Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
7
,
No
. 2,
J
une
2
0
1
6
,
pp
. 54
3~
55
0
I
S
SN
: 208
8-8
6
9
4
5
51
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
The Effects of Total Harmonics
Distortion for Power Factor
Correction at Non-Linear Load
R. A.
R
a
ni,
Sh
akir
S
a
at
, Yus
m
arnit
a
Yus
o
p,
H
u
z
a
imah
Husin, F. K. Abd
u
l
R
a
hm
a
n
, A. A.
Is
a
Faculty
of Electr
onics
&
Computer
Eng
i
ne
ering,
Universiti
Tekn
i
k
al Ma
la
ysia
Me
laka
, Me
laka
, M
a
la
ysi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Nov 26, 2015
R
e
vi
sed M
a
r
7,
2
0
1
6
Accepted
Mar 22, 2016
This
paper p
r
es
ents
the
effe
ct o
f
to
tal harmonic distortion (
T
HD) in power
factor corr
ectio
n (PFC) at no
n-linear load
. This stud
y
focuses on the
relationship between THD and
PFC. This is
bea
c
us
e, th
e power
factor
affe
cts
THD. This
occu
rs
in power s
y
s
t
em
as
we have varie
t
y
o
f
loads
,
i. e l
i
ne
a
r
load or non-lin
ear load
. The v
a
riet
y
of lo
ads will inf
l
uence th
e sinusoidal
waveform, which comes out from harmoni
c distortion.
Thus, based on this
stud
y
,
we
can
co
mpare the eff
ective method in improving the pow
er factor as
it will not distu
r
b the perform
a
n
ce of THD. T
h
e focus of stud
y
is on the
single phase load, where
the vo
ltage r
e
st
riction
is 240 V. The analy
s
is will
only
focus on th
e consumer, which depe
nds on the variety
of non-
linear load.
Bes
i
des
,
th
e par
a
m
e
ters
for an
al
ys
is
ar
e bas
e
d o
n
the per
cen
tag
e
of THD and
the v
a
lue of po
wer factor. Th
e instru
ment for
measuring the p
a
rameter
is
based on power
factor
correction
device
or technique. On th
e other hand, th
e
method that w
a
s used for
th
is st
ud
y
is b
a
sed on simulation which
incorporated
the Multisim
softw
a
re. At
the end
of ths stud
y
,
we can
choose
the most effective method that can be used
to
improve the p
o
wer factor
correc
tion
witho
u
t disturbi
ng th
e
THD.
Keyword:
Mu
ltisi
m
No
n-l
i
near l
o
a
d
s
Power factor
c
o
rrection
Tot
a
l
ha
rm
oni
c di
st
o
r
t
i
o
n
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Mo
hd
Sh
ak
ir
b Md
Saat,
Facu
lty of Electron
ics & C
o
mp
u
t
er En
g
i
n
eerin
g
Un
i
v
ersiti Tekn
ik
al Malaysia Melak
a
H
a
ng
Tu
ah
Jay
a
, 761
00
Du
r
i
an
Tun
g
g
a
l, Melak
a
, Malaysia
Em
a
il: sh
ak
ir@u
tem
.
ed
u
.
m
y
1.
INTRODUCTION
Thi
s
st
udy
foc
u
ses
o
n
t
h
e
ef
f
ect
of
t
o
t
a
l
ha
r
m
oni
cs di
st
ort
i
on
i
n
p
o
we
r
fa
ct
or c
o
r
r
ect
i
o
n
at
a
no
n-
lin
ear lo
ad
. By d
e
fi
n
itio
n
,
po
wer
factor co
rrectio
n is
a
technique t
h
at
is opted to
minise the amount
of
react
i
v
e p
o
w
er
as a
m
easure
t
o
bal
a
nce t
h
e
po
we
r fact
o
r
.
The c
o
m
pone
n
t
s at
a non
-l
i
n
ear l
o
a
d
are a
b
l
e
t
o
i
n
fl
ue
nce t
h
e
p
o
we
r fact
or
val
u
e w
h
i
c
h i
s
t
r
i
gge
re
d by
t
h
e
com
pone
nt
s su
ch as t
h
e i
n
d
u
c
t
or o
r
ca
paci
t
o
r. T
h
e
ten
a
n
t
s
will b
e
p
e
n
a
lized
if t
h
e
p
o
wer fact
o
r
read
ing
d
o
e
s no
t tally with
th
e rated read
ing
p
r
o
v
i
d
e
d
b
y
th
e
Su
ruh
a
n
j
aya Ten
a
g
a
, Ten
a
g
a
Nasion
al Berhad
(TNB) [1
].
Th
e purpo
se of th
is stu
d
y
is to
in
vestig
ate th
e to
tal
harm
oni
cs di
st
ort
i
o
n base
d o
n
t
h
e
va
ri
o
u
s
t
echni
que
s of
po
wer fa
ct
o
r
correctio
n
at
non-
lin
ear
l
o
ad
. B
e
sid
e
s
that, the m
o
st
effective m
e
thod
of
po
wer
fa
ctor correction that will not di
sturb
or
disrupt the total harm
onics
d
i
sto
r
tion will
b
e
p
r
op
o
s
ed in th
is
work as
well.Th
e to
tal
h
a
rm
o
n
i
c
d
i
stortio
n (THD) is
th
e to
tal
v
o
ltage ratio
d
i
v
i
d
e
d
b
y
the cur
r
e
n
t
h
a
r
m
o
n
i
c to
t
h
e
f
unda
m
e
n
t
al v
o
ltage /cu
r
r
e
n
t
h
a
rm
o
n
i
c. A
ll th
e v
a
lu
es ar
e dep
e
nd
an
t
o
n
th
e harm
o
n
i
c fu
nd
am
en
tal
v
a
lu
e. If th
e v
a
lu
e o
f
THD is larg
er th
an
1
%
, it d
e
n
o
t
es th
at th
e lo
ad
co
n
t
ain
s
a
lo
w
qu
ality p
o
wer. Th
e
fo
rmu
l
a to
calcu
late th
e
p
e
rcen
t
o
f
THD is sh
own
in
[2
]:
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
7, No
. 2, Ju
ne
20
16
:
551
-56
0
55
2
To
d
a
te, th
ere
are v
a
riou
s m
e
th
od
s
u
s
ed to
measu
r
e
p
o
wer qu
ality in
th
e p
o
wer system. On
e
o
f
th
e
m
e
thods is by m
easuring power fact
or. A low
powe
r factor
denotes that
the power
qua
lity is poor. Infact, a
lo
w qu
ality o
f
p
o
wer m
a
y h
a
v
e
a n
e
g
a
tiv
e i
m
p
act ei
th
er o
n
th
e
p
o
wer
m
a
n
a
g
e
m
e
n
t
o
f
En
erg
y
Com
p
an
y
(Tena
g
a
Nasi
onal in t
h
e case
of Malaysia whic
h is
no
rmally k
n
o
wn
as
TNB), th
e
consum
er or to t
h
e load.
Based
on
th
e TNB, if th
e
p
o
wer factor v
a
l
u
e is less th
an
0
.
9 (
f
o
r
electr
i
city su
pp
ly 1
32k
V an
d
ab
ov
e)
and
less
than 0.85 (electricity
supply be
low 132
kV), a
surcha
rge will
be
im
posed on the
cons
um
er [1].
The
o
retically, an ideal powe
r factor is des
c
ribe
d
as un
ity o
r
on
e ho
wev
e
r in a real
application
sy
st
em
, it
i
s
im
pos
si
bl
e t
o
ha
v
e
po
wer fa
ct
or
at
uni
t
y
si
nce i
t
has di
st
ri
b
u
t
e
d l
o
sses i
n
t
h
e
pr
o
duct
i
o
n p
r
o
cess.
