e
bases o
f
vol
t
a
g
e
f
u
zzy
co
nt
r
o
l
l
er
∆
E (V)
∆
I
d
r
NB
N
ZE
P
PB
E (V
)
NB
NB
NB
N
N
ZE
N
NB
N
N
ZE
P
ZE
N
N
ZE
P
P
P
N
ZE
P
P
PB
PB
ZE
P
P
PB
PB
Tabl
e 4.
R
u
l
e
bases o
f
act
i
v
e po
we
r
f
u
zzy
c
ont
rol
l
e
r
∆
E
(P)
∆
I
qr
NB
N
ZE
P
PB
E
(P
)
NB
NB
NB
N N ZE
N
NB
N
N
ZE
P
ZE
N
N
ZE
P
P
P
N
ZE
P P PB
PB
ZE
P
P
PB
PB
Fi
gu
re 5 a
nd
6 sh
o
w
s i
n
p
u
t
s
and
out
put
m
e
m
b
ershi
p
f
unct
i
o
ns
. To a
voi
d m
i
scal
cul
a
t
i
ons d
u
e t
o
flu
c
tu
ation
s
in
wind
sp
eed
and
th
e effects
of no
ise on
data, trapez
oidal me
m
b
ershi
p
functions are c
h
os
en to
-0.
3
-0
.
2
-0.
1
0
0.
1
0.
2
0.
3
0
0.
2
0.
4
0.
6
0.
8
1
del
t
a
-v
D
egr
ee o
f
m
e
m
b
e
r
s
h
i
p
NB
N
PB
ZE
P
-0.
0
1
-
0
.
005
0
0.
00
5
0.
0
1
0
0.
2
0.
4
0.
6
0.
8
1
Dd
e
l
ta
-
v
D
egr
ee o
f
m
e
m
b
e
r
s
h
i
p
NB
NZ
E
PB
P
-0.
1
-0.
0
5
0
0.
0
5
0
0.
2
0.
4
0.
6
0.
8
1
Id
r
D
egr
ee o
f
m
e
m
b
e
r
s
h
i
p
NB
N
Z
E
P
B
P
-1
.
5
-1
-0.
5
0
0.
5
1
1.
5
0
0.
2
0.
4
0.
6
0.
8
1
del
t
a
-p
D
egr
ee o
f
m
e
m
b
e
r
s
h
i
p
NB
N
Z
E
P
P
B
-0.
0
1
-
0
.
005
0
0.
00
5
0.
0
1
0
0.
2
0.
4
0.
6
0.
8
1
Dd
e
l
ta
-
p
D
egr
ee o
f
m
e
m
b
e
r
s
h
i
p
NB
N
Z
E
P
P
B
-0.
0
1
-
0
.
005
0
0.
00
5
0.
0
1
0
0.
2
0.
4
0.
6
0.
8
1
Iq
r
D
egr
ee o
f
m
e
m
b
e
r
s
h
i
p
NB
N
Z
E
P
B
P
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Fu
zzy L
o
gi
c
C
ont
r
o
l
St
r
a
t
e
gy f
o
r
Do
u
b
l
y
Fed
In
d
u
ct
i
o
n
Gene
rat
o
r f
o
r
Im
pr
oved…
(
G
. Ve
nu
Ma
d
hav
)
42
5
have
sm
oot
h a
nd c
o
nst
a
nt
re
gi
o
n
i
n
t
h
e m
a
i
n
p
o
i
n
t
s
. R
u
l
e
bases ar
e sh
o
w
n i
n
Ta
bl
e 3
and
4.
NB
,
N,
ZE, P
an
d
PB rep
r
esen
ts n
e
g
a
tiv
e
b
i
g
,
n
e
g
a
tiv
e,
zero, po
sitiv
e
an
d po
sitiv
e
b
i
g
resp
ectiv
ely. For in
stan
ce
wh
en
E
(P), the error
of active powe
r
and
E
(P), the rate o
f
ch
ange o
f
activ
e
p
o
wer e
r
ror in a t
i
m
e
interval, are NB
mean
th
e ou
tpu
t
vo
ltag
e
is mo
re t
h
an
refe
re
nce and is inc
r
easing
dram
atica
lly
therefore refe
rence q-axi
s
rot
o
r
current which cont
rols
acti
v
e powe
r
s
h
ould
decrease
ra
pidl
y that re
prese
n
ts NB.
