Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
7
,
No
. 2,
J
une
2
0
1
6
,
pp
. 54
3~
55
0
I
S
SN
: 208
8-8
6
9
4
5
43
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Comparative Study of Thre
e Ph
as
e Grid Connected
Photovol
t
aic Inverter Usi
n
g PI an
d Fuzzy Logi
c Controller with
Switching Losses Calculation
M
.
V
e
nkat
esan
1
,
R.
R
a
j
e
shwa
ri
2
, N
.
Deve
raj
a
n
3
,
M
.
K
a
l
i
yam
oor
th
y
4
1
Department of Electrical
& Electronics Engin
e
ering, Karpagm Acad
em
y
of
High
er Edu
.
, Coimbatore, India
2,3
Department of
Electr
i
cal
Engin
eering
,
GCT
,
Co
im
batore,
Indi
a
4
Department of Electrical
& Electronics Engin
e
ering, Karpagam
College
Engg
., Coimbatore,
Ind
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 29, 2015
Rev
i
sed
Feb
10
, 20
16
Accepte
d
Mar 3, 2016
A comparative stud
y
of three phase grid connected photo
voltaic (PV)
inverter using Pr
oportional-Integ
r
al (PI)
controller and Fuzzy
logic controller
(
F
L
C
)
i
s
p
r
e
s
e
n
t
e
d
i
n
t
h
i
s
p
a
p
e
r.
P
r
opos
ed
three
phas
e
inverte
r
wit
h
s
i
ngle DC
s
o
urce employ
ing three phas
e t
r
ansform
e
r
for
grid connected
P
V
s
y
s
t
em
controlled
by
us
ing space vector
puls
e
widt
h modulation (SVPWM
) techni
que.
P
I
and F
L
C are
us
ed a
s
curre
nt controlle
r
fo
r re
gul
ating the
cur
r
ent.
Pert
urb
and
obse
r
ve
maxi
mu
m p
o
we
r poi
nt
technique
(
M
PPT) is u
s
ed
for t
r
acking
of
m
a
xi
mum
power from the
PV pa
nel. Fina
lly
total harm
onic di
stortion (T
HD)
comparison
ma
de between t
w
o co
ntroller
s
for vali
dation
of re
sult
s.
Furt
her
m
ore
swi
t
hing l
o
sse
s
of
inverter a
r
e al
so
pre
s
ented. T
h
e
si
mulati
on
result
s are obtai
n
e
d usin
g MATL
AB
si
mulin
k.
Keyword:
Fuzzy L
o
gic c
ont
roller
PI con
t
ro
ller
PV Invert
er
SVP
W
M
Switch
i
ng
Lo
sses
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M. Ve
nkatesan
Assistant Profe
ssor, Depa
rtm
e
nt
of
El
ectrical
& Electronics
Engineeri
n
g,
Kara
pa
gm
Academ
y
of Hi
ghe
r E
ducat
i
o
n,
Co
im
b
a
to
re.
Em
a
il: v
e
n
k
a
tesang
ct@g
m
a
il.co
m
1.
INTRODUCTION
In th
e m
o
d
e
rn
scien
tific wo
rl
d
ru
led
b
y
scien
ce,
t
h
e
u
tilizi
n
g of electricity h
a
s i
n
creased
rap
i
d
l
y du
e
t
o
gr
o
w
i
n
g o
f
po
p
u
l
a
t
i
on
of
t
h
e w
o
rl
d
.