Th
us, at
j
unct
u
re w
h
e
n
t
h
e
va
l
u
e o
f
po
we
r f
act
or i
s
l
e
ss than
o
n
e
, it shows th
at t
h
ere is a pro
b
l
em
with
the
appa
re
nt powe
r. T
h
is beca
use
the re
duction
of a
p
pare
nt
power is tri
gge
re
d by the
losses
in the reacti
v
e
powe
r
whe
r
e
b
y in the real proces
s,
it is n
ecessary to
p
r
ov
id
e a m
a
g
n
e
tisin
g
field. Th
is is requ
ired
b
y
m
o
to
rs o
r
o
t
h
e
r
i
n
d
u
ct
i
v
e l
o
ads
i
n
or
der
t
o
pe
r
f
o
r
m
t
h
e fu
nct
i
ons
.
O
n
t
h
e
ot
her
ha
n
d
, t
h
e
p
o
we
r
fact
o
r
i
s
rega
rde
d
a
s
po
or i
f
there is a diffe
r
enc
w
in the
signi
fi
cant phas
e betwee
n the
voltage a
n
d curre
n
t
at th
e termin
als lo
ad
wh
ich
i
s
k
nown
as th
e harm
o
n
i
c d
i
sto
r
t
i
o
n
.
A h
i
gh
h
a
rm
o
n
i
c co
n
t
en
t in
wav
e
fo
rm
will g
i
v
e
i
m
p
act
to
th
e p
o
wer facto
r
val
u
e.
T
h
e e
x
a
m
pl
es of com
m
on i
n
d
u
c
tiv
e
lo
ad
s in
clud
e t
h
e indu
ctio
n mo
tor,
a
power t
r
ans
f
orm
e
r, bal
l
ast in
a l
u
m
i
nai
r
e, a wel
d
i
n
g set
or
an i
n
d
u
ct
i
on
fu
rnace
. A di
s
t
ort
i
o
n t
h
at
oc
curs i
n
a cu
rre
nt
wave
f
o
rm
can b
e
created by usi
n
g
a rectifier, an
inve
rter,
a varia
b
le
s
p
eed
d
r
i
v
e,
a s
w
i
t
c
hed
m
ode
po
w
e
r s
u
p
p
l
y
,
di
sc
har
g
e
lighting or
other a
v
ailable electronic loa
d
s.
In
d
u
ct
i
v
e l
o
a
d
s cont
ri
b
u
t
e
t
o
a po
or
Po
we
r Fact
or C
o
r
r
ect
i
on.
As a
rem
e
dy
fo
r t
h
e
pr
o
b
l
e
m
,
powe
r
facto
r
correcti
o
n
equ
i
p
m
en
t n
eeds to
b
e
add
d
e
d
i
n
to
th
e
p
o
wer system
.
In
add
itio
n
t
o
th
is,
h
a
rm
o
n
i
c filter
m
u
st b
e
in
tro
d
u
ced
in
th
e circu
it in
o
r
d
e
r to rectify an
y d
i
sto
r
ted
cu
rren
t
wav
e
fo
rm
wh
ich
ten
d
s to
redu
ce th
e
p
o
w
e
r
f
actor
valu
e. Ev
en
thou
gh
th
e i
n
vert
ers are us
ual
l
y
cl
aim
e
d t
o
have a rel
a
t
i
v
el
y
hi
gh
po
wer
f
act
or
val
u
e (>
0.
9
5
)
,
t
h
e t
h
eo
ry
i
s
o
n
l
y
val
i
d
w
h
en
t
h
e wave
f
o
rm
cur
r
ent
i
s
i
n
c
o
nsi
s
t
e
nt
an
d o
n
l
y
i
nvol
ves t
h
e
angl
e
calcu
latio
n
b
e
tween
t
h
e
v
o
ltag
e
and
cu
rren
t. In
fact, a
r
eal v
a
lu
e
o
f
power fact
o
r
in reality is aro
u
n
d
0
.
5
to
0.
75
.
In
ge
nera
l
,
t
h
ere
are
t
w
o
di
f
f
ere
n
t
m
e
t
hods
o
f
Po
wer
Fact
or
C
o
rrect
i
o
n
w
h
i
c
h
are
k
n
o
w
n as
t
h
e
pa
ssi
ve
com
pone
nt
s an
d t
h
e act
i
v
e co
m
ponent
s. P
o
wer Fact
or C
o
rrect
i
o
n (P
FC
)
ope
rat
e
s by
re
duci
ng t
h
e har
m
oni
c
di
st
ort
i
o
n
an
d
i
n
creases
t
h
e
r
eal
po
we
r l
e
ve
l
val
u
e
d
u
ri
ng
t
h
e o
p
e
r
at
i
o
n
.
To a
d
d
on
, t
h
e
val
u
e
of
real
po
we
r
level can be i
n
creased
sim
p
ly by im
proving
the curre
nt sh
ap
e inp
u
t
.
Th
e
Lin
ear lo
ad
, i.
e p
u
rely resistiv
e lo
ad
is the m
o
st ide
a
l tool in m
i
nimizing
the los
s
es as com
p
are
d
to the
reactive load.
This
is
because the re
active
l
o
ad m
a
y
have
an e
r
r
one
o
u
s
p
o
we
r s
u
ppl
y
s
w
i
t
c
hi
n
g
.
B
e
si
des t
h
at
, t
h
e
l
o
w
po
we
r fact
or
can
be c
o
m
p
ensat
e
d
by
usi
n
g ei
t
h
e
r
passi
ve o
r
act
i
v
e devi
ces. E
l
ect
ri
cal
m
o
to
r is th
e
m
o
st c
o
nv
en
ien
t
ex
am
p
l
e
to
rep
r
esen
t the
l
o
ad t
h
at
i
s
nee
d
ed t
o
i
m
provi
se t
h
e p
o
we
r f
act
or, si
nce i
t
i
s
kn
o
w
n as
ha
vi
n
g
t
h
e
hi
g
h
e
s
t
i
nduct
i
ve l
o
ad wi
t
h
th
e av
ailab
ility o
f
l
o
ads. Th
e
a
m
en
d
m
en
t wo
u
l
d
b
e
to
u
s
e th
e cap
acitors to
coun
ter th
e circu
it. Howev
e
r, it
can
b
e
qu
ite a ch
allen
g
e to
rectify th
e en
tire syste
m
as
ma
n
y
circu
it d
e
sig
n
e
rs n
e
ed
to
tak
e
in
to
con
s
i
d
eratio
n
abo
u
t
t
h
e m
a
t
t
er by
n
o
t
i
n
t
r
o
duci
ng a
n
y
res
ona
nt
i
n
t
o
t
h
e
sy
st
em
. Furt
he
rm
ore, an a
d
ap
t
i
v
e schem
e
connect
e
d
to
th
e reactiv
e ele
m
en
ts n
eed
to
b
e
im
p
l
e
m
en
ted
to
the
variable power factor
and
to the high powere
d
mach
in
ery.
At th
is ju
n
c
t
u
re, it
is also
i
m
p
o
r
t
a
n
t
to
ta
ke int
o
consi
d
eration
of t
h
e com
p
onent'
s
cost, spac
e and
efficiency i
n
a
ccomm
odating the s
p
ecific
power rating.
A pa
ssi
ve c
o
m
ponent
s
u
ch
as di
o
d
e i
s
use
d
i
n
t
h
e c
o
n
v
e
r
t
e
r f
o
r
t
h
e pa
ssi
ve
p
o
w
er
fact
o
r
im
pro
v
em
ent
.
In t
h
i
s
case, t
h
e co
nve
rt
er i
s
a bri
dge
rect
i
f
i
e
r, i
n
w
h
i
c
h t
h
e de
vi
ce f
unct
i
ons
i
n
c
o
nve
rt
i
ng t
h
e
altern
atin
g curren
t si
g
n
al either
v
o
ltag
e
or cu
rren
t
sign
al to
d
i
rect cu
rrent sig
n
a
l
[4
]. Theo
retically, b
y
u
s
ing
t
h
i
s
ap
pr
oac
h
,
t
h
e p
o
we
r
fact
or ca
n
be i
n
c
r
eased t
o
a
val
u
e o
f
0.
7 t
o
0.
