Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
5
,
No
. 2, Oct
o
ber
2
0
1
4
,
pp
. 13
5~
14
1
I
S
SN
: 208
8-8
6
9
4
1
35
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Charact
eri
zation
and M
o
deling
of
Power Electron
ics Device
M. N.
Tandjaoui, C.
Ben
a
c
h
aib
a
, O. ab
d
e
lkhalek,
B. Denai, Y.
Moul
oudi
University
of
Bechar, Depar
t
men
t
of
Technolog
y
,
BP 417 Algeria
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Aug 25, 2013
Rev
i
sed
Au
g
14
, 20
14
Accepte
d
Se
p 3, 2014
During the thr
ee decades spent, the adv
a
nces of high voltage/curren
t
semiconductor technolog
y
di
r
e
ctly
affect th
e p
o
wer electronics converter
techno
log
y
and
its progress. Th
e
devel
opments of
power semicon
ductors led
s
u
cces
s
i
vel
y
to the appea
r
anc
e
of
the
el
em
ents
s
u
ch
as
th
e Th
yris
tors
,
an
d
become commercially
availab
l
e. The
v
a
rious semiconductor d
e
vices
can
be
clas
s
i
fi
ed in
to th
e wa
y
the
y
can
be con
t
roll
ed, u
n
controll
ed
cat
e
gor
y
s
u
ch
a
s
the Diode when it’s on or
off state is
controlled b
y
the power circu
it, an
d
second catego
r
y
is th
e fully contro
lled
such as
the M
e
tal Oxide
Semiconductor Field
Effect
Tr
ansistor (MOSFET), and this categor
y
can be
includ
ed a n
e
w
h
y
brid
devi
ces
s
u
ch as
th
e Ins
u
l
a
ted Ga
te B
i
pol
ar Tr
ans
i
s
t
or
(IGBT), and th
e Gate Turn-off
Th
y
r
isto
r (GTO). This paper describes the
characteristics and modeling o
f
se
veral ty
p
e
s of power semiconducto
r
devices such
as
MOSFET, IGBT and GTO
.
Keyword:
GTO
IGBT
MOStran
s
istor
Pow
e
r
conv
er
t
e
r
Power electronics
de
vices
Sem
i
cond
uct
o
r
s
de
vi
ces
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Ab
del
k
hal
e
k
O
t
hm
ane,
Depa
rt
m
e
nt
of
Tech
nol
ogy
,
Uni
v
ersity of
Bechar,
Bechar
Unive
r
sity Center BP
41
7 B
e
c
h
ar
0
8
0
0
0
,
Al
geri
a.
Em
a
il: ch
ellali
@n
etscap
e.n
e
t
1.
INTRODUCTION
Po
wer el
ect
r
o
ni
cs i
s
t
h
e t
echn
o
l
o
gy
o
f
co
nve
rt
i
n
g el
ect
r
i
c po
wer
fr
om
one
fr
om
t
o
anot
her
usi
n
g
electronic power device.
It a
l
so
re
fe
rs to a
subject of
res
earch in
el
ectrical
engi
neeri
n
g whic
h deals
with
desi
g
n
,
co
nt
r
o
l
,
com
put
at
i
o
n
and
i
n
t
e
grat
i
o
n
o
f
no
nl
i
n
ea
r, t
i
m
e
vary
i
n
g
e
n
ergy
pr
ocessi
n
g
el
ect
r
oni
c
sy
st
em
s
with
fast d
y
n
a
mics. W
ith
"classical" el
ectronics, electrical currents a
nd
volta
ge are used to carry information,
whe
r
eas
with powe
r electronics, they
carry
p
o
wer. Th
u
s
, th
e m
a
in
m
e
tri
c
o
f
p
o
wer electron
ics b
e
comes th
e
efficien
cy. Th
e cap
ab
ilities an
d
econ
o
m
y o
f
po
wer electr
o
n
i
cs system
a
r
e d
e
term
in
ed
b
y
th
e activ
e dev
i
ces
that are available. Thei
r cha
r
acteris
tics and
limitations are a key ele
m
ent
in the design
of
power elect
ronics
syste
m
s.
Seve
ral
t
y
pes
of
sol
i
d
st
at
e p
o
we
r sem
i
con
duct
o
r
de
vi
ces
ha
ve be
en
de
vel
o
ped
t
o
c
o
n
t
rol
o
f
out
p
u
t
param
e
t
e
rs, su
ch as
vol
t
a
ge,
cur
r
e
n
t
or
f
r
e
que
ncy
.
In
a
st
at
e po
wer c
o
n
v
e
r
t
e
r, t
h
e
po
we
r sem
i
cond
uct
o
r
devi
ces
f
unct
i
o
n
as
swi
t
c
he
s,
whi
c
h
ope
rat
e
st
at
i
cal
ly
, t
h
at
i
s
, wi
t
h
o
u
t
m
o
v
i
ng c
o
nt
act
[
1
]
.
A sem
i
cond
uct
o
r m
a
t
e
ri
al i
s
one
wh
ose el
ect
ri
cal
pro
p
ert
i
es l
i
e
i
n
bet
w
e
e
n t
hose
of i
n
s
u
l
a
t
o
rs a
n
d
g
ood
con
d
u
c
t
o
rs. Ex
am
p
l
es a
r
e: g
e
rm
an
iu
m an
d
silico
n
. In
term
s o
f
en
erg
y
b
a
nd
s, semico
n
d
u
c
tors
can
b
e
defi
ned as
thos
e
m
a
terials which ha
ve alm
o
st an em
pty conduction
ba
nd a
nd alm
o
st filled vale
nce
band with
a ve
ry
na
rr
o
w
ene
r
gy
ga
p (
o
f
t
h
e
or
de
r
o
f
1 e
V
)
sepa
ra
t
i
ng t
h
e
t
w
o.