N
o
waday
s
, m
o
st
of t
h
e
resear
c
h
w
o
r
k
s
have
foc
u
se
d o
n
P
V
base
d
po
we
r ge
nerat
i
on
d
u
e t
o
m
a
jo
r reas
on
s suc
h
as pri
ce
of
foss
il fuel, green
hous
e effe
ct
and energy availa
ble in
n
a
ture [1
]. Actu
ally, so
lar
p
a
n
e
l is
d
i
rect
ly co
n
v
ertin
g
so
lar irrad
i
atio
n
in
t
o
el
ectrical energy [2]. It is
necessa
ry
t
o
c
o
nve
rt
a
v
ai
l
a
bl
e DC
vol
t
a
ge i
n
t
o
AC
v
o
l
t
a
ge
a
n
d
t
h
e c
o
nve
rt
ed
AC
vol
t
a
ge
sho
u
l
d
be si
n
u
s
oi
dal
with
h
i
g
h
qu
ality o
u
t
p
u
t
v
o
l
t
a
g
e
. Fo
r t
h
is pu
rpo
s
e, m
u
ltile
v
e
l in
v
e
rter (MLI) is th
e mo
st su
itab
l
e cho
i
ce for
co
nv
ertin
g
DC in
to
AC co
m
p
ared
to
th
e conv
en
tion
a
l
t
w
o l
e
vel
i
nve
rt
ers
wi
t
h
m
i
nim
u
m
THD val
u
es. M
L
I’s
br
oa
dl
y
cat
ego
r
i
s
ed i
n
t
o
t
h
ree
m
a
i
n
t
y
pes
na
m
e
l
y
, di
ode
cl
am
ped,
fl
y
i
ng
capaci
t
o
r
an
d
c
a
scade
[
3
]
-
[
4
]
.
Th
ree
p
h
a
se MLI inverter
u
s
ing
cascad
ed H-Bri
d
ge with
i
n
d
e
p
e
nd
en
t
DC sou
r
ce is presen
ted
i
n
th
e literatu
re
rev
i
ew
[5]
.
Th
e ab
ov
e t
opol
ogy
, ea
ch H b
r
i
d
ge r
e
qui
re sepa
rat
e
DC
sou
r
ces
wi
t
h
eq
ual
rat
i
ng an
d sep
a
r
a
t
e
DC
so
urces m
a
k
e
i
t
syste
m
b
u
l
k
y
an
d
co
stlier [6
]. Cascad
e H b
r
idg
e
in
v
e
rter e
m
p
l
o
y
in
g
si
n
g
l
e ph
ase and th
ree
pha
se t
r
an
sf
or
m
e
rs wi
t
h
si
n
g
l
e DC
i
n
p
u
t
i
s
al
so p
r
ese
n
t
e
d [
7
]
.
T
h
i
s
co
nfi
g
u
r
at
i
on
us
e si
ngl
e
DC
i
n
put
a
n
d
requ
ire ad
d
ition
a
l sing
le and th
ree
p
h
a
se t
r
an
sfo
r
m
e
rs for h
i
g
h
e
r vo
ltag
e
lev
e
l. I
n
accordance with the
observat
i
on from
t
h
e references [5]
-[7]
,
i
nvert
er t
opol
ogy
r
e
qui
res
m
o
r
e
DC
i
nput
,
t
r
ansform
e
rs and swi
t
c
hes
which result
in increased co
mplexity, s
y
s
t
e
m
s
i
ze
and cost.
F
o
r
ma
i
n
t
a
i
n
g
r
i
d
c
u
r
r
e
n
t
a
s
p
u
r
e
s
i
n
u
s
o
d
i
a
l
Proportional-In
tegral (
PI) c
o
ntroller a
n
d FLC
controllers are use
d
as
fee
d
back
co
nt
r
o
l
l
e
r.
The
P
I
i
s
m
a
y
not
satisfacto
r
y in
co
n
t
ro
lling
v
a
rio
u
s
no
n
linear co
n
t
ro
l app
li
catio
n
s
. M
o
reover th
e
d
e
sign
of its con
t
ro
l syste
m
is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
543
–
5
50
54
4
al
so ve
ry
com
p
l
e
x a
nd
he
nce
newl
y
desi
gne
d f
u
zzy
l
ogi
c c
ont
rol
l
e
r i
s
de
v
o
i
d
of t
h
ese
d
r
awbac
k
s
[8]
.