8. B
y
i
n
c
r
easi
ng t
h
e i
n
p
u
t
v
o
l
t
a
ge
v
a
lu
e, th
e power
facto
r
v
a
lu
es' will b
eco
m
e
h
i
g
h
e
r. Th
e fu
n
c
tion of a passiv
e
po
wer
facto
r
im
p
r
ov
emen
t is
si
m
ilar to
a lo
w pass filter, in
wh
ich
it will filter ou
t a
ll th
e
h
a
rm
o
n
i
c co
n
t
en
ts in
t
h
e
circu
it. However, the
passi
ve
po
wer
im
pro
v
em
ent
can o
n
l
y
be im
pr
o
v
i
s
ed wi
t
h
i
n
a ran
g
e of
0.
7 an
d 0.
8 val
u
e. The val
u
e s
h
o
u
l
d
not e
x
cee
d
1.0 as it can dec
r
e
a
se the
wa
ve c
u
rrent
with
in th
e stan
d
a
rd.
An
activ
e
po
w
e
r f
actor
im
p
r
ove
m
e
n
t
i
s
an i
n
n
o
v
at
i
o
n f
r
o
m
passi
ve
p
o
we
r
fact
o
r
i
m
provem
e
nt
. An
act
i
v
e a
p
p
r
oach
i
s
a
n
e
x
c
e
l
l
e
nt
way
t
o
i
m
prove
t
h
e po
we
r fact
or c
o
r
r
ect
i
on i
n
el
ect
ro
ni
cs appl
i
a
nce
.
Thi
s
desi
g
n
i
s
aim
e
d t
o
co
nt
r
o
l
t
h
e am
ount
of
po
we
r
pr
o
duce
d
fr
om
t
h
e l
o
a
d
s a
n
d
obt
ai
ne
d a
s
t
h
e
val
u
e
o
f
po
we
r fact
or i
s
cl
os
e t
o
uni
t
y
. T
h
e
act
i
v
e com
p
o
n
ent
s
co
n
t
ro
l th
e curren
t
in
pu
t of th
e lo
ad
s
wh
ich
are sim
i
la
r t
o
t
h
e wa
ve
fo
r
m
vol
t
a
ge (
p
e
rfect
si
n
wave
) [9]
.
Besides, the com
pone
nts can reduce the
conte
n
t of
ha
rm
onic and distortion by
com
b
ining the reactive
ele
m
ents or using active
switc
hes s
u
ch as M
o
sfet, C
o
nt
rol
IC and
othe
rs.
Table 1 s
u
mmarizes the alternatives
for
active and passive
power rectification.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Ef
f
ect
s of
T
o
t
a
l
H
a
rm
o
n
i
c
s
Di
st
ort
i
o
n
f
o
r
Po
w
e
r Fact
or C
o
rrect
i
on
at
N
o
n-Li
ne
ar L
o
ad
(
S
h
a
ki
r S
a
a
t
)
55
3
Tabl
e
1. M
e
t
h
o
d
s t
h
at
can
be
use
d
i
n
act
i
v
e
and
pa
ssi
ve
p
o
w
er
co
rrect
i
o
n
m
e
t
hods
No
Met
h
o
d
s
Descripti
o
n
1.
Co
nv
en
tio
n
a
l
bo
ost
c
o
nve
rt
er
i.
C
ont
ai
n
a re
ct
i
f
i
e
r ci
rc
ui
t
an
d
bo
ost
c
o
nve
rt
er. S
ee Fi
gu
re
1.
ii.
Excel
l
e
nt
fo
r l
o
w
an
d m
e
di
u
m
power
ra
nge
l
o
ad
s
iii.
Disadv
an
tag
e
s:
Th
e size and vo
lu
m
e
o
f
ind
u
c
t
o
r. Th
is is b
ecau
s
e in
el
ect
roni
cs
ci
rc
ui
t
sh
o
u
l
d
n
o
t
be t
o
o
hea
v
y
[
6
]
2
.
Br
id
g
e
less
boost
conve
r
ter
i.
Th
ere is no
rectifier circu
it
an
d
t
h
e so
lu
ti
o
n
fo
r
po
wer l
e
v
e
l is greater
than 1Kw.
See
Figure 2.
ii.
It
sol
v
es t
h
e
di
sad
v
a
n
t
a
ges
of c
o
n
v
e
n
t
i
o
n
a
l
m
e
t
hod b
u
t
el
evat
es t
h
e
noi
se
. T
h
e l
o
ss o
f
c
o
nd
uct
i
on
can
be
m
i
ni
sed by
p
a
ral
l
e
l
i
ng t
h
e
sem
i
cond
uct
o
r com
pone
nt
s.
iii.
Disadv
an
tag
e
s:
Th
e fl
o
a
tin
g
in
pu
t lin
e
with
respect to th
e PFC stag
e.
Th
e
d
i
od
e and MOSFET
failed
to id
en
tify
th
e fl
o
w
of curren
t
during
each
of half-line cycle [7].
3.
Int
e
rl
ea
ve
d
bo
ost
conve
r
ter
i.
C
onsi
s
t
of
t
w
o B
o
ost
c
o
nv
ert
e
rs a
n
d
bot
h
of t
h
em
are co
nnect
e
d
i
n
p
a
r
a
llel as show
n in
Figu
r
e
2.
ii.
Th
e cu
rren
t inp
u
t
is th
e t
o
tal cu
rren
t
flow t
h
roug
hou
t th
e t
w
o ind
u
c
t
o
rs.
iii.
Adva
ntages:
It is able to
reduce the ri
pple i
n
the c
u
rre
nt
wave
form
and
it in
d
i
rectly red
u
c
es th
e to
tal h
a
rm
o
n
i
cs d
i
sto
r
tion
or error esp
ecially in
hi
g
h
fre
q
u
enc
y
. B
e
si
des, i
t
al
so
m
i
nim
i
se t
h
e cond
uct
i
on l
o
sses
by
paral
l
e
l
i
n
g
t
h
e sem
i
cond
uct
o
r com
pone
nt
s.
Figure 1. Conventional
boo
st con
v
e
r
t
er
Fig
u
r
e
2
.
Br
idgeless bo
ost conv
er
ter
Fi
gu
re
3.
I
n
t
e
rl
eaved
b
o
o
st
c
o
nve
rt
er
2
RESEA
R
C
H DESIG
N
Fi
gu
re 4 s
h
ow
s t
h
e pr
ocess
whi
c
h i
s
ada
p
t
e
d i
n
t
h
i
s
pa
p
e
r f
o
r si
m
u
l
a
t
i
on
pu
r
pose
.
I
n
desi
g
n
i
n
g a
circuit, there a
r
e five (5) stages th
at need to be consi
d
ere
d
. The firs
t stage is, from
the
powe
r source
whic
h
enables
electrically operate
d
equi
pm
ent to be c
o
nnected
to
th
e altern
ati
n
g curren
t
(AC) in
an
y premises o
r
b
u
ild
i
n
gs. In
statu
s
q
u
o
,
the v
o
ltag
e
will b
e
ex
terem
e
l
y
h
i
g
h
fo
r electron
i
cs ap
p
l
i
a
n
ces in
sp
ite o
f
th
e
diffe
re
nce in c
o
nnectors, s
h
a
p
e
or vo
ltage
and
current ra
ting of
the
elect
rical plugs.
The s
econd st
age is
k
nown as th
e co
nv
erter.
Th
e
co
nv
erter
will ch
ang
e
t
h
e altern
atin
g curre
n
t
(AC) so
urce to d
i
rect cu
rren
t
(DC)
so
urces
wh
ich
is certifiab
l
y kn
own
as a recti
f
ier [10
]
. In
th
i
s
stag
e, th
e
rectifier will b
e
ch
ang
e
d
und
er t
w
o
(2
)
co
nd
itio
ns wh
ere th
e fi
rst rect
ifier u
s
es
p
a
ssi
v
e
co
m
p
on
en
t
an
d
t
h
e seco
nd rectifier u
s
es
b
r
i
d
g
e
less t
o
polo
g
y
.
