Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
6, No. 4, Decem
ber
2015, pp. 772~
780
I
S
SN
: 208
8-8
6
9
4
7
72
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
A Novel Power Factor Correcti
on Rectifi
e
r for Enh
a
ncing
Power Quality
Bindu K
V
, B
.
Jus
t
us
Rabi
Department o
f
Electrical
and Electronics
Engin
e
ering,
Anna Univ
ersity
, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
J
u
l 15, 2015
Rev
i
sed
No
v
10
, 20
15
Accepted Nov 27, 2015
In this paper, th
e disturban
ces in pow
er s
y
stem
due to low qu
ality
o
f
power
are dis
c
ussed an
d a curr
ent
injection method
to
maintain
the sin
u
soidal inpu
t
current which wi
ll reduc
e the to
ta
l curre
nt h
a
rmonic distortion (THD) as well
as improve th
e
power factor nearer
to unity
is
proposed.
Th
e proposed
method makes u
s
e of a novel controlled
diod
e rectifier which in
volves th
e
use of bidir
e
ctio
nal switch
e
s acr
o
ss th
e front-
e
n
d
rectifier
and the oper
a
tion
of the converter
is fully
an
aly
zed. The main feature of the topolog
y
is low
cos
t
, s
m
all
s
i
z
e
, h
i
gh
effic
i
e
n
c
y
and
s
i
m
p
li
cit
y
,
and
is
e
x
cel
lent
for
retrofitting fron
t
-end rectifier of
existi
ng ac driv
es, UPS etc. A novel strateg
y
implementing r
e
feren
ce
compensation curr
ent depending on
the load
harmonics and a control algo
rithm
for three-
phase three-
leve
l unit
y
PF
rectifier which
draws high quality
sinus
oid
a
l supply
curr
ents an
d maintains
good dc link- voltag
e
regulatio
n under wi
de load variation. Th
e proposed
techn
i
que c
a
n
be appli
e
d as a
retrofit
to a v
a
rie
t
y
o
f
existi
ng th
y
r
istor
converters which uses thre
e bidirectional switches
operating
at lo
w frequen
c
y
and a half-brid
g
e inverter operating
at high f
r
equency
.The total power
deliv
ered to
the load is pro
cessed b
y
the injection network, th
e proposed
converter offers
high efficiency
and not
only
hig
h
power factor
but also th
e
Total
Harm
onic
Distortion
is r
e
duced
.
Th
eor
e
t
i
ca
l
an
al
ys
is
is
verifi
ed b
y
digital simulatio
n and a hardwar
e
proto
ty
pe module is implemented in order
to confirm the f
easibility
of th
e proposed
s
y
stem. This scheme in
general is
suitable for th
e
com
m
o
n varia
b
le m
e
dium-to high-power level DC load
applications.
Keyword:
Activ
e filters
Current i
n
jecti
o
n technique
fr
ont
e
n
d
rect
i
f
i
e
r
Power qu
ality
Tot
a
l
ha
rm
oni
c di
st
o
r
t
i
o
n
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
B
i
nd
u K V,
Research Sc
holar,
Depa
rtem
e
n
t of Elect
rical
and Electronics
En
gi
nee
r
i
n
g,
Ann
a
Un
iv
ersity,
In
d
i
a.
Em
ail: kvbindu2014@gm
ail.com
1.
INTRODUCTION
In
t
h
e recent years,
the
power quality (PQ) problem
s have
been
increa
sed
reasona
b
ly beca
use
of
in
cr
eased
u
s
e
o
f
pow
er
electr
o
n
i
c eq
u
i
p
m
e
n
ts, and
m
o
to
r
d
r
iv
es in
househo
l
d
,
co
mmer
c
ial an
d
in
du
str
i
al
appl
i
cat
i
o
ns. The no
n-l
i
nea
r
l
o
a
d
s gene
r
a
t
e
harm
oni
cs
in
AC m
a
in
s cu
rren
t lik
e d
i
od
e rectifi
e
rs with
sm
oot
heni
n
g
DC
cap
aci
t
o
r
or t
h
y
r
i
s
t
o
r c
o
nve
rt
ers
wi
t
h
s
m
oot
heni
n
g
i
n
duct
o
rs
. T
h
ere
f
o
r
e a
n
y
o
f
t
h
e
s
e t
y
pe
s
o
f
driv
es create a n
u
m
b
e
r o
f
pro
b
l
em
s fo
r power
u
tili
ties [1
]. Th
ese p
r
o
b
l
em
s, u
s
u
a
lly referred as PQ
pr
o
b
l
e
m
s
, have
been
o
f
m
a
i
n
conce
r
n t
o
t
h
e
i
n
t
e
rnat
i
o
nal
c
o
m
m
uni
t
y
and add
r
esse
d
by
v
a
ri
o
u
s P
Q
st
an
dar
d
s,
pract
i
ces a
n
d
n
o
rm
s In
vi
e
w
o
f
t
h
ese
P
Q
pr
o
b
l
e
m
s
, so
m
e
s
u
itable m
easures are
re
qui
red for t
h
e c
o
m
p
ensation
of these c
u
rrent harm
onics. The m
o
st popul
ar
m
e
thod is
the usa
g
e of LC filter and the curre
nt sourc
e
non-
l
i
n
ear l
o
a
d
s
an
d
vol
t
a
ge s
o
u
r
c
e
n
onl
i
n
ear l
o
a
d
s
ha
ve
dual
re
l
a
t
i
ons t
o
eac
h
ot
he
r i
n
ci
rc
ui
t
s
an
d
p
r
o
p
ert
i
e
s an
d
n
eed
p
a
rallel an
d
series co
mp
ensatio
n
respectiv
ely, fo
r co
n
t
ro
lling
th
e h
a
rm
o
n
i
cs [2
]. Syn
c
hrono
u
s
m
o
to
rs
(SMs)
with s
p
eed c
o
ntrol are ve
ry
p
o
p
u
l
ar i
n
hi
gh
-p
o
w
er a
n
d/
or
hi
gh
-s
peed a
p
pl
i
cat
i
ons as t
h
ey
are
econom
i
c alternative at high
powe
r le
vel
s
.