Sem
i
cond
uct
o
r
m
a
y
be cl
assi
fi
ed as
un
de
r:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
1
35 –
14
1
13
6
Fi
gu
re
1.
Ty
pe
o
f
Sem
i
cond
u
c
t
o
rs
An in
trinsic semico
n
d
u
c
tor is on
e wh
ich
is
mad
e
o
f
th
e semico
n
d
u
c
tor material in
its extrem
e
l
y p
u
r
e
f
o
r
m
. A
lter
n
ativ
ely, an
i
n
tr
insic se
m
i
co
n
ducto
r
m
a
y b
e
d
e
f
i
n
e
d
as
o
n
e
i
n
wh
ich
t
h
e
nu
m
b
er
o
f
condu
ctio
n
electrons
is e
q
ual to t
h
e
number of
holes
.
Th
ose i
n
t
r
i
n
si
c
sem
i
cond
uct
o
rs t
o
w
h
i
c
h s
o
m
e
sui
t
a
bl
e im
pu
ri
t
y
or
d
opi
n
g
a
g
ent
or
d
o
p
i
n
g
has
bee
n
adde
d i
n
ext
r
e
m
el
y
sm
al
l
amou
nt
s (
a
b
o
u
t
1
part
i
n
1
0
8
) a
r
e cal
l
e
d e
x
t
r
i
n
si
c or i
m
puri
t
y
sem
i
cond
uct
o
rs [
4
]
,
[5]
.
Depe
n
d
i
n
g o
n
t
h
e t
y
pe
of
d
opi
ng m
a
teri
al
use
d
, e
x
t
r
i
n
si
c sem
i
cond
uct
o
rs can
be
sub
-
di
vi
de
d i
n
t
o
t
w
o
cl
asses,
N-t
y
pe
sem
i
conduct
o
r
s
an
d P
-
t
y
pe
se
m
i
cond
uct
o
rs.
The first powe
r electronic de
vice star
ted
in
1
902
with
th
e
d
e
v
e
l
o
p
m
en
t of m
e
rcu
r
y arc rectifier u
s
ing
t
o
con
v
e
r
t
al
t
e
rnat
i
n
g cu
rre
nt
(AC
)
i
n
t
o
di
re
ct
curre
nt
(DC
)
. I
n
m
odern s
y
st
em
s
t
h
e con
v
ersi
on i
s
pe
rf
orm
e
d
wi
t
h
sem
i
cond
uct
o
r swi
t
c
hi
n
g
de
vi
ces suc
h
as di
odes
,
t
h
y
r
i
s
t
o
rs an
d t
r
ansi
st
o
r
, an
d o
t
hers hy
bri
d
d
e
vi
ces
begi
nni
ng i
n
t
h
e 1
9
50s s
u
c
h
as SC
R
,
M
O
SFET,
GT
O, I
G
B
T
… T
h
e d
e
vel
o
pm
ent
of po
wer sem
i
cond
uct
o
r
devi
ces
has al
way
s
bee
n
a
dr
i
v
i
ng
f
o
rce
fo
r
po
we
r el
ect
ro
n
i
cs sy
st
em
s. In
t
h
e sem
i
condu
ct
or i
n
d
u
st
ry
,
we al
l
u
n
d
e
rstand
th
e i
m
p
o
r
tan
ce
o
f
d
e
sign
, m
a
teri
al selectio
n
,
assem
b
ly
man
u
f
actu
r
ing
,
reliab
ility, an
d
test
in
g
i
n
m
i
nim
i
zi
ng p
o
w
er
pac
k
agi
n
g
fai
l
u
res
[4]
,
[
2
]
.
Fo
r a l
o
n
g
t
i
m
e
sil
i
c
on-
ba
sed
po
wer
de
v
i
ces have
d
o
m
i
nat
e
d
the power electronics a
n
d pow
er system
applications.
The
sem
i
cond
uct
o
r i
n
d
u
st
ry
has m
a
de i
m
pressi
ve
pr
o
g
res
s
, part
i
c
ul
arl
y
i
n
c
o
m
m
uni
cati
ons
, heal
t
h
,
au
to
m
o
tiv
e, com
p
u
tin
g
,
co
nsu
m
er, s
ecurity, and industrial
electronics
.
Po
wer
han
d
l
i
n
g an
d di
ssi
pat
i
on
of
de
vi
ces i
s
al
so a cri
t
i
cal
fact
or i
n
desi
g
n
. T
h
e cu
rre
n
t
rat
i
ng
of a
sem
i
cond
uct
o
r
devi
ce i
s
l
i
m
i
ted by
t
h
e
heat
gene
rat
e
d
wi
t
h
in the dies a
nd
the heat de
veloped i
n
the resis
t
ance
of t
h
e i
n
t
e
rc
o
n
n
ect
i
n
g
l
eads.
Sem
i
cond
uct
o
r
devi
ces m
u
st
be de
signed
so that curr
en
t is ev
en
ly
d
i
stribu
ted
with
in
th
e d
e
v
i
ce acro
ss its in
tern
al ju
n
c
tions, its fo
rwar
d
vo
ltag
e
drop
in
th
e co
ndu
ctin
g state tran
slate
s
in
to
heat that m
u
st
be dissi
pated
whe
n
they re
quire s
p
eciali
zed heat sinks
or active coo
ling syste
m
s to keep their
j
u
n
c
tion
tem
p
e
r
atu
r
e
fro
m
ris
i
n
g
too
h
i
gh
. Ex
o
tic sem
i
co
n
d
u
c
tors su
ch
as silico
n
carb
i
d
e
h
a
v
e
an
ad
v
a
n
t
age
o
v
e
r strai
g
h
t
silico
n
in th
is resp
ect, an
d g
e
rman
iu
m
,
o
n
ce
th
e m
a
in
-stay o
f
so
lid-state electro
n
i
cs is
now littl
e
use
d
due
t
o
i
t
s
un
fa
vo
rabl
e
p
r
ope
rt
i
e
s at
hi
g
h
t
e
m
p
erat
ure
.