F
o
r t
h
e
p
r
op
er inv
e
rter o
p
e
ration
,
h
i
gh
qu
ality th
e gatin
g
pu
lses
to
b
e
g
e
n
e
rated
t
o
th
e inv
e
rter switch
e
s
with
th
e h
e
l
p
o
f
SVPWM tech
n
i
q
u
e
[9
]. Th
is is a m
o
st fa
m
o
u
s
co
n
t
ro
l
tech
n
i
qu
e
for t
h
ree
ph
ase m
u
ltilev
e
l in
v
e
rter [1
0
]
.
Th
is
p
a
p
e
r pr
op
o
s
es co
m
p
ar
ativ
e stud
y
o
f
th
r
e
e ph
ase PV inv
e
r
t
er using PI and FLC
w
ith
sw
itch
i
ng lo
ss
calcu
latatio
n
.
In
ord
e
r to
i
n
crease th
e qu
ality o
f
power
fed in
to
th
e
g
r
id
(in
term
s o
f
THD),
5
lev
e
l in
v
e
rter
u
s
ed
in th
is
pap
e
r. Fu
rt
h
e
rm
o
r
e SVPW
M
i
s
u
s
ed to
u
tilize th
e
DC
bu
s vo
ltag
e
effect
iv
ely and
PV
cell is
n
a
turally an
up
co
m
i
n
g
tech
no
log
y
wh
ich is con
cen
t
r
ated
by
m
o
st
of t
h
e
resea
r
che
r
s.T
h
e
per
f
o
r
m
a
nces b
o
t
h
cont
rollers a
r
e
analy
s
ed i
n
term
s of TH
D,
fast res
p
o
n
se. Fu
rt
h
e
r m
o
re, it u
s
es sing
le DC i
n
pu
t, on
e
trans
f
o
r
m
e
r, 1
5
s
w
itches,
fast
res
p
o
n
se
an
d
m
i
nim
u
m
THD are th
e rem
a
rk
ab
le ad
v
a
tages of th
e inv
e
rt
er.
2.
PHOTO
V
OL
TAIC S
Y
STE
M
DESIG
N
The PV cell is a semiconduct
o
r
de
vice that directly co
nv
erts so
lar irrad
i
at
io
n
in
t
o
electrical energy is
effect is called
‘Pho
tovo
ltaic Effect
’ [1
1
]
. Th
e PV
pane
l acts as input DC source for t
h
e inverte
r
. The
electrical p
o
w
er g
e
n
e
rated
b
y
a so
lar PV
p
a
nel
m
a
in
ly d
e
p
e
n
d
s
on
th
e
o
p
e
ratin
g
con
d
ition
s
, so
lar irrad
i
atio
n,
te
m
p
erature
,
num
b
er of
cells
, and sh
or
t ci
r
c
u
it cu
rr
en
t
(
),
etc. In th
is prop
o
s
ed ap
pro
a
ch
, in
o
r
d
e
r to attai
n
m
a
xim
u
m
pow
er f
r
om
t
h
e P
V
pa
nel
,
P
&
O
M
PPT al
g
o
ri
t
h
m
has been
us
ed. T
h
e
DC
ou
t
put
vol
t
a
ge
o
f
t
h
e P
V
panel
s
i
s
gi
ven
t
o
t
h
e bo
ost
con
v
e
r
t
e
r. T
h
e bo
ost
co
n
v
erter in
creases i
n
pu
t DC vo
ltag
e
lev
e
l, wh
ich
is b
a
sed
on
t
h
e gat
i
n
g pul
se
gi
ven
t
o
t
h
e
p
o
w
er
M
O
SFET
a
n
d
t
i
m
e
d
u
rat
i
o
n o
f
g
a
t
i
ng pul
ses
de
si
red by
dut
y
r
a
t
i
o
o
f
switch
.