For t
h
e spee
d
cont
rol
o
f
SM
s
,
the load c
o
mm
uta
t
ed invert
er (LCI)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A No
vel Po
wer Fa
ct
o
r
C
o
rrectio
n
Rectifier fo
r Enh
a
n
c
ing
Po
wer
Qu
a
lity
(Bin
d
u
KV)
77
3
is u
s
ed, as it can
b
e
n
a
turally co
mm
u
t
a
t
ed
by th
e lo
ad
v
o
l
t
a
g
e
with
a lead
in
g
pow
er
f
a
cto
r
(PF)
[3
].
Mo
st of
t
h
e appl
i
cat
i
o
n
s
of LC
I-
fe
d SM
dri
v
es ar
e
usi
ng si
x
-
pul
se cont
r
o
l
l
e
d
con
v
e
r
t
e
r. H
o
weve
r, t
h
e si
x
-
p
u
l
s
e
co
nv
er
ter
topolo
g
y
h
a
s
h
i
gher
cur
r
e
n
t
h
a
rm
o
n
i
c d
i
sto
r
tio
n
at A
C
m
a
i
n
s
w
h
ich
r
e
duces th
e Pow
e
r Facto
r
t
r
em
endousl
y
.
Thi
s
pa
pe
r dea
l
s wi
t
h
va
ri
o
u
s
sol
u
t
i
o
ns f
o
r m
i
ti
gat
i
on o
f
P
Q
p
r
o
b
l
e
m
s
, and
pr
o
v
i
d
es a s
u
i
t
a
bl
e
p
o
wer qu
ality
so
lu
tion
fo
r any n
o
n
-lin
ear ap
p
lication
[4
].
A con
v
e
n
tion
a
l in
v
e
rter for th
ree
p
h
a
se indu
ctio
n
m
o
to
r d
r
iv
es
uses a d
i
o
d
e
b
r
i
d
g
e
rectifier to p
r
ov
ide th
e d
c
lin
k
v
o
ltag
e
wh
ich
po
llu
tes ac
m
a
in
s b
y
in
j
ectin
g
current
harm
onics [5]. T
h
e c
h
aracteris
tics of recently use
d
thr
ee-phase PWM rectifiers
ha
ve nearly
sinusoi
d
al
in
pu
t cu
rren
t wav
e
fo
rm
wit
h
un
ity d
i
sp
lace
m
e
n
t
p
o
wer facto
r
and
reg
e
n
e
ration
capab
ility [6
]. The PW
M
rectifier canno
t b
e
used
for
h
i
g
h
po
wer co
nversion
du
e to
th
e h
i
g
h
switch
i
n
g
l
o
sses and
need
of filters are still
req
u
i
r
e
d
t
o
s
u
pp
ress
hi
g
h
s
w
i
t
c
hi
n
g
f
r
eq
u
e
ncy
harm
oni
c
s
. The
new a
p
pr
oac
h
o
v
erc
o
m
e
s t
h
e com
p
l
i
cat
ed
gating ci
rcuit
with a novel cont
rol strate
gy, whic
h takes
i
n
to account act
ual load level
on the
rectifier a
nd als
o
redu
ces its co
st [7
],[8
]. Th
e t
o
po
log
y
to
b
e
h
a
d
is
c
ont
rol
l
i
ng
t
h
e
co
n
duct
i
on peri
od of b
i
di
rect
i
onal
s
w
i
t
c
hes
and
whi
c
h el
i
m
i
n
at
es t
h
e i
nput
cu
rr
ent
ha
rm
oni
cs consi
d
era
b
l
y
and t
h
e i
n
p
u
t
p
o
w
e
r
fact
o
r
can
b
e
wel
l
im
pro
v
ed
. A
p
r
ot
ot
y
p
e wi
t
h
a
rat
e
d
out
p
u
t
p
o
we
r
of
1.
5
k
W
wa
s set
u
p
i
n
t
h
e l
a
bo
rat
o
r
y
for
t
h
e e
xpe
r
i
m
e
nt
al
stu
d
y
and
th
e
resu
lts ob
tain
ed
are co
i
n
cid
i
n
g
with
sim
u
l
a
tio
n
stud
ies. Fro
m
th
e liter
a
tu
re rev
i
ew of th
ree-
p
h
a
se rectifier to
po
log
i
es, three
p
h
a
se
star-connected s
w
itch three-le
vel
r
ectifier is a
c
hoice
beca
use
of its
red
u
ce
d v
o
l
t
a
ge st
ress
[
9
]
,
[
10]
. T
h
us, t
h
e i
n
p
u
t
cu
rre
nt
wa
vef
o
rm
i
s
wel
l
sha
p
e
d
an
d a
p
pr
ox
im
at
ely
si
nus
oi
dal
a
n
d
t
h
e bi
di
rect
i
o
nal
swi
t
c
hes c
o
n
d
u
ct
at
t
w
ice of the line freque
ncy,
therefore, the s
w
itchi
ng
l
o
sses are
negl
i
g
i
b
l
e
[1
1]
.