In t
h
is pa
pe
r,
Proportional a
n
d Integral (PI) c
o
nt
rollers
are used i
n
place of fuzzy c
ont
rollers a
s
sh
own
in
Figure 4
and
th
e resu
lts o
f
bo
th
t
h
e con
t
ro
lle
rs are com
p
ared.
PI contro
ller blo
c
k
s
op
erate in
th
e
f
eed fo
rw
ard
path
of
bo
th
act
ive power (P)
and reactive
powe
r
(Q)
f
eedback loops.
PI controller gains a
r
e
t
une
d by
usi
n
g
t
h
e Si
m
u
l
i
nk C
ont
r
o
l
De
si
g
n
so
ft
wa
re
whi
c
h m
a
kes t
h
e cont
rol
sy
st
em
s
desi
g
n
a
nd a
n
a
l
y
ze i
n
Sim
u
l
i
nk e
nvi
r
onm
ent
.
5.
RESULTS
A
N
D
DI
SC
US
S
I
ON
For i
nvest
i
g
at
i
on
of
dy
nam
i
c beha
vi
o
r
o
f
pr
op
ose
d
sy
st
em
wi
t
h
fuzzy
l
ogi
c and P
I
co
nt
rol
l
e
r
,
di
ffe
re
nt
si
t
u
at
i
ons a
nd e
v
ent
s
are co
nsi
d
e
r
e
d
. B
a
sed
o
n
di
ffe
rent
fa
ul
t
l
o
cat
i
ons an
d se
veri
t
y
, t
h
e sy
st
em
has
diffe
re
nt responses.
In eac
h c
o
ndition, di
ffe
rent pa
ram
e
ters
such a
s
voltage, active and reactive powe
r, rotor
cu
rren
ts and
d
c
lin
k
vo
ltag
e
are tak
e
n to
pr
ove th
e cap
a
b
ility
of th
e propo
sed
co
n
t
ro
ller.
(a
) Si
n
g
l
e
l
i
n
e
to
gr
oun
d
fa
ul
t ne
ar s
y
nc
hr
on
ous
gene
ra
t
o
r:
A sin
g
l
e lin
e to
g
r
ou
nd
sh
ort circu
it fau
lt with
du
rat
i
o
n
of 0
.
1
s
i
s
occur
r
ed
near t
h
e
sy
nchr
o
n
o
u
s
gene
rat
o
r.
The
fa
ul
t
d
u
rat
i
o
n
i
s
f
r
om
5s t
o
5.
1s.
Fi
g
u
r
e
7 s
h
o
w
s
di
f
f
e
r
ent
res
p
on
ses
of
t
h
e sy
nch
r
o
n
o
u
s
gene
rator and
DFIG in test syste
m
s. Duri
ng the
fault,
the
r
e is little variation in active
and
reactive
powe
r
of
wind turbi
n
e a
nd i
n
AC a
n
d
DC-link volta
ges
because
th
e fault is fa
r from
the wi
nd turbine
a
nd ne
ar
the
sy
nch
r
o
n
o
u
s
g
e
nerat
o
r,
s
o
, va
ri
at
i
on
i
n
act
i
v
e
an
d react
i
v
e po
we
r of
sy
nc
hr
o
n
o
u
s ge
nera
t
o
r
i
s
hi
g
h
.
(a)
(b
)
(c)
(d
)
(e)
(
f)
Fig
u
r
e
7
.
Sing
l
e
lin
e
to
gr
ound
f
a
u
lt n
ear
syn
c
hro
nou
s g
e
ner
a
to
r
at
5s w
ith
d
u
r
a
tion
o
f
0.1
s
(
a
)
o
u
t
p
u
t
vo
ltag
e
(b)
active power of sync
hronous
gene
rator (c) reacti
v
e
power of synchron
ous
ge
nerat
o
r (d) active
power
of
DFIG
(e) react
ive power of
DFIG (f) dc
-link voltage
4.
2
4.
4
4.
6
4.
8
5
5.
2
5.
4
5.
6
5.