In t
h
e 1
9
8
0
s
, t
h
e de
vel
o
pm
ent
of p
o
w
er se
m
i
cond
uct
o
r d
e
vi
ces t
o
o
k
an
im
port
a
nt
t
u
r
n
w
h
en
ne
w
pr
ocess t
e
c
h
n
o
l
ogy
wa
s de
ve
l
ope
d t
h
at
al
l
o
wed i
n
t
e
g
r
at
i
o
n o
f
M
O
S an
d bi
pol
a
r
j
u
nct
i
on t
r
a
n
si
st
o
r
(
B
JT)
t
echn
o
l
o
gi
es
o
n
t
h
e
sam
e
chi
p
. T
h
u
s
fa
r, t
w
o
de
vi
ces
us
i
ng t
h
i
s
ne
w t
echn
o
l
o
gy
hav
e
bee
n
i
n
t
r
o
d
u
ced:
in
su
lated b
i
p
o
lar tran
sition
(IGBT) and
MOS co
n
t
ro
ll
ed
th
yrist
o
r
(MCT). Man
y
in
teg
r
ated
circu
it (IC
)
pr
ocessi
ng m
e
t
h
o
d
s as
wel
l
as equi
pm
ent
have
been a
d
apt
e
d f
o
r t
h
e devel
opm
ent
of p
o
w
er
d
e
vi
ces.
Ho
we
ver
,
unl
i
k
e m
i
croel
ect
r
oni
c IC
s,
whi
c
h pr
ocess i
n
f
o
rm
ati
on, p
o
w
e
r
devi
ce IC
s
p
r
oces
s po
we
r and s
o
their
packa
g
ing a
n
d processi
ng techni
qu
es ar
e q
u
ite d
i
f
f
e
ren
t
[2
],
[
5
].
Seve
ral attributes dictate how de
vices are use
d
.
De
vices suc
h
as diodes
conduct whe
n
a forward
vol
t
a
ge i
s
ap
pl
i
e
d and
ha
ve n
o
ext
e
r
n
al
co
nt
rol
o
f
t
h
e st
art
of co
n
duct
i
o
n
.
Po
wer
devi
ce
s such as SC
R
s
and
th
yristo
rs allow con
t
ro
l o
f
the start o
f
con
d
u
c
tio
n, bu
t re
ly o
n
p
e
riod
ic rev
e
rsal of curren
t flow to
tu
rn
th
em
of
f. De
vi
ces s
u
ch as G
T
O
,
I
J
B
T
, and M
O
SFET p
r
o
v
i
d
e ful
l
swi
t
c
hi
n
g
cont
rol
an
d ca
n be t
u
r
n
e
d
o
n
or o
f
f
with
ou
t reg
a
rd to
th
e cu
rren
t flo
w
t
h
ro
ugh
th
em
. Th
e
co
ntro
l in
pu
t ch
aracteristics
of a
device also
greatly
affect desi
gn; s
o
m
e
tim
es
the cont
rol in
put
i
s
at
a very
hi
gh
vol
t
a
ge
wi
t
h
re
spect
t
o
gr
o
u
n
d
an
d m
u
st
be
dri
v
en
by an isolated
source.
As efficiency
is at a
prem
iu
m
in a
powe
r electroni
c converter, the losses that a powe
r
el
ect
roni
c
de
vi
ce ge
nerat
e
s
sh
oul
d
be as
l
o
w
as p
o
ssi
bl
e
.
Ev
en
tho
ugh
t
h
e techno
log
i
es with
silicon
(Si)-b
ased
power
d
e
v
i
ces are m
a
tu
re, inh
e
ren
t
m
a
terial
rest
ri
ct
i
ons
l
i
m
i
t
t
h
ei
r perf
orm
a
nce i
n
h
i
gh
vol
t
a
ge,
h
i
gh
po
we
r,
hi
gh
swi
t
c
hi
ng
fre
que
ncy
a
n
d
hi
g
h
te
m
p
erature a
pplications. Bipola
r
powe
r devices, s
u
ch
as in
su
lated-g
a
t
e
b
i
po
lar transisto
r
s (IGB
Ts), can
han
d
l
e
hi
g
h
po
wer
,
but
t
h
e s
w
i
t
c
hi
n
g
s
p
ee
d
i
s
l
i
m
i
t
e
d by
t
h
e
devi
ces
’ st
r
u
ct
u
r
e.
U
n
i
p
ol
ar
po
wer
de
vi
c
e
s, l
i
k
e
m
e
t
a
l
-
oxi
de s
e
m
i
cond
uct
o
r fi
el
d ef
fect
t
r
a
n
s
i
st
ors
(M
OS
FE
Ts),
can
be
swi
t
ched at
hi
g
h
f
r
eq
ue
ncy
,
but
s
u
f
f
er
fro
m
relativ
ely
h
i
gh
on
-state
resistan
ce. Fu
rth
e
rm
o
r
e,
Silico
n
power d
e
v
i
ces
g
e
n
e
rally can
o
n
l
y with
stan
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Ch
a
r
a
c
teriza
ti
o
n
and
Mod
e
lin
g o
f
Po
wer Electro
n
i
cs
D
evi
ce (M. N.