Stag
e th
ree (3
) is co
n
s
id
ered
as a cru
c
ial sta
g
e in
th
e
si
m
u
latio
n
d
e
si
g
n
as th
e filter is u
s
ed
to
i
m
p
r
ov
ise th
e
per
f
o
r
m
a
nce of t
h
e wave
f
o
r
m
and i
ndi
rectl
y
eliminate
the ripple or distor
tion of the wa
veform
. In stage four
(4), th
e sim
u
la
tio
n
circu
it is in
corp
orated
with
th
e b
oost ci
rcuit as a
m
e
a
s
ure to
produc
e the direct curre
nt
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
7, No
. 2, Ju
ne
20
16
:
551
-56
0
55
4
(DC) source value be
fore it can be
us
e
d
in electronics a
p
pliances [11].
Th
e last stag
e
relies h
e
av
ily o
n
t
h
e
lo
ad
. At t
h
is st
ag
e, t
h
e
n
on-lin
ear lo
ad
will b
e
u
s
ed
.
2.1
Power F
a
ctor
Correc
tion (P
FC)
by Using One Conver
te
r
2.
1.
1
Co
nver
t
er Usi
n
g P
a
ssi
ve
Co
mpo
n
en
ts
The m
e
t
hod
o
f
t
h
e ci
rc
ui
t
i
s
sh
ow
n i
n
Fi
gu
re
5.
Descri
p
tio
n of
th
e circu
it as sh
own
in Figure 5
is as
fo
llows:
Stage 1:
1.
Pu
lse vo
ltag
e
is u
s
ed
to
create co
n
t
en
t of h
a
rm
o
n
i
c as well as for a
n
alysis of one
com
p
lete cyc
l
e
wave
f
o
rm
.
2.
Pu
lse
vo
ltag
e
du
ration
is
set to 20
m
s
sin
ce one p
e
riod
freq
u
e
n
c
y is eq
u
i
v
a
len
t
to
50
Hz.
3.
Vol
t
a
ge
i
s
ran
g
i
ng
fr
om
0 t
o
2
0
V
as a
hu
ge
n
u
m
b
er o
f
h
o
m
e
el
ect
ro
ni
cs a
p
pl
i
a
nces
use
D
C
su
ppl
y
w
h
i
c
h
r
a
ng
es
f
r
o
m
1
0
V
to 20V
.
Stage 2:
1.
Rectifier circu
i
t is u
s
ed
to con
v
e
rt th
e Altern
atin
g Cu
rre
nt
(AC)
s
o
u
r
ces t
o
Direct Cu
rre
nt (
D
C)
so
ur
ce
s.
Th
is co
nv
erter is u
s
ed
si
n
ce
n
u
m
er
ous elec
tronics appliances are i
n
nee
d
of
DC
s
u
ppl
y
.
H
o
we
ver
,
t
h
e
so
ck
et ou
tlet uses AC
supp
ly merely.
2.
Th
e
b
r
idg
e
rectifier is an
ex
am
p
l
e
of sourc
e
that creates
harm
onics. T
h
e b
r
i
d
g
e
i
n
th
i
s
circu
it op
ts fo
r
p
a
ssiv
e
co
m
p
on
en
ts
(u
n
c
on
tro
lled
fu
ll-wave rectifie
r) and it uses
Power Factor C
o
rrection (PFC) to
cont
rol t
h
e
power factor
flow at the
loa
d
.
Stage 3:
1.
Filter circu
it
o
f
th
is stag
e is
u
s
ed
to redu
ce the ripp
le
o
f
t
h
e
wav
e
fo
rm
an
d
th
e con
t
en
t
of t
h
e
h
a
rm
o
n
i
cs.
Stage 4:
1.
At
t
h
i
s
p
o
i
n
t
,
no
n
-
l
i
n
ear l
o
ad creat
es t
h
e
harm
oni
cs c
o
nt
ent
s
at
t
h
e
out
put
val
u
e
depe
n
d
i
n
g
on
t
h
e
im
pedance
.
2.
In
t
h
i
s
ci
rcui
t
,
t
h
e
re
si
st
or an
d
i
nduct
o
r i
s
use
d
at
l
o
ad t
o
rep
r
esent
n
o
n
l
i
n
ea
r l
o
ad as t
h
e va
ri
abl
e
val
u
e o
f
i
m
p
e
d
a
n
c
e is used
t
o
an
alyze th
e ou
tpu
t
result with
in
t
h
e
v
a
riab
le lo
ad
s.
Figure
5.
Eq
ui
val
e
nt
ci
rc
ui
t
o
f
P
owe
r
fact
o
r
C
o
r
r
ect
i
o
n
m
etho
d
(
PFC
)
Stage 1
Stage 2
Sta
g
e 3
Sta
g
e 4
Fi
gu
re
4.
B
l
oc
k
Di
ag
ram
of s
i
m
u
l
a
t
i
on ci
rcu
i
t
A
C
pow
er supp
ly 24
0V
Power
factor c
o
rrection m
e
thod
(PFC)
Filter
Power factor
c
o
rrection
m
e
t
hod (P
FC
)
Loa
d
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Ef
f
ect
s of
T
o
t
a
l
H
a
rm
o
n
i
c
s
Di
st
ort
i
o
n
f
o
r
Po
w
e
r Fact
or C
o
rrect
i
on
at
N
o
n-Li
ne
ar L
o
ad
(
S
h
a
ki
r S
a
a
t
)
55
5
2.
1.
2
Co
nver
t
er Usi
n
g B
r
i
d
gel
e
ss T
o
p
o
l
o
gy
The e
q
ui
val
e
nt
ci
rcui
t
of
PFC
i
s
sh
o
w
n
i
n
Fi
gu
re
6.
The si
m
u
l
a
t
i
o
n
ci
rcui
t
of t
h
i
s
m
e
t
hod i
s
sh
o
w
n
i
n
Fi
g
u
re
7
.
2.
2.
Power F
a
ctor
Correc
tion (P
FC
)
by Using Two
Converte
r
2.
2.
1.
Co
nver
ter
Usi
n
g B
r
i
d
gel
e
ss
T
o
pol
o
gy
An
d
B
o
ost
C
o
n
v
er
ter
Th
e circu
it is
sh
own
in
Figure 7. Non
-
lin
ear lo
ad
creates
the content
of ha
rm
onics in the output
val
u
e de
pen
d
i
n
g on
t
h
e
i
m
ped
a
nce.
2.3.
Power F
a
ctor
Correc
tion (P
FC
)
by Using Two
Ac
tive Converters
2.
3.
1.
C
o
n
v
ert
er Usi
n
g B
r
i
d
gel
e
ss T
o
p
o
l
o
gy
a
nd I
n
terl
e
ave
d
Co
nver
t
er
The ci
rc
ui
t
of t
h
i
s
t
o
p
o
l
o
gy
i
s
gi
ve
n i
n
Fi
g
u
r
e
8.
Stage 1:
1.
The
pul
se v
o
l
t
a
ge was use
d
t
o
creat
e a harm
oni
c content for the analysis of one
com
p
lete cyc
l
e
wave
f
o
rm
.
2.
Next
, t
h
e d
u
r
a
t
i
on o
f
p
u
l
s
e
v
o
l
t
a
ge i
s
set
t
o
20m
s due t
o
t
h
e set
t
i
ng
of
o
n
e pe
ri
o
d
f
r
e
q
uency
whi
c
h i
s
equi
val
e
nt
t
o
5
0
Hz
.
3
.
Vo
ltag
e
settin
g adh
e
res to
t
h
e
earlier design
.
Stage 1
Stage
2
Sta
g
e 3
Stage
4
Fi
gu
re
6.
Eq
ui
val
e
nt
ci
rc
ui
t
o
f
P
o
we
r
Fact
o
r
C
o
r
r
ect
i
o
n M
e
t
h
o
d
(PFC
)
Stage 1
Stage 2
Sta
g
e
3
Stage 4
Stage 5
Fi
g
ur
e 7
.