8
6
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
Ti
m
e
(
s
ec
s
)
V
r
m
s
(
p
.u
)
O
u
t
p
ut
V
o
l
t
ag
e
PI
C
o
n
t
r
o
l
l
e
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
0
2
4
6
8
-4
-2
0
2
4
6
8
10
12
A
c
ti
v
e
P
o
w
e
r
o
f
S
y
n
c
h
r
o
n
o
u
s
G
e
n
e
r
a
to
r
Ti
m
e
(
S
ec
s)
P (
M
W
)
0
2
4
6
8
0
0.
02
0.
04
0.
06
0.
08
0.
1
0.
12
0.
14
0.
16
0.
18
0.
2
R
e
ac
t
i
v
e
P
o
we
r
o
f
S
y
nc
hr
o
n
o
u
s
G
e
n
e
r
a
t
o
r
Ti
m
e
(
S
ec
s)
Q
(M
W
)
4.
2
4.
4
4.
6
4.
8
5
5.
2
5.
4
5.
6
5.
8
6
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
1.
6
1.
8
2
Ti
m
e
(
s
ec
s
)
P (
M
W
)
Act
i
v
e
Po
w
e
r
o
f
DF
I
G
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
4.
2
4.
4
4.
6
4.
8
5
5.
2
5.
4
5.
6
5.
8
6
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
Ti
m
e
(
s
ec
s
)
Q (
M
W
)
Re
a
c
t
i
v
e
P
o
w
e
r
o
f
DF
I
G
PI
C
o
n
t
r
o
l
l
e
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
4.
2
4.
4
4.
6
4.
8
5
5.
2
5.
4
5.
6
5.
8
6
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
Ti
m
e
(
s
ec
s
)
Vd
c
(
p
.
u
)
D
C
-
L
i
nk
V
o
l
t
ag
e
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
41
9 – 429
42
6
GSC
gene
ral
l
y
cont
rol
s
t
h
e
dc b
u
s
v
o
l
t
a
g
e
of t
h
e bac
k
-
t
o-
back c
o
nve
rt
er an
d t
h
e e
x
cha
n
ge o
f
reactive power to the
gri
d
. T
h
e
propose
d
c
ont
rollers
pr
oduce the
necess
a
ry value
s
of
direct
and qua
d
rat
u
re
ax
is ro
tor curren
ts wh
ich
are
co
nv
erted
in
t
o
th
ree
p
h
a
se
curren
ts to m
a
in
ta
in
con
t
ro
l on
th
e m
ach
in
e stab
ility.
Th
e
p
o
wer d
e
li
v
e
red
fro
m
RS
C will b
e
in
creased
d
u
e
to
in
crease o
f
ro
t
o
r
cu
rren
ts
and
v
o
l
tag
e
s
wh
ich
in
tu
rn
increase t
h
e
dc
bus
volta
ge.
(a)
(b
)
(c)
(d
)
(e)
(
f)
(g
)
(h
)
Fig
u
r
e
8
.
Sing
l
e
lin
e
to
gr
ound
f
a
u
lt n
ear
D
F
I
G
w
i
nd
Turb
in
e (
a
)
ou
tpu
t
vo
ltag
e
(
b
)
active
po
w
e
r
o
f
DFIG
(c)
r
eactiv
e p
o
w
e
r
of
DFIG
(
d
)
activ
e
po
w
e
r
o
f
syn
c
hr
ono
us gen
e
r
a
t
o
r
(
e
)
r
e
activ
e
po
w
e
r
o
f
syn
c
hr
ono
us
g
e
n
e
rator (f) dc-lin
k
vo
ltag
e
(g
)
d-ax
is
ro
tor
cu
rr
en
t (h
)
q-
ax
is
ro
tor
cu
rr
en
t
(b) Three line
to gr
ound
fault ne
ar
DFI
G
:
To
prove
perform
ance of
fuzzy logic c
o
ntroller i
n
co
m
p
arison
with
d
e
co
up
le PI contro
l an
d to
i
nvest
i
g
at
e dy
n
a
m
i
c behavi
o
r
of
do
u
b
l
y
fed i
n
d
u
ct
i
o
n ge
ner
a
t
o
r i
n
o
n
e o
f
t
h
e w
o
rst
case
si
t
u
at
i
ons, a se
ver
e
th
ree lin
e t
o
groun
d
sho
r
t circu
it fau
lt is con
s
id
ered n
e
ar
t
h
e
w
i
nd
tur
b
i
n
e. Figu
r
e
9 sho
w
s th
e
w
a
v
e
fo
r
m
s,
there is re
duction in voltage a
n
d it re
duc
es t
o
near zero. In addition, ac
tive
and reactive deviations
i
n
DFIG
are the
m
o
st severe
. Rot
o
r current
r
eaches to its lim
i
t and c
r
owbar
protect
ion
unit short c
i
rcuits the
rotor a
nd
4.