Th
e
d
u
ty ratio
o
f
th
e switch
is no
t a fix
e
d
a
n
d
it will ch
ang
e
au
to
matically
d
u
r
i
n
g
th
e track
i
n
g
p
r
o
cess
[1
2]
. Th
e Po
w
e
r M
O
S
F
ET i
s
a hi
g
h
f
r
eq
ue
n
c
y
swi
t
c
hi
n
g
device and it operates at highe
r
fre
que
n
cy ra
nge
s of
1
0
kHz. Th
is
will redu
ce t
h
e size of
th
e indu
ctor an
d ex
tern
al no
ise.
3.
THREE PHASE PV INVE
RTER T
O
POL
OGY
AND PRI
NCI
PLE OF
OPE
R
ATION
The
pr
o
pos
ed
i
nve
rt
er c
o
n
f
i
g
urat
i
o
n c
o
nsi
s
t
s
o
f
bo
ost
c
o
n
v
ert
e
r
,
DC
b
u
s
(C
1
),
three
p
h
a
se in
verte
r
,
1
2
term
in
al tra
n
sfo
r
m
e
r, LC filter an
d
three
p
h
a
se lo
ad
. The Fig
u
re
1
and 2
show
PV
inv
e
rter t
o
po
logy an
d
si
ngl
e p
h
ase fi
ve
l
e
vel
i
n
vert
er.
Figure
1. Thre
e phase
PV inver
t
er
topo
log
y
Fi
gu
re
2.
Si
n
g
l
e
fi
ve
l
e
vel
pha
se i
n
vert
er
Fi
gu
re
3.
Si
n
g
l
e
l
i
n
e di
a
g
ram
of
t
h
ree
p
h
ase
PV i
nve
rt
er t
o
pol
ogy
s
V
abc
I
inv
LC Filt
er
3
Ф
Gri
d
Feedback
cont
rol
l
e
r
T
h
r
e
e Ph
a
s
e
Fi
ve Le
vel
In
verte
r
MPPT (P&O)
Al
g
orith
m
P
V
Pa
ne
l
3
Ф
Trans
C
2
M1
M
4
M
5
M
3
M
2
C
1
Ph
-
A
Ph
-
A
Ph
-
C
5 Level
Inverter
5 Level
Inverter
5 Level
Inverter
Vdc
Ph-B
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Com
p
. study of
3
Ф
G
r
id Conn. PV
In
v.
U
s
ing PI
an
d FLC w
ith
switch
i
ng
l
o
sses ca
l. (M.
Ven
k
a
t
esan
)
54
5
Fi
gu
re 3 s
h
o
w
s pr
op
ose
d
si
n
g
l
e
l
i
n
e di
agra
m
of t
h
ree p
h
a
s
e PV i
n
v
e
rt
er
t
o
p
o
l
o
gy
, Fr
o
m
t
h
e Fi
gure 1
three single phase inve
rters c
o
nnected
i
n
pa
rallel with DC
bus a
n
d each
s
i
ngle phase i
n
verter s
h
aring
voltage
fro
m
th
e DC bu
s vo
ltag
e
. The DC bu
s co
nsists o
f
two
capacito
rs with
equ
a
l rating
and
v
a
lu
e
o
f
t
h
e DC b
u
s
vol
t
a
ge s
h
ou
d
be hi
ghe
r t
h
a
n
out
put
vol
t
a
ge
of i
n
ve
rt
er. T
h
e bus
v
o
l
t
a
ge a
r
o
u
nd
33
0
V and t
h
i
s
v
o
l
t
a
ge
can be
real
i
zed i
n
t
o
f
i
ve l
e
vel
s
by
e
ach si
n
g
l
e
p
h
a
s
e i
nve
rt
er
wi
t
h
p
h
ase s
h
i
f
t
o
f
1
2
0
de
g
r
ee.
The
out
put
vol
t
a
ge o
f
i
nve
rt
ers i
s
gi
ven t
o
t
h
e
pri
m
ary
wi
ndi
ng
of t
h
e 1
2
t
e
rm
i
n
al
t
r
ans
f
o
r
m
e
r an
d al
l
t
h
e
neut
ral
t
e
rm
i
n
al
s are
sh
orted.