Tandja
o
u
i
)
13
7
ope
rat
i
o
nal
t
e
m
p
erat
ure o
f
1
5
0
°
C
a
n
d
can
r
e
qui
re a s
u
bst
a
nt
i
a
l
cool
i
n
g
s
y
st
em
[3]
.
A g
a
te turn
-o
ff th
yristor (k
no
wn
as a
GTO) is
a three-t
e
rm
inal power se
m
i
cond
uct
o
r de
vi
ce t
h
a
t
b
e
lon
g
s to
a t
hyristo
r fam
ily
with
a fou
r
-layer stru
ctur
e. T
h
ey
al
so
bel
o
n
g
t
o
a
gr
o
u
p
o
f
po
we
r sem
i
cond
uct
o
r
d
e
v
i
ces th
at hav
e
th
e ab
ility to
fu
lly co
n
t
ro
l o
n
an
d
o
f
f states v
i
a th
e
co
n
t
ro
l term
in
al (g
ate). Th
e d
e
sign,
devel
opm
ent
,
and
ope
rat
i
o
n
o
f
t
h
e
GTO
are easi
e
r
t
o
un
de
rst
a
n
d
i
f
we c
o
m
p
are i
t
t
o
t
h
e c
o
nve
nt
i
ona
l
th
yristo
r. Lik
e
a co
nv
en
tion
a
l th
yristo
r, ap
p
l
y
i
n
g
a p
o
sitiv
e g
a
te sig
n
a
l to
its g
a
te ter
m
in
a
l
can
tu
rn
on
a GTO.
Un
lik
e a stan
dard th
yristor, a
GTO is
d
e
signed
to turn
of
f by ap
p
l
ying
a
n
e
g
a
tiv
e
g
a
te sign
al [2
],
[
4
],
[7
].
Th
e aim
o
f
t
h
is p
a
p
e
r is to pr
esen
t t
h
e
p
r
i
n
cip
l
es und
er
lyin
g pow
er conver
s
ion
b
y
th
e
u
s
e
o
f
static
switch
e
s and
t
h
e
tech
n
i
q
u
e
s e
m
p
l
o
y
ed
for co
n
t
ro
lling
o
u
t
p
u
t
p
a
ram
e
ters
su
ch
as v
o
ltag
e
, curren
t
, power,
fre
que
ncy a
n
d
wave
form
.
W
e
shall prese
n
t
a characteris
t
i
c
an
d m
odel
i
n
g
of
t
w
o t
y
pes
of
p
o
we
r el
ect
ro
ni
cs
devi
ces
suc
h
a
s
I
G
B
T
an
d
G
T
O a
n
d
i
t
s
res
u
l
t
s
o
f
sim
u
lat
i
o
n
wh
en
we u
s
ed
th
e
M
A
TLAB/SIM
ULINK
t
o
sim
u
l
a
t
e
t
h
ese devi
ces. I
n
a
pro
g
r
essi
ve s
e
que
nce,
we s
h
al
l
prese
n
t
al
l
t
h
e im
port
a
nt
t
y
pes of p
o
we
r
con
v
e
r
t
e
rs t
h
at
ha
ve
pr
ov
ed
u
s
eful
i
n
t
h
e
ap
pl
i
cat
i
on
a
r
eas of
electric power. We
s
h
all
also prese
n
t
im
porta
nt
ap
p
lication
areas, and
th
is will b
r
ing
ou
t h
o
w con
v
e
rter
sch
e
m
e
s an
d
co
ntro
l strateg
i
es can
b
e
tailo
red
to
m
e
e
t
specific nee
d
s.
2.
CHARACTERIZ
ATION AND
MODELING OF
POWER
ELECTRONICS DE
VICES
The controlled valves, IGBT and
GTO, take
a signifi
cant place in conve
rters of all kinds
.
As these
new t
y
pes
of
v
a
l
v
es can as w
e
l
l
cut
cond
uct
i
on as t
o
start
it, th
e IGBT an
d
th
e
GT
O g
r
adual
l
y
repl
ac
e t
h
e
th
yristo
rs in
t
h
e app
licatio
n
s
wh
ere
on
e
was fo
rm
erly to
call u
p
o
n
fo
rced
co
mm
u
t
at
io
n
.
2.
1.
GT
O T
h
yri
s
t
o
r Ch
ar
acteri
s
t
i
c
Th
is sem
i
co
n
d
u
c
tor d
e
v
i
ce, as th
e n
a
m
e
i
m
p
lies, is a h
ybrid
d
e
v
i
ce th
at
b
e
h
a
v
e
s lik
e
a th
yristo
r.
Ho
we
ver
,
i
t
ha
s an
a
dde
d
fea
t
ure t
h
at
t
h
e
pr
ovi
de
gat
e
c
o
n
t
rol
al
l
o
ws t
h
e
desi
gne
r t
o
t
u
rn
t
h
e
de
vi
ce
o
n
a
n
d
of
f i
f
an
d w
h
e
n
desi
re
d [e
b
o
o
k
_
P
o
wer El
ec
t
r
o
n
i
c
C
ont
rol
in Electrical Syste
m
s].
The s
y
m
bol for a GTO and
i-v
ch
aracteristics are
p
l
o
tted in
fi
gu
r
e
1
(
a
) an
d (b
) r
e
sp
ectiv
ely.
A hi
g
h
de
gr
ee of i
n
t
e
r
d
i
g
i
t
a
t
i
on i
s
re
qui
red i
n
GT
Os
in
order to
ach
iev
e
efficien
t tu
rn
-off. Th
e m
o
st
com
m
on desi
g
n
em
pl
oy
s t
h
e cat
ho
de area s
e
parat
e
d i
n
t
o
m
u
lt
i
p
l
e
segm
ent
s
(cat
h
o
d
e f
i
nge
rs) a
nd a
r
r
a
nge
d i
n
conce
n
tric
rings around the
de
vice cente
r
[2].