2
4.
4
4.
6
4.
8
5
5.
2
5.
4
5.
6
5.
8
6
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
Ti
m
e
(
s
ec
s
)
V
r
m
s
(
p
.u
)
O
u
t
p
ut
V
o
l
t
ag
e
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
4.
2
4.
4
4.
6
4.
8
5
5.
2
5.
4
5.
6
5.
8
6
0
0.
5
1
1.
5
2
Ti
m
e
(
s
ec
s
)
P (
M
W
)
Act
i
v
e
Po
w
e
r
o
f
DF
I
G
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
4.
2
4.
4
4.
6
4.
8
5
5.
2
5.
4
5.
6
5.
8
6
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
Ti
m
e
(
s
ec
s
)
Q (
M
W
)
R
e
a
c
ti
v
e
P
o
w
e
r o
f
D
F
I
G
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
0
2
4
6
8
-4
-2
0
2
4
6
8
10
12
A
c
ti
v
e
P
o
w
e
r
o
f
S
y
n
c
h
r
o
n
o
u
s
G
e
n
e
r
a
to
r
Ti
m
e
(
S
ec
s)
P
(M
W
)
0
2
4
6
8
0
0.
02
0.
04
0.
06
0.
08
0.
1
0.
12
0.
14
0.
16
0.
18
0.
2
R
e
ac
t
i
v
e
P
o
we
r
o
f
S
y
nc
hr
o
n
o
u
s
G
e
n
e
r
a
t
o
r
Ti
m
e(
S
e
c
s
)
Q
(M
W
)
4.
2
4.
4
4.
6
4.
8
5
5.
2
5.
4
5.
6
5.
8
6
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
Ti
m
e
(
s
ec
s
)
Vd
c
(
p
.
u
)
D
C
-
L
i
nk
V
o
l
t
ag
e
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
4.
2
4.
4
4.
6
4.
8
5
5.
2
5.
4
5.
6
5.
8
6
-2
.5
-2
-1
.5
-1
-0
.5
0
0.
5
1
1.
5
2
2.
5
Ti
m
e
(
s
ec
s
)
Id
r
(
p
.u
)
d
-
a
x
i
s
ro
to
r c
u
rre
n
t
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
4.
2
4.
4
4.
6
4.
8
5
5.
2
5.
4
5.
6
5.
8
6
-2
.5
-2
-1
.5
-1
-0
.5
0
0.
5
1
1.
5
2
2.
5
Ti
m
e
(
s
ec
s
)
Iq
r
(
p
.u
)
q
-
a
x
i
s
ro
to
r c
u
rre
n
t
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Fu
zzy L
o
gi
c
C
ont
r
o
l
St
r
a
t
e
gy f
o
r
Do
u
b
l
y
Fed
In
d
u
ct
i
o
n
Gene
rat
o
r f
o
r
Im
pr
oved…
(
G
. Ve
nu
Ma
d
hav
)
42
7
ro
t
o
r si
d
e
conv
erter
bu
t still
stato
r
is connected
to
th
e
n
e
tw
ork
and
du
e to
sup
e
r
syn
c
h
r
on
ou
s
o
p
e
rat
i
o
n
o
f
wind
tu
rb
i
n
e it can
produ
ce activ
e p
o
wer. Th
e propo
sed
co
n
t
ro
ller m
a
in
tain
s th
e ro
tor
cu
rren
ts
un
d
e
r th
eir
safet
y
l
i
m
i
t
s
wi
t
hout
hi
gh
ov
er cur
r
ent
s
. D
u
e t
o
m
i
t
i
g
at
i
on of t
h
e o
v
er cu
rre
nt
s of t
h
e r
o
t
o
r t
h
e bac
k
-t
o
-
bac
k
co
nv
erter is less affected
b
y
this p
e
rt
u
r
b
a
tion
wh
ich
p
r
od
u
c
es sho
r
t
d
c
bu
s
v
o
ltag
e
oscillat
i
o
n
s
.