All the ph
ase term
in
als are con
n
ect
ed
to th
e th
r
ee ph
ase LC
filter. Th
is LC
filter is
u
s
ed
to rem
o
v
e
th
e h
a
rm
o
n
i
cs p
r
esen
t in
th
e
o
u
t
p
u
t
o
f
the in
v
e
rter an
d
f
iltered
ou
tpu
t
vo
ltag
e
is g
i
v
e
n
t
o
th
e three ph
ase g
r
i
d
.
The
pr
o
p
o
s
ed
i
nve
ret
r
i
nve
rt
e
r
i
s
m
odi
fi
ed
f
r
o
m
t
h
e refe
ren
ce pa
pers
[
1
3]
-
[
1
4
]
4.
C
URR
EN
T CON
T
ROL
SCHEM
E
The c
ont
rol
sy
st
em
desi
gn
pl
ay
s a very
i
m
port
a
nt
t
a
sk i
n
t
h
e P
V
i
n
ve
rt
er
[1
5]
. T
h
e c
o
n
t
rol
sy
st
em
con
s
ist a P
h
as
e loc
k
lo
o
p
(P
LL),
d
-
q
refe
r
e
nce
fram
e
, an
in
verse
d
-
q
re
fere
nce
fram
e
and
a c
o
ntr
o
ller.
The
pu
r
pose
o
f
t
h
e
PLL i
s
t
h
at
, i
t
sy
nch
r
o
n
i
zes t
h
e
out
put
fr
eq
uency
a
n
d
ph
a
s
e an
gl
e
of t
h
e
gri
d
vol
t
a
ge
wi
t
h
g
r
i
d
cu
rren
t. Use of th
e ab
c t
o
d
-
q
fram
e, wh
ich
co
nv
erts th
ree v
a
riab
le
q
u
an
tities (i.e: three ph
ase curren
t and
v
o
ltag
e
) in
t
o
two
v
a
riab
le quan
tities (i.e: d
-
q
v
a
l
u
es).
In
o
r
de
r t
o
gene
rat
e
t
h
e fi
ve l
e
vel
out
put
vol
t
a
ge
, spac
e
vect
o
r
pul
se wi
dt
h
m
o
d
u
l
a
t
i
o
n
t
echni
que
i
s
u
s
ed [1
6]
.
4.
1. PI Co
ntr
o
l
l
e
r
Th
e Pro
p
o
r
tion
a
l In
tegral (PI) is a conv
en
t
i
o
n
a
l cu
rren
t co
n
t
ro
ller
wh
ich
is
u
s
ed to
m
a
in
tain
ou
tput
cu
rren
t si
n
u
s
oid
a
l, to
k
e
ep
th
e po
wer fact
or in
near
unity and easy
to im
ple
m
ent.
and
are the
pr
o
p
o
r
t
i
onal
a
nd i
n
t
e
gral
gai
n
s res
p
ect
i
v
el
y
,
t
h
ese gai
n
s d
e
pen
d
on t
h
e s
y
st
em
param
e
ters. Er
r i
s
t
h
e
err
o
r
si
gnal
,
whi
c
h
i
s
t
h
e di
ffe
r
e
nce bet
w
een
t
h
e i
n
st
ant
a
n
e
ou
s act
i
v
e cur
r
ent
c
o
m
ponent
and
ref
e
ren
c
e
i
n
st
ant
a
ne
o
u
s
act
i
v
e cur
r
e
n
t
com
pone
nt
∗
. Si
milarly, th
is E
rr, cou
l
d
also
rep
r
esen
t th
e
d
i
fferen
ce
b
e
tween
the i
n
stantane
ous
reac
tive
c
u
rrent
com
p
onent
a
n
d
refe
re
nc
e insta
n
tane
ous reacti
v
e c
u
rrent c
o
m
pone
nt
∗
.