Ho
weve
r, t
h
i
s
t
e
c
hni
que
was
pr
op
ose
d
f
o
r t
h
e
rect
i
f
i
e
r o
p
erat
i
ng
wi
t
h
a fi
xe
d l
o
a
d
and
fi
xed opti
m
al
input
i
nductor. So
that the dc
link
voltage
is
se
nsitive
t
o
the loa
d
variation, a
n
d high
per
f
o
r
m
a
nce i
s
achi
e
ve
d
wi
t
h
i
n
a
ve
ry
l
i
m
i
t
e
d
out
put
p
o
we
r
ra
nge
.
2.
FRO
N
T E
ND
RECTIFIE
R
AN
ALY
S
IS
A
N
D
PR
IN
CIP
LES OF
OPE
RATI
O
N
A co
nt
r
o
l
st
rat
e
gy
wi
t
h
con
v
e
n
t
i
onal
v
o
l
t
a
ge-s
o
u
rce
cur
r
ent
-
co
nt
r
o
l
l
ed (V
SC
C
)
pul
se
wi
dt
h
m
odulation (P
WM) rectifiers
is
to wo
rk sim
u
ltaneously as
active powe
r
filte
rs [12]-[14]. Th
e acti
v
e front-e
nd
rectifier acts directly o
n
th
e
main
s lin
e cu
rren
ts,
fo
rci
n
g
t
h
em
to
b
e
sinuso
i
d
a
l an
d in
ph
ase
with
th
e
main
s
vol
t
a
ge
. Fo
r s
h
api
ng t
h
e l
i
n
e curre
nt
t
o
b
e
si
nus
oi
dal
and i
n
phase
w
i
t
h
t
h
e respect
i
v
e phas
e
vol
t
a
ge, t
h
e
active front end c
o
nverte
r
operates as
a
rect
ifier [15]. The
r
e are
only two
condu
cting di
odes in the
stages 1, 4,
and
7 an
d t
h
re
e con
d
u
ct
i
ng
d
i
odes i
n
t
h
e st
ags 2
,
5, a
n
d 8. I
n
t
h
e st
age
s
3, 6
,
an
d 9
,
onl
y
t
w
o
p
h
as
es are
con
d
u
ct
i
ng a
n
d t
h
e t
h
i
r
d
ph
ase cur
r
e
n
t
i
s
di
sco
n
t
i
n
uo
us.
W
h
e
n
t
h
e
o
u
t
put
po
wer i
s
hi
g
h
er t
h
an t
h
e rat
e
d
o
u
t
p
u
t
po
wer,
th
e cond
u
c
tion ang
l
e is adju
st
ed
to m
a
in
tain
th
e ou
tpu
t
v
o
l
t
a
g
e
co
nstan
t
aro
und
th
e v
a
l
u
e V
O
.
In th
is case, as
ex
p
ected
t
h
e co
ndu
ctio
n ang
l
e will b
e
larg
er th
an 30
d
e
g
r
ee.
Fi
gu
re 1.
Im
pl
em
ent
a
t
i
on of B
i
di
rect
i
onal
S
w
i
t
c
h
Wh
en
th
e
ou
tpu
t
po
wer is lower th
an
th
e
rated
ou
tpu
t
po
wer, b
i
d
i
rection
a
l switch
con
ductio
n
ang
l
e
is ad
j
u
sted
to
mak
e
th
e o
u
t
pu
t v
o
ltag
e
co
nstan
t
an
d
to
t
h
e
rat
e
d val
u
e an
d
t
h
e phase cu
rr
ent
i
s
cont
i
n
uo
us an
d
equals to ze
ro. There
f
ore there are
si
x wel
l
-
kn
o
w
n c
o
n
d
u
c
t
i
on st
ages a
n
d
t
w
o-
p
h
ase co
nd
uct
i
o
n st
age
s
3, 6
,
an
d 9 do
no
t ex
ist h
e
r
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
77
2 – 780
77
4
3.
FRONT-E
N
D RECTIFIER
CONTROLLER DE
SIGN
As th
e inpu
t ph
ase vo
ltag
e
cro
sses zero-vo
lt ax
es
, th
e corresp
ond
ing
switch
will b
e
trigg
e
red
an
d
t
h
e
b
i
d
i
r
ection
a
l sw
itch
e
s (
s
a, sb an
d
sc)
co
nducts tw
ice in
ev
er
y lin
e v
o
ltage cycle [
1
6
]
. Th
e d
r
i
v
e pu
lse w
i
d
t
h
for th
e b
i
d
i
rect
io
n
a
l switch
e
s
is d
e
term
in
ed
b
y
th
e
d
c
link
cu
rren
t i
dc
t
o
c
ont
rol
t
h
e c
o
n
duct
i
o
n a
n
gl
e
α
(thu
s
pul
se
wi
dt
h
)
.