(a)
(b
)
(c)
(d
)
(e)
(
f)
(g
)
(h
)
(i)
(j)
Fig
u
r
e
9
.
Thr
e
e lin
e to
gr
ound
sh
or
t cir
c
u
it fau
lt n
e
ar
D
F
IG w
i
nd
t
u
rb
in
e (a)
o
u
t
p
u
t
vo
ltag
e
(
b
)
activ
e po
w
e
r
of
DF
I
G
(c
) re
active
p
o
we
r o
f
D
F
I
G
(d
)
acti
v
e po
we
r of sy
nch
r
on
o
u
s gen
e
rator
(e
) reactive
p
o
w
er
o
f
sy
nch
r
o
n
o
u
s
g
e
nerat
o
r (f
) dc-
link voltag
e
(
g
) d-a
x
is
r
o
to
r
c
u
r
r
ent (
h
) q
-
axi
s
r
o
to
r
c
u
r
r
ent (i) voltage
acr
o
ss
the crowba
r
re
sistance (j) pitc
h a
ngle
0
1
2
3
4
5
6
7
8
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
Ti
m
e
(
s
ec
s
)
Vr
m
s (
p
.
u
)
O
u
t
p
ut
V
o
l
t
ag
e
PI
C
o
n
t
r
o
l
l
e
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
0
1
2
3
4
5
6
7
8
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
Ti
m
e
(
s
ec
s
)
P (
M
W
)
Act
i
v
e
Po
w
e
r
o
f
DF
I
G
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
0
1
2
3
4
5
6
7
8
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
Ti
m
e
(
s
ec
s
)
Q (
M
W
)
R
e
a
c
ti
v
e
P
o
w
e
r o
f
D
F
I
G
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
0
2
4
6
8
-4
-2
0
2
4
6
8
10
12
A
c
ti
v
e
P
o
w
e
r
o
f
S
y
n
c
h
r
o
n
o
u
s
G
e
n
e
r
a
to
r
Ti
m
e
(
S
ec
s)
P
(M
W
)
0
2
4
6
8
0
0.
02
0.
04
0.
06
0.
08
0.
1
0.
12
0.
14
0.
16
0.
18
0.
2
R
e
ac
t
i
v
e
P
o
we
r
o
f
S
y
nc
hr
o
n
o
u
s
G
e
n
e
r
a
t
o
r
Ti
m
e
(
S
ec
s)
Q
(M
W
)
0
1
2
3
4
5
6
7
8
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
Ti
m
e
(
s
ec
s
)
Vd
c
(
p
.
u
)
D
C
-
L
i
nk
V
o
l
t
ag
e
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
0
1
2
3
4
5
6
7
8
-2
.5
-2
-1
.5
-1
-0
.5
0
0.
5
1
1.
5
2
2.
5
Ti
m
e
(
s
ec
s
)
I
d
r (p
.
u
)
d
-
a
x
i
s
ro
to
r c
u
rre
n
t
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
0
1
2
3
4
5
6
7
8
-2
.5
-2
-1
.5
-1
-0
.5
0
0.
5
1
1.
5
2
2.
5
Ti
m
e
(
s
ec
s
)
Iq
r
(
p
.u
)
q
-
a
x
i
s
ro
to
r c
u
rre
n
t
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
0
1
2
3
4
5
6
7
8
-2
0
2
4
6
8
10
x 1
0
-4
Ti
m
e
(
s
ec
s
)
V
o
l
t
ag
e ac
r
o
s
s
t
h
e
C
r
ow
b
a
r
R
e
s
i
s
t
anc
e
C
r
o
w
ba
r
P
r
ot
ec
t
i
o
n
S
w
i
t
ch
C
o
n
d
i
t
i
o
n
P
I
C
o
n
t
r
o
lle
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
Ti
m
e
(
s
ec
s
)
T
h
et
a (
d
eg
)
P
i
t
c
h an
g
l
e
PI
C
o
n
t
r
o
l
l
e
r
F
u
zz
y C
o
n
t
r
o
l
l
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
41
9 – 429
42
8
Furt
herm
ore, b
e
si
de el
ect
ri
cal
prot
ect
i
o
n, an
em
ergency
pi
t
c
h an
gl
e i
s
i
n
t
r
od
uce
d
wi
t
h
sl
ope
of ±
1
0
(de
g
/
s
)
.