E
q
ui
val
e
nt
ci
rc
ui
t
o
f
P
o
we
r
Fact
o
r
Co
rrection
m
e
th
od
(
PFC
)
Fi
gu
re
8.
Eq
ui
val
e
nt
ci
rc
ui
t
o
f
P
o
we
r
Fact
o
r
C
o
r
r
ect
i
o
n m
e
t
h
o
d
(PFC
)
Stage 1
Stage
2
Stage 3
Stage
4
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
7, No
. 2, Ju
ne
20
16
:
551
-56
0
55
6
4.
The i
n
duct
o
r f
unct
i
o
ns as an
i
nput
cu
rre
nt
sensi
n
g, w
h
i
c
h senses t
h
e cur
r
ent
fl
ow t
o
t
h
e B
r
i
dgel
e
s
s
to
po
log
y
circu
it.
5
.
Th
e
r
o
le
of
four
indu
cto
r
s is t
o
el
evate
the c
u
rrent
flow
from
th
e
in
pu
t.
Stage 2:
1.
B
r
i
dgel
e
ss
t
o
p
o
l
o
gy
i
s
used
as a
p
o
we
r
fact
or
co
rre
ct
i
o
n
m
e
t
hod a
n
d at
t
h
e
sam
e
t
i
m
e
t
o
creat
e
harm
oni
cs.
2.
The
fu
nct
i
o
n
o
f
paral
l
e
l
com
p
o
n
e
n
t
s
bet
w
e
e
n
di
o
d
e a
n
d
M
O
SFET
i
s
t
o
m
i
nim
i
se t
h
e co
nd
uct
i
o
n l
o
ss
du
ri
n
g
t
h
e s
w
i
t
c
hi
n
g
m
ode
[8]
.
Stage 3:
1.
Int
e
rl
ea
ve
d t
o
p
o
l
o
gy
i
s
used
t
o
i
m
pro
v
e t
h
e
am
ount
o
f
T
H
D a
n
d
t
o
m
a
i
n
t
a
i
n
t
h
e
val
u
e
o
f
po
wer
fact
or.
2.
B
oost
c
o
nve
rt
e
r
i
s
used
as a
po
we
r fact
or c
o
r
r
ect
i
o
n
de
vi
c
e
w
h
i
c
h i
n
crea
ses t
h
e
val
u
e
o
f
p
o
w
er
fact
o
r
.
Thu
s
,
wh
en
t
h
e v
a
lu
e of indu
ctor (i
n
boo
st
con
v
e
rter
circu
it) d
i
ffers, it
will affect th
e
p
o
wer fact
o
r
an
d
t
o
t
a
l
harm
oni
c di
st
ort
i
o
n val
u
es.
Stage 4:
1
.
Filter circu
it in th
is stag
e is
u
s
ed
to redu
ce the ripp
le
o
f
t
h
e
wav
e
fo
rm
an
d
th
e con
t
en
t
of t
h
e
h
a
rm
o
n
i
cs.
2
.
Th
e
n
o
n
-
lin
ear lo
ad
will calcu
late th
e harm
o
n
i
cs co
n
t
en
ts in
th
e
ou
tpu
t
v
a
lu
e i
n
relatio
n
to
t
h
e
im
pedance
.
3
R
E
SEARC
H
R
E
SU
LTS AN
D ANA
LY
SIS
In this secti
o
n, the res
u
lts of each m
e
thods are
explaine
d and
prese
n
t
e
d. T
h
ey are
prese
n
ted i
n
seq
u
ences
. B
e
s
i
des, t
h
e e
xpl
a
n
at
i
o
n
f
o
r
eac
h
fi
n
d
i
n
g i
s
di
sc
usse
d t
o
val
i
d
a
t
e t
h
e dat
a
.
3.1.
P
o
wer Factor
Correcti
o
n
(P
FC) by
Us
ing One
Converter
3.
1.
1.
C
o
n
v
ert
er Usi
n
g P
a
ssi
ve
Co
mpo
n
en
ts
Tabl
e 2 re
fers
t
o
t
h
e sum
m
a
ry
of PFC
m
e
t
h
o
d
by
usi
n
g
rect
i
f
i
e
r passi
ve com
pone
nt
s con
v
ert
e
r
.
Based on
the Table 2, when
the reactance
value
is
a
d
justed
(resistor value fixe
d),
t
h
e value of
PFC
is
significa
ntly highe
r a
nd acce
ptable.
Ho
we
ver, whe
n
the
reactance and resist
or
value fl
uctuates a
nd el
evates
in
con
s
isten
tly th
e PFC
v
a
lu
e
beca
m
e
lo
w.
Tabl
e 2. Sum
m
a
ry
o
f
P
F
C
by
usi
n
g passi
ve
c
o
m
pone
nt
rect
i
f
i
e
r
V
in
(V
)
lo
a
d
(
resist
o
r)
ohm
load
induc
tor
(mH
)
pfc
THD
(
%
)
5 1
0
4
7
0
.
7
48
3
2
.148
1
0
1
00
0
.
9
19
3
3
.616
1
50 1
00
0
.
6
35
3
3
.606
1
5
1
0
4
7
0
.
8
07
3
2
.353
1
0
1
00
0
.
6
72
3
3
.162
1
50 1
00
0
.
9
28
3
3
.162
2
0
1
0
4
7
0
.
8
09
3
2
.340
1
0
1
00
0
.
7
62
3
3
.095
1
50 1
00
0
.
9
3
3
3
.095
Th
eo
retically, if th
e resistor
v
a
lu
e is sm
all,
th
e real po
wer vo
ltag
e
will b
e
sm
all
an
d
vice v
e
rsa.
It
will ev
en
tu
all
y
affect th
e valu
e o
f
p
o
wer facto
r
.
Nev
e
rth
e
less, if th
e v
a
lu
e of resist
o
r
rem
a
in
s while th
e
reactance
value decreases, it will affect
the value
of rea
c
tive power.
At this
point, it is crucial to com
p
re
he
nd
th
at ap
p
a
ren
t
po
wer is equ
a
l to
th
e to
tal of real p
o
we
r a
nd
reactive power whic
h also s
u
gge
st a way to cont
rol
th
e p
o
wer
facto
r
. An
in
crease in
th
e su
pply v
a
lu
e w
ill
h
a
v
e
an
effect
o
n
th
e po
wer facto
r
.
Accord
ing
to
Ohm
s
l
a
w, i
n
or
der t
o
cal
cul
a
t
e
t
h
e powe
r
f
act
or, t
h
e
vol
t
a
ge val
u
e
,
cu
rre
nt
and l
o
a
d
m
u
st
be consi
d
ere
d
. F
o
r
instance, the
powe
r factor is reduce
d w
h
en
t
h
e vol
t
a
g
e
su
ppl
y
i
s
adj
u
st
e
d
fr
om
5Vdc t
o
1
5
an
d 2
0
V
at
t
h
e
lo
ad
R
=
1
0
Ω
an
d L = 100
mH
.
3.
1.
2.
C
o
n
v
ert
er Usi
n
g B
r
i
d
gel
e
ss T
o
p
o
l
o
gy
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Ef
f
ect
s of
T
o
t
a
l
H
a
rm
o
n
i
c
s
Di
st
ort
i
o
n
f
o
r
Po
w
e
r Fact
or C
o
rrect
i
on
at
N
o
n-Li
ne
ar L
o
ad
(
S
h
a
ki
r S
a
a
t
)
55
7
In
t
h
is an
alysis, a rectifier circu
it with
t
w
o
MOSFE
T is inco
rpo
r
ated in
t
h
is d
e
sign
. The fun
c
tion
o
f
t
h
e M
O
SFE
T com
pone
nt
s i
s
t
o
serve as a
swi
t
c
hi
n
g
b
u
t
t
on
fo
r t
h
e rect
i
f
i
e
r ci
rcui
t
.