The
p
r
o
p
o
sed
co
nt
r
o
l
ci
rc
ui
t
di
ag
ram
i
s
sh
own
as th
e
d
c
link
vo
ltage is co
m
p
ared with
refe
rence
v
o
l
t
a
ge t
o
p
r
ovi
de t
h
e c
o
m
p
ensat
i
o
n
[
1
7]
. D
u
e t
o
t
h
e
u
n
c
ont
ro
l
l
e
d swi
t
c
hes
f
r
om
up
per
an
d
l
o
w
e
r
h
a
lv
es of t
h
e i
n
pu
t
p
h
a
ses
remain
s no
n-cond
u
c
ting
,
resu
ltin
g in
bridg
e
characteristic
of d
i
od
e rectifier,
a
tin
y
com
p
ensation can
ac
hieve optim
u
m
pe
rformance. After
perform
i
ng a num
b
er
of
an
alysis an
d sim
u
l
a
tio
n
t
o
find
th
e m
o
st su
itab
l
e v
a
lu
e,
0
.
5
was cho
s
en to
b
e
used
i
n
th
e vo
ltag
e
com
p
en
satio
n
b
l
o
c
k. The id
eal rectifier
b
r
i
d
g
e
w
ith
si
x
d
i
o
d
e
s
h
a
s six
w
e
ll kn
own co
ndu
ctio
n
seq
u
e
n
ces, wh
en th
e lo
ad
cu
rr
en
t is co
n
tinuou
s.
I
n
each of these s
e
que
nces
, the
dc-si
d
e lo
a
d
is connected t
o
two
of the i
n
pu
t
phases t
h
rough two
diodes
one each
from
the uppe
r and lower halves of the input
phase
s
re
m
a
ins non-c
onducting,
re
s
u
lting i
n
bri
d
ge.
Hence
,
during each
of these sequenc
e
s, hea
v
y harm
onic distorti
ons
occ
u
r.
With a capacitive load, t
h
e situation ge
t
s
agg
r
a
v
at
ed. T
h
e t
o
p
o
l
o
gi
cal
m
odi
fi
cat
i
ons
are onl
y
rem
e
dy
t
o
t
h
i
s
si
tuat
i
on a
nd m
a
ke i
t
possi
bl
e
t
o
hav
e
cu
rren
ts in
all th
e inp
u
t
p
h
a
ses at all t
i
m
es, a
s
in
th
e
case of a linear balanced loa
d
on the 3-pha
se m
a
in
s. T
h
e
m
odul
at
i
on st
r
a
t
e
gy
p
r
o
p
o
se
d
i
n
t
h
i
s
pape
r i
s
a
refi
nem
e
nt
whi
c
h i
s
ai
m
e
d
t
o
i
m
pro
v
e t
h
e cu
rre
nt
s
h
a
p
i
n
g
s
o
as t
o
y
i
el
d a b
e
t
t
e
r harm
oni
c and p
o
w
er
-fa
ct
or pe
rf
orm
a
nce, un
de
r vary
i
ng l
o
a
d
co
ndi
t
i
ons. T
h
e i
n
p
u
t
l
i
n
e
i
n
d
u
ct
o
r
an
d t
h
e swi
t
c
hes l
e
ad t
o
ad
di
t
i
ona
l
operat
i
n
g m
odes i
n
vol
vi
n
g
t
h
e n
o
rm
al
l
y
i
d
l
e
i
nput
p
h
ase.
Whe
n
t
h
e s
w
i
t
c
h c
o
n
n
ect
ed t
o
t
h
e i
d
l
e
pha
se i
s
cl
os
ed t
h
e
cu
rre
nt
begi
ns t
o
bui
l
d
u
p
.
4.
SIMULATION OF THE
P
R
OP
OSED RECTIFIER
A PS
IM
m
odel
for t
h
e
pr
op
o
s
ed t
h
ree p
h
as
es t
h
ree l
e
vel
hi
g
h
p
o
w
er
fac
t
or rect
i
f
i
e
r i
s
devel
ope
d
t
o
per
f
o
r
m
t
h
e di
gi
t
a
l
sim
u
l
a
t
i
on a
nd c
o
nt
r
o
l
s
i
gnal
s
a
r
e
gene
rat
e
d
fo
r t
h
e
p
r
op
ose
d
fr
ont
e
n
d
rect
i
f
i
e
r
.
T
o
veri
fy
the perform
ance of the
propos
ed
co
nt
r
o
l
st
rat
e
gy
, a p
r
ot
ot
y
p
e
of t
h
e
rec
tifier is d
e
velop
e
d. A system with
two
activ
e n
e
twor
ks w
a
s sug
g
ested
,
w
ith
th
e f
i
r
s
t o
n
e
fo
r
g
e
n
e
r
a
tin
g
t
h
e th
i
r
d-
h
a
r
m
o
n
i
c cur
r
en
t and
t
h
e second
o
n
e
for inj
ecting
th
e cu
rren
t to th
e ac m
a
in
s. Th
e inj
ec
t
i
o
n n
e
t
w
o
r
ks
of t
h
e
pr
o
pose
d
c
o
n
v
e
rt
er d
o
not
pr
oces
s
all th
e power
d
e
liv
ered
t
o
t
h
e lo
ad
,
resu
ltin
g
i
n
a v
e
ry ef
fi
cien
t altern
ative. As the
c
o
nverter is
active,
it can
be ada
p
t
e
d t
o
di
ffe
re
nt
o
p
era
t
i
ng p
o
i
n
t
s
. T
h
e sy
st
em
uses t
w
o c
ont
rol
l
e
rs
, wi
t
h
t
h
e fi
rst
one
bei
ng i
n
ope
n
l
o
o
p
f
o
r t
h
e i
n
ject
i
o
n
net
w
o
r
k a
n
d t
h
e sec
o
n
d
one
f
o
r t
h
e s
h
api
ng
ne
t
w
o
r
k i
n
cl
ose
d
l
o
op
. T
h
e s
y
st
em
exhi
bi
t
s
a fast
dy
nam
i
c respo
n
se,
hi
gh efficiency, hi
gh
power
factor, a
n
d low
harm
onic
conte
n
t. T
h
e a
v
era
g
e
real
po
we
r co
n
s
um
ed by
l
o
ad
i
s
sup
p
l
i
e
d by
t
h
e so
ur
ce
, and the active c
o
m
p
ensati
on ci
r
c
ui
t
doe
s n
o
t
p
r
o
v
i
d
e
or c
o
nsum
e a
n
y avera
g
e re
al power. T
h
e
n
the re
fe
re
nc
e com
p
ensational curre
n
t can be
obtaine
d. The
con
d
u
ct
i
on
pe
r
i
od
of
bi
di
rect
i
onal
swi
t
c
hes
(Sa, S
b
a
nd
Sc) i
s
co
nt
r
o
l
l
e
d by
u
s
i
n
g t
h
e hy
st
eresi
s
cur
r
ent
cont
rol
.