When
vol
t
a
ge
dr
o
p
s
un
de
r 0.
8 p
.
u a
nd
wi
n
d
spee
d
i
s
const
a
nt
, em
erge
ncy
pi
t
c
h
angl
e d
u
e t
o
e
x
t
e
r
n
al
faul
t
act
i
v
at
es t
o
pr
ot
ect
DFI
G
fr
om
over speedi
ng a
nd
k
eep o
u
t
p
ut
po
wer bel
o
w
rat
e
d val
u
e
.
As s
o
o
n
as
v
o
ltag
e
and
speed
co
m
e
b
ack to
no
rm
al situ
atio
n
it star
ts to
d
e
crease an
d retu
rn
s to
no
rmal situ
atio
n
.
Gri
d
side c
o
nve
r
ter
acts as S
T
ATC
O
M a
n
d tries t
o
restore
vo
ltag
e
. After
ro
to
r
cu
rren
t
return
s
u
n
d
e
r th
e limit
and
a
co
nstan
t
tim
e
d
e
lay, crowb
a
r switch op
en
s
an
d ro
tor si
d
e
con
v
e
rter contin
u
e
s t
o
o
p
e
rate. As illu
strated
in
Fig
u
re
9
,
fu
zzy co
n
t
ro
l un
it o
f
wind
turbin
e m
a
in
tain
s g
ood
stab
ility an
d rest
o
r
es
p
a
ram
e
ters to
th
eir
pre
d
efi
n
ed val
u
es as
well in c
o
m
p
arison wit
h
PI c
o
ntroller.
6.
CO
NCL
USI
O
N
In t
h
i
s
pape
r,
dy
nam
i
c perfo
rm
ance of DF
I
G
u
n
d
er
di
ffe
r
e
nt
faul
t
co
n
d
i
t
i
ons wi
t
h
PI c
ont
rol
l
e
r a
n
d
fuzzy
l
ogi
c c
o
nt
r
o
l
has
bee
n
i
nvest
i
g
at
e
d
.
T
h
e P
I
c
ont
rol
l
e
r a
nd
f
u
zzy
l
o
g
i
c cont
rol
l
e
r
ha
s bee
n
desi
g
n
e
d
a
n
d
im
pl
em
ent
e
d i
n
M
A
TLab/
Si
m
u
li
nk.
To
p
r
ove
t
h
e
per
f
o
r
m
ance o
f
co
nt
r
o
l
l
e
r u
n
i
t
,
t
h
e
abn
o
r
m
a
l
sit
u
at
i
ons
of
si
ngl
e l
i
n
e t
o
gr
o
u
n
d
fa
ul
t
near and a
w
ay
fr
om
DFIG
and three phase
line to gr
oun
d f
a
u
lt n
ear
D
F
I
G
are
exert
e
d o
n
pr
op
ose
d
sy
st
em
. The
o
u
t
p
ut
vol
t
a
ge
, act
i
v
e
an
d react
i
v
e
po
we
rs,
dc-l
i
n
k v
o
l
t
a
ge
, di
re
ct
an
d
qua
d
r
at
ure a
x
i
s
t
o
t
o
r c
u
r
r
ent
s
are im
pro
v
e
d
fo
r f
u
zzy
l
ogi
c
cont
r
o
l
l
e
r c
o
m
p
ared t
o
PI c
ont
rol
l
e
r f
o
r di
ffe
rent
cases of fa
ult near and a
w
ay from
DFIG. T
h
e
pe
rfo
rman
ce o
f
fu
zzy lo
g
i
c con
t
ro
ller
is fou
nd qu
ite
satisfacto
r
y in
i
m
p
r
ov
ing
stabilit
y an
d
p
o
wer qu
ality o
f
wi
n
d
t
u
rb
in
e com
p
ared
to
PI co
n
t
ro
ller. Cl
o
s
er fau
lt
lo
catio
n
to
th
e win
d
t
u
rb
in
e
cau
ses m
o
re sev
e
re effect and a th
ree lin
e to g
r
o
und
sho
r
t
circu
it fau
lt n
e
ar th
e
wind turbine a
s
the
worst case in
whic
h volt
a
ge decreases until
zero
a
n
d
rotor c
u
rrent e
x
ceeds its lim
i
t
.