D
u
ri
ng eac
h cy
cl
e, on
e
MOSFET op
erates as a switch
to
bo
ost up
t
h
e
d
i
od
e 1
and ano
t
h
e
r MOSFET
will o
p
e
rate si
m
i
larly as au
su
al
di
o
d
e. T
h
e p
u
r
pos
e of
usi
n
g
t
h
i
s
m
e
t
hod i
s
t
o
red
u
ce t
o
con
d
u
ct
i
on l
o
s
s
. B
a
sed o
n
t
h
e Tabl
e 3, i
t
can be
concl
ude
d t
h
at the PFC
value
s
readi
ng
bec
o
me lower
whe
n
the
reactance
value is a
d
just
ed and
resistor value
i
s
rem
a
i
n
ed. Neve
rt
hel
e
ss
, t
h
e TH
D rea
d
i
ng
has bee
n
signi
ficantly improved as co
m
p
are
d
to the previous
m
e
t
hod. T
h
us,
base
d on t
h
e
w
a
vef
o
rm
out
p
u
t
, i
t
can al
so be seen t
h
at
t
h
e ri
p
p
l
e
cont
e
n
t
has bee
n
el
im
inat
ed,
especially whe
n
the
value
of both reacta
n
c
e
and
resi
stor are e
x
trem
ely low. T
h
is is
beca
use
bridgeless
m
e
t
hod re
d
u
ce
s t
h
e noi
se
of
t
h
e wave
f
o
rm
, hence
pr
od
uc
i
ng a wa
vef
o
r
m
wi
t
hout
ri
p
p
l
e
. Ne
vert
hel
e
ss, an
in
crease in
th
e su
pp
ly v
a
lu
e
may a
l
so
have
an effect
o
n
t
h
e p
o
we
r fact
or
. B
a
sed o
n
Ohm
’
s Law, a
hi
gh
v
o
ltag
e
v
a
l
u
e
will resu
lt i
n
a
h
i
gh
p
o
wer facto
r
v
a
lu
e. Th
is
is b
ecau
s
e
pow
er
is pro
p
o
r
tion
a
l to
t
h
e
vo
ltag
e
.
3.2.
P
o
wer Factor
Correcti
o
n
(P
FC) by
Us
ing Two Converter
B
a
sed
on t
h
e
r
e
sul
t
as Ta
bl
e
3, i
t
ca
n be
co
ncl
u
ded
t
h
at
t
h
e readi
n
g
o
f
T
HD
pe
rcent
a
ge
has
bec
o
m
e
lo
wer co
m
p
ared
to th
e
read
ing
u
s
ing
the Rectifier meth
od
.
Ev
en
t
h
oug
h th
e B
r
id
g
e
less To
po
l
o
g
y
can
m
i
nim
i
se the
percenta
ge
of the THD,
yet if t
h
is m
e
t
hod is
a
d
opted on the l
o
ad that c
o
ntains a
hi
gh react
ance
v
a
lu
e (no
n
-lin
ear lo
ad), th
ere is a p
o
ssib
ility
for th
e po
wer
facto
r
to
b
e
co
me p
o
o
r
. Th
is is d
u
e
to
t
h
e fact th
at
t
h
e val
u
e o
f
re
act
i
v
e po
wer i
s
very
hi
g
h
. T
hus
, by
anal
y
z
i
ng t
h
e p
o
w
e
r
fact
or f
o
rm
ul
a, it
su
gg
ests that th
e
reactiv
e po
wer (Q) is in
versely p
r
op
ortio
n
a
l
with
th
e
power factor. Therefore, wh
en
the v
a
lu
e of reactiv
e
p
o
wer is
h
i
gh
,
th
e v
a
l
u
e
o
f
power factor
will b
eco
m
e
p
oor.
3.3
Power F
a
ctor
Correc
tion (P
FC)
By Using
Two Ac
tive
Converters
For
t
h
e
fi
nal
a
n
al
y
s
i
s
as Ta
bl
e 4
,
t
h
e
m
e
t
hod
fo
r
PFC
by
u
s
i
n
g
t
w
o c
o
nv
ert
e
rs i
s
i
n
t
r
o
d
u
ced
.
In
t
h
i
s
m
e
t
hod, t
h
e fi
rst
con
v
ert
e
r i
s
refer
r
i
n
g t
o
t
h
e B
r
i
dgel
e
ss
t
opol
ogy
an
d
t
h
e secon
d
con
v
e
r
t
e
r i
s
usi
ng
a
n
in
terleav
ed
topo
log
y
. Th
is m
e
th
od
is propo
sed
as an
a
lternativ
e to
ov
ercome th
e d
i
sadv
an
tag
e
o
f
t
h
e seco
nd
d
e
sign
.. THD resu
lt will b
e
b
e
lo
w th
an
5
%
an
d
at th
e sa
me ti
m
e
it
will
main
tain
th
e p
o
w
er factor correcti
on
ratio
.
Tabl
e 3. Sum
m
a
ry
o
f
P
F
C
by
usi
n
g
B
r
i
d
gel
e
ss
To
p
o
l
o
gy
V
in
(V)
load
(resis
tor
)
ohm
load
induc
tor
(mH
)
pfc
THD
(
%
)
5 1
0
4
7
0
.
8
9
1
0
.699
1
0
1
00
0
.
8
92
1
0
.699
1
50 1
00
1
3
5
.149
15
10
47
0.
92
9
5.
98
1
10
10
0
0.
92
8
5.
98
1
1
50 1
00
0
.
9
98
3
2
.016
20
10
47
0.
89
5.
14
8
10
10
0
0.
93
5
5.
14
8
1
50 1
00
0
.
0
34
5
3
.75
Tabl
e
4.
Sum
m
a
ry
o
f
P
F
C
by
usi
n
g B
r
i
d
gel
e
ss an
d B
o
ost
C
o
n
v
e
r
t
e
r
V
in
(V)
load
(resis
tor
)
ohm
load
induc
tor
(mH
)
pfc
THD
(
%
)
5 1
0
4
7
0
.
7
94
3
3
.378
1
0
1
00
0
.
7
17
3
0
.466
1
50 1
00
0
.
9
7
8
4
.475
1
5
1
0
4
7
0
.
8
64
1
4
.121
10
10
0
0.
80
8
13
1
50 1
00
0
.
9
9
3
4
.177
2
0
1
0
4
7
0
.
8
79
1
0
.671
10
10
0
0.
83
8
9.
29
3
1
50 1
00
0
.
9
9
2
6
.017
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
7, No
. 2, Ju
ne
20
16
:
551
-56
0
55
8
Tabl
e 5 i
s
t
h
e sum
m
ary
o
f
Po
we
r Fact
or c
o
r
r
ect
i
o
n
m
e
t
hod
usi
n
g
B
r
i
dgel
e
ss t
o
p
o
l
o
gy
an
d
interleave
d
conve
rter m
e
thod. The i
n
te
rleaved converter m
e
thod s
o
lves the
issues of Bri
dgeless t
o
pology by
using two Boost converters t
h
at are connec
t
ed in paralle
l. Th
e fun
c
tion
o
f
in
terleav
e
d
co
nv
erter is to
redu
ce
th
e ri
p
p
l
e i
n
the in
pu
t si
g
n
a
l.
Thu
s
, i
f
th
e ripp
le
is redu
ced t
h
e
d
i
sto
r
tion
will also
b
e
red
u
ced
.
Tabl
e 5. Sum
m
a
ry
o
f
P
F
C
by
usi
n
g
B
r
i
d
gel
e
ss
an
d Int
e
rl
eaved
C
o
n
v
ert
e
r
Vin (V)
load
(resis
tor
)
ohm
load
induc
tor
(mH
)
pfc
THD
(
%
)
5
10
47
0.
94
6
0
10
10
0
0.
94
6
9.
77
1
50 1
00
0
.
9
96
2
5
.64
15
10
47
0.
87
3
0
10
10
0
0.
85
1
2.
28
1
50 1
00
0
.
9
98
6
.
4
56
20
10
47
0.
9
0
10
10
0
0.
9
2.
17
1
50 1
00
0
.
9
98
4
.