T
h
e i
d
ea l
i
e
s i
n
t
h
e hi
gh s
w
i
t
c
hi
n
g
fre
que
ncy
,
re
s
u
l
t
i
ng i
n
t
h
e i
n
put
i
n
d
u
ct
or si
ze bei
n
g effect
i
v
el
y
red
u
ce
d.
Fig
u
re
2
sho
w
s th
e PSIM
sim
u
la
tio
n
circuit fo
r th
e
propo
sed
three
p
h
a
se activ
e cu
rren
t inj
ection
rect
i
f
i
e
r.
Fi
g
u
r
e
3a
nd
Fi
g
u
r
e
4 s
h
ows
t
h
e c
o
nve
rt
er i
n
put
s
o
u
r
ce c
u
r
r
e
n
t
wave
f
o
rm
and
i
t
s
sou
r
ce
v
o
l
t
a
ge at
r
a
ted
o
u
t
p
u
t
po
w
e
r
o
p
e
r
a
tion. Th
e
sim
u
lat
i
o
n
is
p
e
r
f
o
r
m
e
d
fo
r th
r
e
e ph
ase h
i
gh
p
o
w
e
r
r
ectif
ier
is done w
ith
bot
h resi
st
i
v
e
and i
n
d
u
ct
i
v
e l
o
ad
. Fi
g
u
r
e 5
& 6 s
h
o
w
s t
h
e
sou
r
ce c
u
r
r
ent
and c
u
rre
nt
w
a
vef
o
rm
s fo
r
R
l
o
ad,
with
ou
t an
d with
activ
e curren
t inj
ection
circu
it. Fi
gu
re
7 s
h
o
w
s t
h
e s
o
u
r
ce
wav
e
f
o
r
m
of pr
o
pose
d
hi
g
h
po
we
r fact
or
re
ctifier (RL
-
Loa
d
)
an
d sim
u
lation
re
su
lt of
ou
tp
u
t
vo
ltag
e
is sh
own
in Figure 8
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A No
vel Po
wer Fa
ct
o
r
C
o
rrectio
n
Rectifier fo
r Enh
a
n
c
ing
Po
wer
Qu
a
lity
(Bin
d
u
KV)
77
5
Fig
u
re
2
.
Propo
sed
three
p
h
a
se activ
e cu
rren
t inj
ection
rectifier
Fi
gu
re
3.
Si
m
u
l
a
t
i
on res
u
l
t
s
o
f
s
o
u
r
ce c
u
rrent wav
e
fo
rm
in
th
ree ph
ase
rect
ifier
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
77
2 – 780
77
6
Fi
gu
re 4.
S
o
u
r
ce
v
o
l
t
a
ge wa
v
e
fo
rm
of pr
op
o
s
ed hi
g
h
p
o
we
r
fact
o
r
rect
i
f
i
e
r
(R
-L
oa
d)
Fi
gu
re
5.
S
o
u
r
ce cu
rre
nt
wa
v
e
fo
rm
of
hi
g
h
po
we
r f
act
o
r
rectifier withou
t
in
jectio
n circ
ui
t.(R-L
oad
)
Fi
gu
re
6.
S
o
u
r
ce cu
rre
nt
wa
v
e
fo
rm
of
pr
op
o
s
ed
hi
g
h
p
o
wer factor
rectifier with
curren
t
inj
ectio
n circu
it
(R-L
oad
)
Fi
gu
re
7.
S
o
u
r
ce cu
rre
nt
wa
v
e
fo
rm
of
pr
op
o
s
ed
hi
g
h
p
o
we
r
fact
o
r
rect
i
f
i
e
r
(R
L-
Loa
d
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A No
vel Po
wer Fa
ct
o
r
C
o
rrectio
n
Rectifier fo
r Enh
a
n
c
ing
Po
wer
Qu
a
lity
(Bin
d
u
KV)
77
7
5.
6.
7.
8.
9.
Fi
gu
re 8.
Si
m
u
l
a
t
i
on
res
u
l
t
of out
put
v
o
l
t
a
ge
5.