REFERE
NC
ES
[1]
Datta R
,
Rang
anathan VT. Var
i
able-Speed Win
d
Po
wer Generation Using Doubly
Fed
Wound Rotor Inductio
n
Machine
- A co
m
p
arison W
ith
Alterna
tive
Sche
m
e
s.
IEEE Transactions on En
ergy Conversion
.
2002; 17(3): 414
–
421.
[2]
Li G, M Yin, M Zhou, C Zhao. Decoupli
ng cont
rol for
m
u
lti term
inal
VSCHVDC b
a
sed wind far
m
inter
c
onnection
.
IEEE.
Power En
gineering
Society General Meeting
. 2007: 1-6.
[3]
Holdsworth L,
XG Wu, JB Ekanay
ake
and N Jenkins. Co
mparison of fixed speed and doubly
-
f
e
d induction win
d
turbines dur
ing
power
s
y
stem disturbances.
IEE
Proc. G
e
ner. Transm. Distrib.,
2
003; 150 (3)
:
34
3-352.
[4]
Katiraei F, MR Iravani and PW Lehn.
Micro-G
r
id Autonomous Operation Du
ring and Subsequ
e
nt to Islanding
Proc
e
ss.
IE
EE T
r
ans. Power De
l
i
very
.
2005
: 20(
1).
[5]
Youjie Ma, Haishan Yang,
Xuesong
Zhou, Li
Ji ,
2009. The dynamic modelin
g of wind farms considering wake
effects and
its
optimal distribu
tion.
World
Non-Grid-Connected Wind Power and En
erg
y
C
onference, 2009
.
WNWEC 2009; 22 (2): 1
- 4
.
[6]
Rey
n
o
l
ds MG. S
t
ability
of wind
tu
rbine g
e
ner
a
tor
s
to wind gusts
.
Purdue University
R
e
port TR-
EE
79-20.
[7]
Heier S. Grid
integration of
wind
energ
y
Convers
ion
s
y
stems. Chichester
: John Wi
ley
and Sans
Ltd
.
1998; 35-302.
[8]
Slaotweg G, H
Polindcr, WL Kling.
Dynamic m
odeling o
f
a w
i
n
d
turbine w
ith d
i
rect drive syn
c
h
r
onous generato
r
and back to back voltage source
converter and its control.
P
r
oceedings
of the European W
i
nd Energ
y
Confe
r
enc
e
,
Copenhagen
,
Denmark. 2001; 10
14-1017.
[9]
Bose BK. 1986
.
Power electron
ics and AC dr
ives. New Jersey
: Prentice-Hall. 1986
; 46-52.
[10]
Jang J, Y Kim,
D Lee. Active
and reactive pow
er contro
l of DFIG for wind energ
y
conv
ersion
under unbalanced
grid voltage. Pro
c
. I
E
EE Power
Electroni
cs
and M
o
tion Control Co
nference. 2006;
3.
BIOGRAP
HI
ES OF
AUTH
ORS
G. Venu Madh
av
rec
e
iv
ed his
B.Te
ch.
degr
ee
in El
ec
tric
al
an
d El
ectron
i
cs
E
ngineer
ing from
Jawaharlal Nehr
u Techno
logical University
, H
yderabad
in
2002
. M.Tech. degree in Power and
Industrial Driv
es from Jawaharlal Nehru
Techn
o
logical Univ
ersity
, An
antapur
in 2005. He
is
pursuing Ph.D.
from Jawaharlal
Nehru Technological University
,
H
y
derab
a
d. Currently
he is
working as
a As
s
o
ciate P
r
ofe
s
s
o
r, Dept. of
EEE, BVRIT,
Narsapur, Medak Dist. He has
published sever
a
l National and
Intern
ational Journals and Conf
erence
s.
His a
r
ea
of inte
re
st is
Advanced Contr
o
l strateg
i
es of Electric Driv
es, Microprocessors and Microcontrollers, Fuzzy
logic & ANN applications,
and Network Analy
s
is
. Have professional society
memberships in
IETE (M), ISTE (LM), IE (AM)
, SESI (LM)
and
IAENG (M).
Evaluation Warning : The document was created with Spire.PDF for Python.