6
28
From
t
h
e sim
u
l
a
t
i
on fi
n
d
i
n
gs,
i
t
can be conc
l
ude
d t
h
at
t
h
i
s
m
e
t
hod red
u
c
e
s t
h
e readi
n
g
of T
HD i
n
co
m
p
ariso
n
to
th
e p
r
ev
iou
s
meth
od
s. Besid
e
s th
at, th
e p
o
wer factor can
be
m
a
in
tain
ed
at th
e v
a
lu
e o
f
0
.
9
.
In
com
p
l
i
a
nce t
o
t
h
i
s
, am
ong t
h
e di
scusse
d m
e
t
h
o
d
s t
o
am
end t
h
e
p
o
we
r f
act
or f
o
r
no
n
-
l
i
n
ear l
o
a
d
, t
h
e
m
o
st
effectiv
e m
e
th
o
d
is th
e co
m
b
in
atio
n
circu
it
o
f
bridg
e
less a
n
d double
boost conve
rter
(i
nterleave
d
c
onverter).
This is because the boost conve
rter
will increase the val
u
e of voltage
output. Analysing
Ohm
’
s Law where
th
e
pow
er
is p
r
o
portio
n
a
l to
th
e
vo
ltag
e
, so
a h
i
g
h
v
o
ltag
e
will resu
lt to
a h
i
g
h
p
o
wer (real p
o
w
er). Hen
ce, it
i
s
possi
bl
e t
o
s
t
abi
l
i
ze t
h
e react
i
v
e po
wer
va
l
u
e by
usi
n
g t
h
e
m
e
t
hod ab
ov
e. Neve
rt
hel
e
ss
, t
h
ese t
w
o m
e
tho
d
s
can p
r
od
uce a
pr
o
d
i
g
i
o
us
res
u
l
t
i
n
Tot
a
l
Ha
rm
oni
c Di
st
ort
i
on
(TH
D
)
pe
r
cent
a
ge a
n
d p
o
w
er
fact
o
r
val
u
e b
u
t
th
ere is still a n
eed to
co
n
t
rol th
e lo
ad and th
e vo
ltag
e
i
n
p
u
t
. Th
is is
b
e
cau
se at certai
n
lo
ad
s and
vo
ltag
e
lev
e
l, th
ere is
a po
ssib
ility fo
r th
e
v
a
l
u
e to flu
c
t
u
at
e to its poo
r p
e
rcen
t
a
g
e
o
f
THD an
d power fact
o
r
. Th
e
sum
m
ary
of t
h
e o
v
eral
l
m
e
t
hods
t
h
at
ha
ve
b
een
opt
e
d
t
o
i
m
prove
b
o
t
h
p
a
ram
e
t
e
rs i
s
co
ncl
u
ded
i
n
Tab
l
e 6.
Tabl
e 6. Sum
m
a
ry
o
f
R
e
s
u
l
t
s
of
t
h
e Pr
op
ose
d
M
e
t
h
o
d
s
Methods
Passi
ve
C
o
mponent
s
of
Rectifier
Co
nver
ter
Bridg
e
less
To
po
l
o
g
y
Bridg
e
less Topo
logy
+
B
oos
t Co
nve
r
t
er
Bridg
e
less Topo
logy
+ Interle
ave
d
Co
nver
ter
Percent of
THD
-
Larg
er v
a
lu
e
-
Sm
aller
v
a
lu
e
-
Sm
a
ller value
and nea
r
er
to
0 p
e
rcen
t. (5%)
-
Sm
al
ler v
a
lu
e, less
th
an
5
%
Power
fac
t
or
-
Clo
s
e to
un
ity
po
we
r fact
or
i
f
th
e lo
ad
s are
hi
g
h
.
-
Poor powe
r
f
acto
r
fo
r low
e
r
lo
ad
s.
-
Clo
s
e to
un
ity
po
we
r fact
or
-
H
i
gh
er vo
ltag
e
gi
ves
bet
t
e
r
po
we
r fact
or
.
-
Clo
s
e to
un
ity p
o
wer
factor
-
Need to
con
t
rol th
e vo
ltag
e
in
pu
t.
-
The powe
r factor
val
u
e
d
e
p
e
nd
s
on
th
e vo
ltag
e
val
u
e.
-
Clo
s
e to
un
ity p
o
wer
factor
-
Th
e v
a
lu
e
of
po
w
e
r
fact
or
de
pe
nd
s
on
t
h
e
lo
ad
s.
4
CO
NCL
USI
O
N
In t
h
i
s
pa
per
,
t
h
e rel
a
t
i
ons
hi
p
bet
w
een t
h
e t
o
t
a
l
harm
oni
cs di
st
ort
i
o
n (T
HD
) an
d Po
we
r C
o
r
r
ect
i
o
n
M
e
t
h
o
d
s (
PFC
) ha
s
been
p
r
e
s
ent
e
d
an
d i
t
i
s
de
pen
d
e
n
t
u
p
o
n
v
o
l
t
a
ge i
n
put
a
n
d l
o
a
d
s.
Th
us,t
o e
n
su
r
e
t
h
e
p
o
wer fact
o
r
t
o
b
e
co
rrected well, all th
e p
a
rameters fr
o
m
th
e po
wer so
urce till th
e lo
ad
m
u
st b
e
con
s
i
d
ered
in
d
e
sign
ing
th
e
PFC circu
it. If th
e lo
ad contains m
o
re reactive power tha
n
the real power, the val
u
e of the
voltage input needs to be in
creased a
nd vi
ce versa. T
h
is is because
the value of powe
r factor c
o
rrec
tion is
p
r
op
ortio
n
a
l to th
e v
o
ltag
e
inp
u
t
.
Nev
e
rth
e
l
e
ss, th
e p
e
rcent o
f
THD is in
versely p
r
o
p
o
r
ti
o
n
a
l with
th
e
vo
ltag
e
.
The m
o
st
effe
c
t
i
v
e m
e
t
hod t
o
am
end t
h
e
p
o
w
er fact
or
f
o
r
n
o
n
l
i
n
ear
l
o
a
d
ha
s bee
n
di
scu
sse
d i
n
t
h
i
s
pa
per.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Ef
f
ect
s of
T
o
t
a
l
H
a
rm
o
n
i
c
s
Di
st
ort
i
o
n
f
o
r
Po
w
e
r Fact
or C
o
rrect
i
on
at
N
o
n-Li
ne
ar L
o
ad
(
S
h
a
ki
r S
a
a
t
)
55
9
ACKNOWLE
DGE
M
ENTS
Sincere
expres
s of a
p
preciation to
Un
iv
ersi
ti Tek
n
i
k
a
l M
a
laysia Me
lak
a
(UTeM) fo
r
fund
ing
th
is
w
o
r
k
(PJP/2013
/FKEKK
(
10A
)
/
S1
177
).
REFERE
NC
ES
[1]
Power Factor
Surcharge
,
(
D
ec. 25
, 201
4). Av
ai
labl
e
at:
http
://ww
w
.tnb.com
.
m
y
/b
usiness/chargesa
nd-
penalties/power-
f
act
or-surch
arge.html
[2]
António P. Martins The Use of an Active Power Filte
r for Harm
onic El
im
ination
and Power Quali
t
y
Im
provem
e
n
t
in a
Nonlin
ear
L
o
aded
Ele
c
tr
ica
l
Install
a
tion
.
Institute of Systems
and Robotics-
Porto.
[3]
Bhakti I. C
h
aughule1
, Amit L. Ne
h
e
te, Rupali Shinde, 2013.
Reduction
in Ha
rmonic Distortio
n of the S
y
s
t
em
Using
Active Power Fi
lter
in Mat
l
ab/Si
m
u
link,
International Journal o
f
Computati
onal Engineering
Research, Vol
0
3
,
Issue
6.
[4] Total
Harmonic
Distortion,
(Dec. 25, 2014). Available at:
http://www.
apts
ources.
c
om/r
esources/pdf/Total%20Har
monic%20Distortion.
pdf.
[5]
V.Abhinay
a
, M.Aiswar
y
a
, Gay
a
thri,
R
.