HA
RD
WA
RE
DES
C
R
I
PTI
O
N
A
labor
ato
r
y
pr
o
t
o
t
yp
e
o
f
t
h
e pr
opo
sed thr
e
e ph
ase
h
i
gh
po
w
e
r
r
ectif
ier
cir
c
u
it is
d
e
sign
ed as sho
w
n
i
n
Fi
g
u
re
9 an
d t
h
e e
xpe
ri
m
e
nt
al
wave
f
o
r
m
s for t
h
e
t
h
ree phas
e
input
current
wa
ve
form
s are depi
cted in
Fig
u
r
e
10
an
d Fig
u
r
e
11
.
Desig
n
Values:
Vi
n=
22
0
V
La=Lb=Lc=
25m
H
To
illu
strate t
h
e d
e
si
g
n
feasi
b
ilit
y o
f
t
h
e
p
r
op
o
s
ed
co
nv
er
ter
,
a pro
t
o
t
yp
e
w
ith
t
h
e fo
llowi
ng specifications is
chosen.
Loa
d
fee
d
ing i
n
ductance
=
2m
H
C
1
=C
2=
22
0
0
m
i
croF
Ro
=100
O
h
m
s
Duty Cycle=50%.
Swi
t
c
hi
n
g
Fre
q
uency
=
2
5
K
H
z
Ou
t
p
u
t
vo
ltag
e
= 340
Vo
lts
Figu
re
9.
Ha
rd
ware
Setu
p
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
77
2 – 780
77
8
Fig
u
re
10
. C
u
rren
t
Wav
e
fo
rm
s of R,
Y
& B
Ph
ases withou
t Cu
rren
t Co
m
p
en
sation
Figu
re
1
1
. C
u
r
r
ent
Wa
vef
o
rm
s o
f
R,
Y
& B
Phases
with C
u
rrent C
o
m
p
ensation
Tabl
e 1.
M
eas
ure
d
PQ Param
e
t
e
rs
Par
a
m
e
ter
s
W
ithout I
n
jection
Cir
c
uit
W
ith I
n
jection Circuit
Phase R
Y
B
R
Y
B
Cr
est Factor
1.
4
1.
58
1.
61
1.
58
1.
62
1.
624
Total % I
TH
D
27.
5
24.
2
33
8.
7
8.
7
9.
8
5
th
Har
m
onic 25.
2
22.
3
27.
2
8.
1
8.
2
9.
1
7
th
Har
m
onic 10.
2
8.
0
18.
3
2.
8
2.
8
3.
1
PFs 0.
87
0.
98
-
221
6.
9
-
199
3.
1
-
176
9.
2
-
154
5.
4
-
132
1.
6
-
109
7.
8
-
874
.
0
-
650
.
1
-
426
.
3
-
202
.
5
21
.3
24
5.
2
46
9.
0
69
2.
8
91
6.
6
11
40
.5
13
64
.3
15
88
.1
18
11
.9
20
35
.8
22
59
.6
t
r
i
gg t
i
m
e
:
12.
10.
07.
1
3
:
17:
44.
6
2
V,
A
X
ax
i
s
r
ange:
58
0
poi
nt
s
t
r
i
g
g
+
61 po
i
n
t
s
t
r
i
g
g
+
64
0 p
o
i
n
t
s
-
2
1
91.1
-
1
9
76.3
-
1
7
61.6
-
1
5
46.9
-
1
3
32.2
-
1
1
17.4
-9
0
2
.
7
-6
8
8
.
0
-4
7
3
.
3
-2
5
8
.
5
-4
3
.
8
17
0.
9
38
5.
6
60
0.
4
81
5.
1
10
29
.
8
12
44
.
5
14
59
.
3
16
74
.
0
18
88
.
7
21
03
.
4
t
r
i
g
g
t
i
m
e
:
12.
10.
07.
13:
17:
44.
6
2
V,
A
X
ax
i
s
r
ange:
502 po
i
n
t
s
t
r
i
gg -
51
7 po
i
n
t
s
t
r
i
gg -
16
poi
n
t
s
-
203
4.
9
-
181
7.
6
-
160
0.
2
-
138
2.
8
-
116
5.
5
-
948
.
1
-
730
.
7
-
513
.
4
-
296
.
0
-
78.
6
13
8.
7
35
6.
1
57
3.
5
79
0.
8
10
08
.2
12
25
.6
14
42
.9
16
60
.3
18
77
.7
20
95
.0
23
12
.4
t
r
i
gg t
i
m
e
:
12.
10.
07.
1
3
:
17:
44.
6
2
V,
A
X
ax
i
s
r
ange:
59
1
poi
nt
s
t
r
i
g
g
-
6
11
po
i
n
t
s
t
r
i
g
g -
21
p
o
i
n
t
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A No
vel Po
wer Fa
ct
o
r
C
o
rrectio
n
Rectifier fo
r Enh
a
n
c
ing
Po
wer
Qu
a
lity
(Bin
d
u
KV)
77
9
6.
CO
NCL
USI
O
N
In
this pape
r, a
three-phase activ
e cu
rren
t
in
j
ection
rectifier is u
s
ed t
o
achieve
high powe
r fact
or
ope
rat
i
o
n o
f
h
eavi
l
y
di
st
ort
e
d an
d
un
bal
a
n
ced l
o
a
d
c
u
r
r
e
n
t
s
at
t
h
e p
o
i
n
t
of c
o
m
m
on cou
p
l
i
n
g (
P
C
C
)
. T
h
e
lin
ear con
t
ro
l
regu
lato
r
u
s
ed to
con
t
ro
l the co
nv
erter
was d
e
sign
ed
with
th
e h
e
l
p
of su
itab
l
e
h
a
rd
ware
ci
rcui
t
r
y
.