Ap
art fro
m
th
eir ab
ility to
in
t
e
rru
p
t
th
e an
ode cu
rren
t b
y
inj
ectin
g
a cu
rren
t in
th
e g
a
te, t
h
e GTO are
v
e
ry similar to
th
yristo
rs. Th
e
co
ndu
ctio
n
o
f
GTO is in
itiated
b
y
in
jectin
g
a p
o
s
itiv
e curren
t in
th
e trigger. To
main
tain
co
ndu
ctio
n
i
n
th
e
GTO, th
e anod
e curren
t
m
u
st n
o
t
fall below a thresho
l
d
called
ho
ld
ing
cu
rren
t.
The a
n
o
d
e c
u
r
r
e
nt
i
s
bl
ocke
d
by
i
n
ject
i
ng a
cur
r
ent
i
n
t
h
e t
r
i
g
ger s
u
bst
a
nt
i
a
l
negat
i
v
e
fo
r
a few
m
i
crosecon
d
s
.
In
or
der t
o
en
sure t
h
e loc
k
ing
,
the
c
u
rrent
injected i
n
to t
h
e trigger m
u
st
be ab
out
o
n
e
-
t
h
i
r
d o
f
t
h
e c
u
r
r
en
t
flowing
in th
e
an
od
e. Th
e
GTO switch
e
s
are
there
f
ore
of
great powe
r, whi
c
h ca
n c
o
ntrol
the c
u
rrents
of
a fe
w
th
ou
san
d
am
p
s
at vo
ltag
e
s
up
to
400
0v
[7
].
Fig
u
re
2
.
GTO; (a) ci
rcu
it sy
m
b
o
l; (b
) i
-
v ch
aracteristics
It sho
u
l
d
b
e
n
o
ted
th
at alth
oug
h
t
h
e GTO can
b
e
t
u
rn
ed
on lik
e a th
yristor, with
a l
o
w
po
sitiv
e g
a
te
cu
rren
t
pu
lse,
a larg
e
n
e
g
a
ti
v
e
pu
lse is
req
u
i
red to
turn it off. T
h
ese
are
relatively slow
devices
when
com
p
ared
wi
t
h
ot
he
r
ful
l
y
c
o
n
t
rol
l
e
d sem
i
cond
uct
o
rs.
Th
e m
a
x
i
m
u
m
switch
i
ng
frequ
en
cy
attain
ab
l
e
is in th
e ord
e
r
o
f
1Kh
z
.
Th
e vo
ltag
e
and
curren
t
rati
ng
o
f
t
h
e co
mme
rcially av
ailab
l
e GTOs
are
com
p
ared to the thyrist
o
rs
a
p
p
r
oachi
ng 6.
5K
v, 4.
5
K
A
a
n
d
a
r
e
expecte
d
t
o
inc
r
ease to cove
r
com
p
letely
th
e
area
o
c
cu
p
i
ed
b
y
th
yristor as
[5
].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
1
35 –
14
1
13
8
A m
a
j
o
r
v
a
riat
io
n
on
th
e t
h
yristo
r is th
e
GTO (Gat
e Tu
rn
-O
ff
Th
yr
istor
)
.
Th
is is a t
h
yristo
r
wh
ere
the struct
ure
has been tailore
d to gi
ve
better speed
by techniques such as
accurate lifetime killing, fine finge
r
or cel
l
st
ruct
u
r
es and "a
no
de
sho
r
t
s
" (s
ho
rt
ci
rcui
t
i
ng P+
a
nd
N- at the back in or
de
r to decrease the c
u
rrent
g
a
in
of th
e PNP tran
sisto
r
).As a resu
lt,
t
h
e
pr
odu
ct of
th
e gain
of
bo
th
N
P
N
an
d PN
P is
ju
st su
ff
icien
t
t
o
k
eep
th
e G
T
O
co
ndu
ctiv
e.
A
n
e
g
a
tiv
e g
a
te cur
r
e
n
t
is en
ough
to sin
k
th
e
wh
o
l
e cu
rr
en
t
f
r
o
m
th
e PNP and
t
u
rn
th
e
devi
ce o
ff.
A
GTO
s
h
o
w
s
m
u
ch i
m
prov
ed s
w
i
t
c
hi
n
g
b
e
havi
or
b
u
t
st
i
l
l
has t
h
e
t
a
i
l
as desc
ri
be
d a
b
o
v
e.
L
o
we
r
powe
r applications
, especia
lly resonant syste
m
s, are partic
ularly
attractive for the GT
O
because the turn-off
lo
sses ar
e
v
i
r
t
ually zer
o
[6
],
[7
].
2.
2.
IGB
T
Ch
ar
ac
teri
sti
c
Th
e IGBT is a h
y
b
r
i
d
sem
i
co
n
d
u
c
tor d
e
v
i
ce th
at
literall
y c
o
m
b
in
es o
f
th
e MOSFET an
d BJT. The
MOSFET is a transisto
r
d
e
vice cap
ab
le
o
f
switch
i
ng
fa
st
with l
o
w switc
hing l
o
sse
s.
It
cann
o
t
ha
ndl
e
hi
g
h
po
we
r a
nd i
s
m
o
st
ly
sui
t
e
d f
o
r l
o
w
-
po
wer
appl
i
cat
i
o
n. T
h
us, t
h
e B
J
T
i
s
so
nam
e
d beca
use t
h
e c
o
n
d
u
c
t
i
on i
s
due
t
o
t
h
e m
o
v
e
m
e
nt
of
el
ect
r
ons
a
n
d
h
o
l
e
s
wi
t
h
i
n
t
h
e t
r
a
n
si
st
or.