Sey
e
szh
a
i, 2013.Comparative Stud
y
of
Active Power
Factor
Correction
in
AC-DC Converters
International Journal o
f
Electr
ical, Electronics and Data Com
m
unication
,
Vo
lume-1, Issue-1.
[6]
V.D Ghanekar, Prof. GV
Molke , Prof. MM
Patil,Tr
a
vis Helenes, 2012 Active Powe
r Factor Correction Using
Switching Regulators,
IRACST – Engineering Science and Technology:
An Inter
national Journal (
E
STIJ
)
,
ISSN:
2250-3498,Vol.2
,
No. 3.
[7]
Bing Lu, Ron B
r
own, Marco Soldano, 2005
. Brid
geless
PFC Implementation Using One
C
y
cle Co
ntrol Techniqu
e.
Intertional
Re
ct
ifier
Journal a
t
APEC
05.
[8]
Liu XueChao
,
Wang
ZhiHao,
2009. UCC28070 Implement Bridgele
ss Power Factor Corr
ection (PFC) Pre-
R
e
g
u
l
a
t
or
De
si
gn
,
Texas
Instrument Application
Report.
[9]
V.D Ghanekar, Prof. GV
Molke , Prof. MM
Patil,Tr
a
vi
s Helenes, 2012 Active Power Factor Correction Using
Switching Regulators,
IRACST – Engineering Science and Technology:
An Inter
national Journal (
E
STIJ
)
,
ISSN:
2250-3498, Vo
l.2, No. 3.
[10]
Suja C Rajappan, K.Sara
bose,
Neetha John
, 20
13. An Efficient AC/D
C Converter with
Power Factor Correctio
n,
International Jo
urnal of
Emergi
ng Technolog
y a
nd Advan
ced
En
gineering
,
Volu
me 3, Issue 3.
[11]
P. Vijay
a
Prasu
n
a, J.V.G. R
a
ma
Rao, Ch. M. Lakshmi,
2012. I
m
provement in Power
Factor & THD Using Du
al
Boost Converter
.
International Journal of
Engineering Re
search
and Application, Vol.2,Issue 4
.
BIOGRAP
HI
ES OF
AUTH
ORS
Shakir
Saat
obtained h
i
s B.Eng
and Master
in
Elec
trical Engin
eering
from UTM in 2002 an
d
2006, respectiv
ely
.
Th
en, h
e
obtained h
i
s PhD from The Univers
i
ty
of Auck
land
in th
e field of
nonlinear contro
l theor
y
in 201
3. He is now a
senior lecturer
and Head of Department of
Industrial Electr
onic Depar
t
ment, Faculty
of
El
ectronic and Com
puter Engin
eer
in
g, UTeM. His
research niche is
on nonlinear s
y
stems control th
eor
y
an
d wireles
s
power transfer technologies.
He has published one monograph (published b
y
Sp
ringer Verlag)
on poly
nom
ial control s
y
stems
and man
y
journ
a
ls which has b
een mostly
publis
hed in th
e hig
h
quality
journal Intern
ation
a
l
Journal of Robu
st and Nonlinear
Control,
and I
E
T Contro
l.
Rasidah A
b
d
u
l Rani
receiv
e
d
her bach
elor d
e
gree in
el
ectr
i
c
a
l
engin
eering
(I
ndustrial Power
)
from
UTeM in 2
007. After that
,
she receiv
e
d an
Advance Diplo
m
a in Education
in Engineer
ing
Techno
log
y
fro
m
Univeriti
Tun
Hussien Onn in
2009. Th
en in
2015 she obtain
e
d her Mast
er’s
Degree
in El
ec
tronic
Engine
er
ing (El
ectro
nic
S
y
s
t
em
) in U
T
eM
. F
u
rth
e
rm
ore, s
h
e ho
lds
professional membership of the Malay
s
ia
Highway
Author
ity
and
has attended various
addition
a
l
courses in rel
a
tion
t
o
the fi
eld.
Sh
e has activel
y
published m
a
n
y
papers for
conferen
ces, seminars, and colloqui
um of mo
stly
for Politeknik
Sultan Azlan Sh
ah. She is now a
lecturer
in Dep
a
r
t
ment of
Electr
i
cal
Engineering
o
f
Politeknik Ung
ku Omar.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
7, No
. 2, Ju
ne
20
16
:
551
-56
0
56
0
Yusmar
nita Y
u
sop
was born in
Melaka, Malay
s
ia in 1979.
She receiv
e
d the B.En
g in Electrical
Engineering (M
echatronic)
from University
of
T
echnolog
y
,
Malay
s
ia,
in 200
. She later
earn
e
d
a
M.Eng degree fr
om
Tun Hussein
Onn
University
of Malay
s
ia, in
2004. From the
y
ear 2005 to
2014, she was a
Lectur
er in the Faculty
of Elec
tronics and Computer E
ngineering, Universiti
Teknik
a
l Malay
s
ia Melak
a
. Since then, she has been
involved in teaching man
y
su
bjects such as
P
o
wer Electron
i
cs
, Advanc
ed P
o
wer Electron
i
cs
, El
ect
ronic
S
y
s
t
em
s
and M
a
nufactur
ing
Autom
a
tion. She is current
l
y
w
o
rking towards he
r P
h
D. Degree. Her res
e
arch
inter
e
s
t
s
includ
e
electronic s
y
s
t
em design, wir
e
less pow
er trans
f
e
r
and pow
er
ele
c
t
ronics
.
Siti Huz
a
imah Husin
received
a B.Eng (2000)
f
r
om
Multim
edia
Universit
y
and
a M.Eng
(2005)
from
Kolej Universiti
Tun Hussein Onn, Mal
a
y
s
ia
respectiv
el
y. She was first
appoint
ed as an
Engineering Instructor (2001)
at Kolej Universiti
Teknikal Malay
s
ia Mela
ka
later got h
e
r as
a
Lecturer (2005)
and became Senior
Lecturer
in 20
08 at th
e Depar
tment of Industrial Electronics,
Facult
y of
Ele
c
tr
onic and Com
p
u
t
er Eng
i
neer
ing
of Universiti
Te
knikal Ma
la
ysia
Melaka
. Sinc
e
September 2014
, she is further
i
ng her PhD in
Advanced Contr
o
l Technolog
y
that focuses on
acous
ti
cs
en
erg
y
trans
f
er
.
Farah Khalida
h
Abdul Rahman
is
a M
a
s
t
er cand
i
da
te fr
om
F
acult
y of
Ele
c
troni
c and
Com
puter Engin
eering
in
Univer
siti T
e
knik
a
l Ma
la
y
s
ia
Melak
a
,
Mala
y
s
ia
. Her
c
u
rrent r
e
sear
ch
is
on Cap
aci
tiv
e
P
o
wer Trans
f
er
(CP
T
) M
e
thod
for W
i
rel
e
s
s
P
o
wer Trans
f
er S
y
s
t
em
. S
h
e h
a
s
obtain
e
d her
Bachelor Degr
ee in
Applied Ph
y
s
ics
of Universit
i
Sai
n
s Islam
Mala
ys
ia.
Az
mi Aw
ang Md Isa
receiv
e
d a
B.S degree
from
Universiti
Tekn
ologi Mal
a
y
s
ia (
U
TM) in 1998
and a M.S degr
ee from Univers
iti Kebangsaan M
a
lay
s
ia (UKM)
in 2004. H
e
hold
s
a PhD degr
ee
from
Lancas
ter
Univers
i
t
y
in th
e field of
com
m
unica
tions
s
y
s
t
e
m
s
.
He s
e
rved as
an engin
eer
from 1998 to 2
002 at STMicro
e
lectronics. Now,he is
attach
ed
as an Associate Professor with
Facult
y of El
ectr
onic and Com
puter Engin
eering
,
Universiti T
e
kni
kal Mala
ysi
a
Melaka (UTeM)
.
His research interests includ
e wireless location technolog
ies,
Mobile Radio
& Satellite
Communications Navigation S
y
s
t
ems.
Evaluation Warning : The document was created with Spire.PDF for Python.