The
pr
o
pose
d
st
rat
e
gy
red
u
ces t
h
e harm
oni
c
content of a thre
e-phase r
ectifi
e
r. Sim
u
latio
n
s
and
ex
p
e
r
i
m
e
n
t
al r
e
su
lts wer
e
fo
un
d to b
e
in good
ag
r
eem
en
t. Th
e system
ex
h
i
b
its a
f
a
st
d
y
n
a
mic r
e
spo
n
s
e,
h
i
gh
efficiency,
high powe
r fact
o
r
, and l
o
w ha
r
m
oni
c cont
ent
.
The harm
oni
c
s
i
n
ject
ed
by
con
v
e
n
t
i
onal
re
ct
i
f
i
e
r
can
be c
o
m
p
ensated by the
active com
p
ensation circ
uit,
t
hus t
h
e i
n
p
u
t
po
we
r fact
or
c
a
n
be i
n
c
r
ease
d
. T
h
e
avera
g
e
real
powe
r c
o
nsum
ed
by loa
d
is
supplied
by
the
s
o
urce, and t
h
e
active co
m
p
ensatio
n
ci
rcu
it do
es no
t
provide
or c
o
nsum
e any ave
r
ag
e
real
power. T
h
e sim
u
lation res
u
lts s
how that
the i
n
put power fact
or ca
n
be
wel
l
i
m
prove
d
an
d i
n
p
u
t
c
u
r
r
ent
ha
rm
oni
cs can
be
ef
fect
i
v
el
y
el
im
i
n
at
ed
un
de
r
wi
de
l
o
ad
va
ri
at
i
on.
Th
e
p
r
op
o
s
ed
con
t
ro
l strateg
y
also
exh
i
b
its a su
fficien
t
ad
ap
tab
ility to
lo
ad
v
a
riatio
n
s
. Th
e d
e
sign
o
f
h
i
gh
per
f
o
r
m
a
nce UPF o
p
erat
i
o
n o
f
fr
o
n
t
end
rec
t
i
f
i
e
r has bee
n
p
r
esen
ted
i
n
this wo
rk
. It is g
ood
altern
ative for
cur
r
ent
harm
oni
cs com
p
ensa
t
i
on an
d di
s
p
l
a
cem
e
nt
po
wer
fact
or c
o
r
r
ect
i
o
n
.
A
n
ot
her t
e
chni
cal
di
sa
d
v
a
nt
age
o
f
p
a
ssiv
e
filters is related
to
th
e sm
al
l d
e
sig
n
to
leran
ces accep
tab
l
e in
th
e v
a
lu
es
o
f
inducto
r and
cap
a
cito
r.
An
d al
so i
n
di
v
i
dual
ha
rm
oni
c curre
nt
o
n
l
y
com
p
ensat
e
d. I
n
orde
r t
o
o
v
erc
o
m
e
t
h
ese pr
ob
l
e
m
s
UPF ope
r
a
t
i
o
n
of f
r
o
n
t
en
d r
ect
i
f
i
e
r i
s
desi
gne
d,
whi
c
h i
s
based
on t
h
e si
nus
oi
dal
b
i
di
rect
i
onal
s
w
i
t
c
hi
ng t
o
pol
o
g
y
t
o
co
m
p
en
sate sim
u
l
t
an
eo
usly all th
e o
r
d
e
r of h
a
rm
o
n
i
cs.
Hardware is im
p
l
e
m
en
ted
with
u
n
b
a
lan
c
ed
syste
m
, i
t
is possible t
o
redistribute and equilibrate the
m
a
ins
phase c
u
rrents
,
provi
ding t
h
at the t
o
t
a
l am
ount
of
powe
r
c
o
mi
n
g
f
r
o
m
t
h
e
ma
i
n
s
s
a
me
a
s
t
h
e am
ount requi
red for the
load.
REFERE
NC
ES
[1]
Montero MIM, et.al., “Com
parison of Control Strateg
i
es
for Shunt Active Power
Filters
in Thr
e
e-Phase Four-Wire
S
y
ste
m
s”
,
I
E
EE Transactions
on Power
Electronics
, vol. 2
,
pp
22
9-236, 2007
.
[2]
Pengju Kong, “A novel high-frequency
d
i
gital PFC controller with second ha
rmonic compensatio
n”, IEEE Regio
n
10 Conferen
ce,
vol. 4
,
pp
53-56, 2004.
[3]
Zhong Chen, Dehong Xu, “Contr
o
l and design issues of a DSP-
ba
sed shunt active
power filter for
utili
t
y
inter
f
ace
of diode rectif
ier
s
”, IEEE
Applied Power Electro
n
ics Confer
ence
and Exposition,
vol. 1
,
pp
197 –
203, 2004
.
[4]
Pini,
SH,
Ba
rbi
I.
,
“A Single
-
Pha
s
e
High-Powe
r-Fa
c
t
or Rec
tif
ier
,
Based on a
Tw
o-Quadrant Shu
n
t Activ
e Filt
er”
,
IEEE Transactio
ns
on Power
Electronics
, vol. 26
, pp. 3131 -
3143
, 2011
.