Specifically, i
t
has t
h
e s
w
i
t
ching c
h
aract
eris
tics of the MOSFET
with
t
h
e
p
o
wer
h
a
nd
ling
cap
ab
ilities o
f
th
e BJT. It is a v
o
ltag
e
-con
tro
lled
d
e
v
i
ce lik
e th
e MOSFET b
u
t
h
a
s l
o
wer con
d
u
c
tion
lo
sses.
Fu
rt
h
e
rm
o
r
e, it
is av
ailab
l
e with
h
i
gh
er
vo
ltag
e
and
cu
rrent
ratings
. There
are a num
b
er of circuit sym
bols for
th
e IGBT
with
th
e m
o
st p
opu
lar an
d th
e typ
i
cal
i-v c
h
a
r
acteristics are
plott
e
d in Figure
4.
Figure 3.
IGB
T
features; (a) circ
u
it sym
b
o
l; (b
) i
-
v ch
aract
eristics
The
IGB
T
s a
r
e
fast
er s
w
i
t
c
hi
ng
de
vi
ces t
h
a
n
t
h
e B
J
T
s
but
not as
fast as t
h
e MOSFETs
.
The
IGBTs
have l
o
we
r o
n
-
st
at
e vol
t
a
ge
dr
o
p
eve
n
w
h
en t
h
e bl
oc
ki
n
g
v
o
l
t
a
ge i
s
hi
gh
. The
IGB
T
i
s
t
h
e
m
o
st
pop
ul
a
r
d
e
v
i
ce fo
r
A
C
an
d
D
C
m
o
to
r
d
r
i
v
es r
each
i
ng
po
w
e
r
lev
e
ls o
f
a f
e
w
h
undr
ed
Kw
.
I
t
h
a
s also
star
ted
to
mak
e
i
t
s
way
i
n
t
h
e h
i
gh v
o
l
t
a
ge
c
o
nve
rt
er
t
e
c
h
nol
ogy
f
o
r p
o
we
r sy
st
em
appl
i
cat
i
on [5]
,
[
7
]
.
The
IGB
T
i
s
a t
r
ansi
st
or
w
hos
e c
o
n
d
u
ct
i
o
n
i
s
pri
m
ed and
u
n
p
ri
m
e
d by
ap
pl
y
i
ng
a
n
a
p
p
r
op
ri
at
e
vol
t
a
ge
o
n
t
h
e
t
r
i
gge
r
(t
he
ba
se).
As i
n
a c
o
nve
nt
i
o
nal
t
r
a
n
si
st
or, t
h
e t
h
re
e t
e
rm
i
n
al
s are nam
e
d C
col
l
ect
or,
e
m
it
ter E an
d base B.
The IGBT ca
n
withstand m
u
ch hi
gher c
u
rre
n
ts the
c
u
rre
n
ts ID of the M
O
SFE
T. T
h
ere
f
ore, t
h
ey can
o
r
d
e
r h
i
g
h
e
r
po
wers. Co
m
p
ared with th
e
GTO, th
e BJ
T,
MOSFET an
d
IGBT can in
itiate an
d in
terrup
t
th
e
flow of a
n
ode
current with
greater
s
p
ee
d. This allows t
h
ese sem
i
conductors to ope
r
ate at
m
u
ch highe
r
freq
u
e
n
c
ies. Th
is resu
lts in a
redu
c
tion
in the size,
weigh
t
an
d cost of
dev
i
ces usi
n
g t
h
es
e val
v
e
s
[
7
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Ch
a
r
a
c
teriza
ti
o
n
and
Mod
e
lin
g o
f
Po
wer Electro
n
i
cs
D
evi
ce (M. N.
Tandja
o
u
i
)
13
9
3.
SEMI
CO
ND
UCTO
R
SWI
T
CHI
N
G
-
PO
WER
PE
RFO
R
M
A
NCE
The
po
wer
fre
que
ncy
ra
n
g
es
of t
h
e
va
ri
o
u
s
sem
i
cond
uct
o
rs di
sc
usse
d i
n
t
h
e pre
v
i
ous s
ect
i
ons ar
e
su
mm
arized
in
Fig
u
re 3. It is clear th
at th
e th
yristor do
m
i
n
a
tes th
e u
ltra-hig
h
p
o
wer
reg
i
o
n
for relativ
el
y lo
w
fre
que
nci
e
s.
Th
e
GTO is the n
e
x
t
d
e
v
i
ce
wh
en
it co
m
e
s to
power
h
a
n
d
lin
g
cap
a
b
ilities ex
tend
ing
t
o
freq
u
e
n
c
ies
o
f
a
few
hu
nd
red
Hz. Th
e IGBT o
ccup
i
es t
h
e area
o
f
m
e
d
i
u
m
p
o
w
er
with
th
e ab
ility to
o
p
e
rate at relativ
ely
higher freque
ncies.
Fi
gu
re
4.
P
o
we
r C
o
n
v
ert
e
r
Le
vel
an
d
Fre
q
ue
ncy
f
o
r
Va
ri
o
u
s
Sem
i
cond
uct
o
r
De
vi
ces
Th
e tend
en
cy
o
v
e
r th
e n
e
x
t
few years is to
h
a
v
e
th
e
GTO
ex
tend
its p
o
w
er area to
ward
s th
e th
yristo
r
lev
e
l. At th
e
sa
m
e
ti
me, th
e IGBT
will also ex
tend
its power ab
ility to
ward
s th
e GTO with
h
i
g
h
e
r
switch
i
ng
fre
que
ncy
[5]
.
4.