The m
a
nual
t
uni
n
g
of P
I
co
nt
rol
l
e
r pa
ram
e
t
e
rs t
o
achi
v
e t
h
e
st
eady
st
at
e i
s
di
ffi
c
u
l
t
and c
ons
um
es
m
o
re
t
i
m
e
.
These l
i
m
i
t
a
t
i
ons ca
n
be
o
v
er
com
e
by
fuzzy
cont
rol
l
e
r
[
17]
.
Fi
gu
re
4.
B
l
oc
k
di
ag
ram
of P
I
c
ont
r
o
l
l
e
r
4
.
2
.
F
u
zzy
C
o
n
t
ro
lle
r
A F
L
C
ca
n
be
defi
ned
as t
h
e
no
nl
i
n
ea
r m
a
ppi
n
g
of
a
n
i
n
p
u
t
dat
a
set
t
o
a
scal
ar
o
u
t
p
ut
dat
a
A F
L
C
co
nsists of
fo
ur
m
a
j
o
r
p
a
r
t
s t
h
at is
fuzzifier, rules
,
infere
nc
e engine a
n
d def
u
zzif
i
er
.I
n
m
o
st of
th
e non
lin
ear
appl
i
cat
i
o
n co
nve
nt
i
o
nal
co
n
t
rol
l
e
r m
a
y
not
per
f
o
r
m
wel
l
. He
nce t
h
e
f
u
zzy
l
o
gi
c co
nt
r
o
l
l
e
r has
be
en
a
n
ap
pro
p
r
i
ate so
l
u
tio
n to
v
a
r
i
ous non
lin
ear ap
pl
i
cat
i
ons [
18]
Fuzzy
l
ogi
c
c
ont
rol
l
e
r com
p
ri
ses of
m
e
m
b
ershi
p
fun
c
tion
s
(input/o
u
t
pu
t). Th
e in
pu
t resp
on
se
co
llected
in
the k
n
o
w
led
g
e
base is categ
o
r
i
zed
in
to
error‘d
’
and
change i
n
e
r
ror ‘de’.
In fuz
z
y, a single me
m
b
er func
tion
in error‘d
’
is co
m
p
ared
wit
h
all th
e m
e
mb
ersh
ip
fun
c
tion
s
in chan
g
e
in
error ‘d
e’
at a p
a
rticular ti
m
e
i
n
st
ant
.
Th
e Fi
g
u
r
e
5
sho
w
s
bl
ock
di
agram
of
fu
zzy
l
ogi
c
cont
roller.
PI C
ont
rol
l
e
r
To inverse
park
t
r
ansf
orm
a
t
i
on
(dq0 to abc)
∗
/
∗
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
543
–
5
50
54
6
Fi
gu
re
5.
B
l
oc
k
di
ag
ram
of f
u
zzy
l
o
gi
c c
ont
rol
l
e
r
5.
SIMULATION RESULTS
The thre
e phas
e grid c
o
nnect
ed PV
inv
e
rter u
s
ing
PI and
fu
zzy log
i
c con
t
ro
ller is si
mu
lated
with
hel
p
of
M
A
T
L
AB
Si
m
u
l
i
nk
envi
ro
nm
ent
.
I
n
t
h
e
si
m
u
l
a
tio
n
,
all th
e PV pan
e
ls ar
e
ass
u
m
e
d t
o
be
ope
rat
i
n
g
1
000
ir
r
a
d
i
an
ce w
/
m
2
and Pe
rt
ur
b an
d o
b
se
rve M
P
P
T
al
g
o
ri
t
h
m
s
i
s
used ext
r
act
m
a
xim
u
m
powe
r
fr
om
t
h
e
PV
p
a
n
e
l at all th
e cli
m
at
ic c
o
nd
itio
ns. Th
e
1
8
0
Watts PV
p
a
n
e
l
p
a
ram
e
te
r is cho
s
en
fo
r
th
e sim
u
lat
i
o
n
stu
d
y
and
o
u
t
p
ut
v
o
l
t
a
ge
of
t
h
e
PV
panel
i
s
gi
ven
t
o
t
h
e
DC
-DC
bo
ost
c
o
nve
rt
e
r
. T
h
e
st
ep
u
p
con
v
e
r
si
o
n
i
s
c
a
rri
e
d
out
by
ap
pl
y
i
ng gat
i
n
g
pul
ses
t
o
M
O
SFE
T.