[5]
Fukui K., Koizumi H., Class
E., “Rectif
ie
r w
ith Controlled
Shunt Capacitor
“
,
IEEE T
r
ansactions on Pow
e
r
Electronics
, vol. 27, pp. 3704 –
3
713, 2012
.
[6]
Meral ME., “Using activ
e power
factor
co
rrectio
n (PFC) boost rectifiers for
an
improved topolo
g
y
of
static series
com
p
ens
a
tors
wi
th no
energ
y
s
t
or
age”
,
I
E
T
Pow
e
r
El
ectr
oni
cs
,
vo
l/issue: 5(8)
, pp
.
1438 – 1445
, 20
12.
[7]
P
o
-Tai Ch
eng,
e
t
.
al
., “
D
es
ign of
an Auxi
liar
y
Co
nverter
for
the D
i
ode R
ect
ifie
r an
d the
Anal
ys
is
o
f
the
Circu
l
a
tin
g
Current”,
I
EEE Transactions
on Power
Electronics
, vol/issue: 23(
4), pp
. 1658
– 1
667, 2008
.
[8]
Cichowlas M.,
et.
al, “Activ
e f
ilter
i
ng funct
i
on
of thr
ee-phas
e
PWM boost rectifier under diff
erent l
i
ne vol
tag
e
conditions”,
IEEE Transactions
on Industrial
Electronics
, vol/issue: 52(2)
, pp
. 41
0 – 419
, 2005
.
[9]
Wiroj Tangtheer
ajaroonwong, et. al., “Design and Perform
ance
of a Transform
e
rles
s Shunt
Hy
br
id Filter Integr
at
ed
Into a
Thr
ee-P
h
a
s
e Diode R
e
c
tifi
e
r”,
IEEE Transactions on
Powe
r Ele
c
tronics
, vo
l. 22
, pp
. 1882
–
1889, 2007
.
[10]
Xiong Du, et
. al
., “DC Link Acti
ve Power
Filter f
o
r Three-Phase
Diode Rectifi
e
r”,
IEEE Transactions on Industrial
Electronics
, vol. 59, pp. 1430 –
1
442, 2012
.
[11]
Terc
i
y
anl
i
A,
et
.
al.
,
“
A
S
e
le
ctiv
e Harm
onic Am
plific
ation Meth
od for Reduction
of kVA Rating
of Current Source
Converters
in Sh
unt Active Power Filters”,
IEEE Transactions
on Power
Deliver
y
,
vol. 26
, pp
. 65-7
8
, 2011
.
[12]
Rahmani, B
., “
R
ecipro
cal effects of the d
i
storted wind
turbin
e source and
the shunt
active p
o
wer filter: fu
ll
com
p
ensation of
unbalance and
harm
onics
under '
c
apacitiv
e non-
linear load
'
con
d
ition”,
IET
Po
wer Elec
tronics
,
vol. 6
,
pp
. 1668
– 1682, 2013.
[13]
Beak J, et.
al., “
R
e-using
& r
e
-r
ating o
l
der
rectif
iers with n
e
w D
C
/DC choppers”,
IEEE Transactions on Industrial
Applica
tions
, vo
l/issue: 37
(4), pp
. 1160–1166
, 20
01.
[14]
Scaini V., “High-current DC c
hoppers
in the metals
industr
y”,
I
E
EE Transaction
on Industrial Applica
tion
s
Magazine
, vo
l/is
sue: 8(2), pp
. 26
–33, 2002
.
[15]
AI. Maswood, F. Liu
,
“A novel
unity
power f
act
or input stag
e f
o
r AC drive app
lication
,
”
I
EEE Transactions
on
Power
E
l
ec
tr
oni
cs
, vol/issue: 20(
4), pp
. 839-846
,
2005.
[16]
Darly
SS.,
et. al., “Fault Tole
rant Control in Z-
Source Inver
t
er
Fed Induction
Motor”,
In
ternational Journal of
Power Electronics
and Drive Sys
t
em,
vo
l/issue: 1
(
1), pp
. 29~35, 2
011.
[17]
C. Qiao
, KM.
Smedley
,
“Three-phase un
ity
-
p
o
wer-factor
star
connected
switch rectif
ier
with
unified constan
t
-
frequency
in
tegr
ation
contro
l”,
I
EEE Transactio
ns on
Power
E
l
ectr
oni
cs
, vo
l/issue: 18(4)
, pp
. 95
2-957, 2003
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
77
2 – 780
78
0
BIOGRAP
HI
ES OF
AUTH
ORS
She is pursuing her PhD in Electrical
Engin
eer
ing in Anna University
. She received h
e
r M.E
Degree from An
na University
in
the
y
e
ar 2005
.
He
r areas of interest include Pow
e
r Electronics
,
Active
curr
ent
in
jec
tion
and pow
er qua
lit
y.
He rece
ived his
P
h
D in Electr
i
cal
Engine
er
ing
from Anna Un
iversity
. He has
published 41
research
articles in p
eer-rev
i
ewed national and international
jour
nals. He is an Advisor
y
Board
Member in var
i
ous International Confer
ences
a
nd an active
Editor and
rev
i
ewer of var
i
ous
reputed J
ournals
. His
s
p
an in research is
a
c
ros
s
the areas of power quali
t
y
solu
ti
ons, Intell
igent
Controllers
, data mining,
ener
g
y
conservatio
n,
ad
jus
t
abl
e
s
p
eed dr
ives
an
d techno
log
y
management.
\
Evaluation Warning : The document was created with Spire.PDF for Python.