MATL
AB SIMUL
A
TIONS RESULTS
An anal
og simulation of
power
elect
ronics
devices s
u
ch a
s
MOSFET
,
IGBT and GTO i
s
proposed in
o
r
d
e
r t
o
ev
al
uate th
e b
e
h
a
v
i
o
r
o
f
th
is co
mp
on
en
t in
its electrical en
v
i
ron
m
en
t. In
th
e first o
f
th
is
p
a
per, th
e
pri
n
ci
pal
c
h
ara
c
t
e
ri
st
i
c
s of
G
T
O a
n
d I
G
B
T
are
prese
n
t
e
d
.
The Fi
gu
re
5 s
h
o
w
i
n
g t
h
e f
o
l
l
o
wi
ng
o
u
t
wa
v
e
fo
rm
s vol
t
a
ge
’s
of s
u
ppl
y
,
M
O
SFE
T,
IGB
T
,
an
d G
T
O
.
Th
e setting
wi
th
th
e state on is
m
a
in
ly su
bj
ected
t
o
th
e co
n
s
t
r
ain
t
of the b
l
o
c
k
i
ng
o
f
t
h
e d
i
o
d
e
po
sitio
n
e
d
.
Th
is
is related
to
th
e rev
e
r
s
e
cu
rr
e
n
t of
d
i
od
e.
Fi
gu
re 5.
The
Vol
t
a
ge
W
a
ve
f
o
rm
s
of
S
u
p
p
l
y
,
MOSFET
,
IGBT
and GT
O
Fi
gu
re 6.
The
Vol
t
a
ge
W
a
ve
f
o
rm
s
Loa
d
s wi
t
h
Devi
ces
M
O
S
F
ET,
I
G
B
T
a
n
d
GTO
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
1
35 –
14
1
14
0
Bu
t th
e turn-on
is also
d
e
p
e
nd
to
t
h
e po
ssi
ble d
i
stu
r
b
a
n
ces in
th
e
g
r
i
d
con
t
ro
l, and
ju
st
lik
e for th
e
p
h
a
se of t
u
rn
-off t
h
e
b
e
h
a
v
i
or o
f
th
e m
o
no
lith
ic stru
ctures t
o
clo
s
i
n
g is influ
e
n
c
ed
b
y
th
e
i
m
p
act o
f
the circu
i
t
su
rr
oun
d
i
ng
the
m
.
In t
h
i
s
al
l
t
e
st
of si
m
u
l
a
t
i
on f
o
r
di
ffe
re
nt
co
m
ponent
s d
e
vi
ces, t
h
e l
o
a
d
i
s
pr
op
ose
d
as a
resi
st
ance
of
50
Ω
. I
n
Fi
gu
re
6, we can see
t
h
e fol
l
o
wi
ng
fo
rm
s of vol
t
a
ge of l
o
a
d
w
h
en i
t
i
s
operat
e
d fo
r t
h
ese di
f
f
ere
n
t
electronics
de
vices.
The
wa
vef
o
rm
s o
f
c
u
r
r
e
n
t
i
n
out
put
o
f
t
h
ese
de
vi
ces ca
n
b
e
o
b
ser
v
e
d
i
n
Fi
gu
re
7 a
n
d s
h
o
w
t
h
at
t
h
e
cu
rren
t fl
u
c
tu
atio
n
with
th
e settin
g
th
e state o
n
co
m
p
on
en
t
is q
u
ite p
r
esent. Ho
wev
e
r, the q
u
a
n
tity o
f
cu
rren
t
i
s
depe
nde
d t
o
t
h
e cur
r
e
n
t
of c
ove
ri
n
g
o
f
t
h
e
di
o
d
e. T
h
e wa
vef
o
rm
s of l
o
a
d
cu
rre
nt
s are
prese
n
t
e
d i
n
Fi
gu
re
8
are sim
i
lar as t
h
ese
pre
s
ente
d
in fi
gure7 bec
a
u
se, in t
h
is case of
stud
y,
w
e
u
s
ed
a
pu
rely resistiv
e lo
ad
.
Fin
a
lly, let u
s
co
nclud
e
from it th
at th
ese elect
ronics
devices are m
a
jor
pollutants i
n
the
powe
r
q
u
a
lity, th
at
u
s
ob
lig
es tak
e
n in
to
accou
n
t
t
h
eir u
s
e in
ord
e
r t
o
p
r
eserv
e
th
e
g
ood
q
u
a
lity of th
e
p
o
wer su
pp
ly.
Fi
gu
re
7. T
h
e C
u
r
r
ent
Wa
vef
o
r
m
s Out
put
of
MOSFET
,
IGBT
and GT
O
Fi
gu
re 8.
The
C
u
r
r
ent
Wa
vef
o
rm
s
Loa
d
s Us
ed
MOSFET
,
IGBT
and GT
O
5.
CO
NCL
USI
O
N
The electrical
characte
r
ization of se
veral
ac
tiv
e switches as MOSFET, IGBT an
d GTO
was
prese
n
t
e
d i
n
t
h
i
s
pape
r. The
b
e
havi
oral
o
f
t
h
ese devi
ces
de
vel
o
ped
usi
n
g
M
A
TLAB
/
SI
M
U
LI
NK
w
h
e
n
t
h
e
powe
r electronic circuits are s
i
m
u
lated before they are
pr
o
d
u
ced
t
o
t
e
st
ho
w t
h
e ci
rcui
t
s
r
e
sp
on
d
un
de
r c
e
rt
ai
n
co
nd
itio
ns in electrical ai
m
s
a
p
p
lication
.
The st
udy
t
h
e
o
ret
i
cal
app
r
oac
h
of
t
h
ese
el
ect
ro
ni
c p
o
w
er
c
o
m
pone
nt
ch
ar
act
eri
s
t
i
c
s was
p
r
esent
e
d.
It
i
s
not
ew
ort
h
y
t
h
at
t
h
e b
e
havi
or e
n
abl
e
s al
so t
o
pr
edi
c
t
cert
a
i
n
beha
vi
o
r
s o
f
t
h
i
s
el
ect
ro
ni
c po
we
r
com
pone
nt
i
n
t
h
e el
ect
ri
cal
ci
rcui
t
.
Fin
a
lly, th
e si
m
u
la
tio
n
of these elect
ronics
de
vices in
rea
l
tim
e
per
m
its
to ext
r
act the
state of t
h
e
com
pone
nt
s i
s
t
h
e appl
i
cat
i
o
n
of el
ect
ro
ni
cs fo
r t
h
e cont
rol
and c
o
n
v
er
si
o
n
of el
ect
ri
c po
wer
.
Ap
pl
i
cat
i
ons
of
po
we
r el
ect
ro
n
i
cs ran
g
e i
n
si
z
e
fr
om
a swi
t
c
hed m
ode
po
w
e
r su
p
p
l
y
i
n
an
AC
ada
p
t
e
r, l
i
ke F
A
C
T
S (
F
l
e
xi
bl
e
altern
ativ
e cu
rren
t tran
sm
issi
o
n
system
s) an
d DC m
o
to
r
dri
v
es use
d
t
o
ope
rat
e
pum
ps
an
d
t
o
i
n
t
e
rc
o
nnec
t
el
ect
ri
cal
gri
d
s
wi
t
h
a n
o
v
el
t
echni
que
o
f
t
r
ansm
i
ssi
on bas
e
d o
n
po
we
r e
l
ect
roni
c l
i
k
e
HV
DC
(
h
i
g
h
v
o
l
t
a
ge
direct c
u
rrent
s
y
ste
m
s).
REFERE
NC
ES
[1]
Batarseh
I.
P
o
wer e
l
ec
t
r
oni
c ci
rcui
t
s
. John Wiley
.
2004. IS
BN 0-471-12662-4, 978
0471126621.
[2]
MH RASHID.
Gate Turn-Off Th
y
r
istors’
,
Electr
i
cal and Computer Engin
eering
,
University
of West Florida 1100
0
University
Park
way
,
Pensac
ola,
Florida 32514-5
754, USA.
[3]
Y Cui, M
Chint
h
aval
i F,
Xu L
.
Tolb
ert.
Char
a
c
ter
i
za
tion
and
Modeling of
Silicon
C
a
rbide Power Devices an
d
Paralleling
Oper
ation
.
I
EEE xplo
r
e. 2012
.
[4]
F Mazda. Power
Electron
i
cs Han
dbook, Th
ird
edition. Newnes, IS
BN 0 7506 2926
6, 2003.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Ch
a
r
a
c
teriza
ti
o
n
and
Mod
e
lin
g o
f
Po
wer Electro
n
i
cs
D
evi
ce (M. N.
Tandja
o
u
i
)
14
1
[5]
E Acha
, VG Agelidis
, OA Lar
a
, TJ
E M
i
ll
er.
P
o
wer elec
troni
c contro
l in
ele
c
tri
cal s
y
s
t
em
s
’
Newnes
power
engineering s
e
ries
. 2002; ISBN
0750651261.
[6]
T Wildi, G S
y
bille. Electrotechnique. Pa
r
i
s, Fr
ance. ISBN PUL 2-
7637-8185-3. 20
05.
BIOGRAP
HI
ES OF
AUTH
ORS
M
o
hamme
d Na
sse
r
Tandjao
ui
rece
ived the s
t
a
t
e engine
er degre
e
in Ele
c
tri
cal E
ngineer
ing in
2005 from the
University
of Scien
ces and Tec
hnolog
y
of Oran (USTO). He
was born here
Magister
in electrical
engin
eerin
g in 2009
from
unive
rsity
of Bechar, Alger
i
a. H
e
is
teaching
in
university
of bechar
. He is preparing a Doct
orat. His inter
e
sts include power electronics,
FACTS,
HVDC,
power quality
is
sues,
rene
wable energy
and energy
storage.
Be
nac
h
aiba Ch
e
llali
receiv
e
d the state
engin
e
er degree
in
Electrical Engin
eerin
g in 1987 from
the Univ
ersity
of
Boumerdes (INH) and th
e M.S.
degree in 1996
f
r
om Bechar University
Cen
t
er
,
Algeria. In
200
5 he r
e
ceived
the do
ctorate
d
e
gree
from
the
Univers
i
t
y
of
S
c
ien
ces
and
Techno
log
y
of
Oran (US
T
O), Algeria
and curr
en
tly
hold
i
ng th
e post of Assistant Professor. His
current research
and teaching in
terests are
in the ar
eas of pow
er quality
improvement,
active
power fil
t
ers
and
renewab
l
e
en
er
g
y
. P
r
es
ent
l
y
h
e
is
supervising f
i
ve doctoral stud
ents working
in
the f
i
eld
of pow
er quality
and r
e
n
e
wable en
erg
y
.
Abde
lkhale
k O
t
hmane
was bo
rn in Taghit, Bechar (Algeria) in 1976. He received the Eng
.
degree
from
Bechar Univ
ers
i
t
y
C
e
nter
in 20
01, the Magister degr
ee from Sidi-bel-Abbes
University
in 2004 and the docto
rate from the University
of Bech
ar in 2010. He is a me
mber in
the Laborator
y
of
Ph
y
s
ics and
Semiconductor
Devices. His resear
ch
area in
terests are Power
electronic, Power quality
, Active filtering,
DVR, UPQC,
UPFC
, Control, Digital
control, Lo
ad
flow Optimization.
Evaluation Warning : The document was created with Spire.PDF for Python.