The o
u
t
put
o
f
t
h
e b
o
o
st
co
nve
rt
er i
s
gi
ve
n t
o
t
h
e i
n
p
u
t
o
f
t
h
e fi
v
e
lev
e
l th
ree
p
h
a
se inv
e
rter an
d ou
tpu
t
s are
fed
to three
ph
as
e 12 term
inal trans
f
orm
e
r. T
h
e Fi
gure
6,
7
and
8
fiv
e
lev
e
l
o
u
t
pu
t vo
ltg
ag
e
of
th
e inv
e
rter Phase –A, B
&C
r
e
sp
ectiv
ely, wh
ich is ap
pr
ox
i
m
atel
y eq
u
a
l
to
3
30
V (Peak
Valu
e). Th
e
filtered th
ree ph
ase
vo
ltag
e
an
d current is sho
w
n
i
n
Fig
u
re
9
an
d 10
.
Fi
gu
re
6.
Fi
ve
l
e
vel
o
u
t
p
ut
vo
l
t
a
ge –P
hase
A
Fi
gu
re
7.
Fi
ve
l
e
vel
o
u
t
p
ut
vo
l
t
a
ge –P
hase
B
Fi
gu
re
8.
Fi
ve
l
e
vel
o
u
t
p
ut
vo
l
t
a
ge –P
hase
C
Figure
9. Thre
e phase
voltage
/
Errorrr
∗
/
∗
1
Mux
Kno
w
ledg
e
base
To inverse Par
k
Transf
orm
a
t
i
on dq0
to
a
b
c
Fu
zzification
Inference
Rule
base
De
fu
zz
i
f
ica
t
io
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Com
p
. study of
3
Ф
G
r
id Conn. PV
In
v.
U
s
ing PI
an
d FLC w
ith
switch
i
ng
l
o
sses ca
l. (M.
Ven
k
a
t
esan
)
54
7
Figure
10. T
h
ree phase c
u
rre
n
t
5.
1.
Perf
orm
a
nce A
n
al
ysi
s
o
f
PI
an
d F
u
z
z
y L
ogi
c
C
o
ntr
o
l
l
er
In t
h
i
s
sect
i
o
n,
a deal
wi
t
h
p
e
rf
orm
a
nces a
n
al
y
s
i
s
of
PI a
nd
FLC
has
b
een m
a
de i
n
t
e
r
m
s of THD
,
rise ti
m
e
an
d
setllin
g
ti
m
e
. It is n
o
t
ed
th
at,
th
e fu
zzy con
t
ro
ller sho
w
s best
m
i
n
i
mized
THD of ab
ou
t
1
.
3
%
and
TH
D
gen
e
rat
e
d
by
PI c
ont
rol
a
b
o
u
t
1
.
7
1
%. T
h
us, i
t
i
s
obse
r
ved t
h
at
t
h
e p
r
op
os
ed f
u
zzy
co
nt
r
o
l
l
e
r
p
e
rform
s
b
e
tter wh
en
co
m
p
ared
t
o
co
nv
en
tio
n
a
l PI Con
t
ro
ller [19
]
. Ta
ble 1
shows THD
profile o
f
ex
itin
g
wo
rk
.
Tabl
e 1.
C
o
m
p
ari
s
o
n
of
TH
D Pro
f
i
l
e
Exiting works
Year of
Publication
T
opology
Confi
gur
ation
Lev
e
ls
M
odulation
T
echnique
% of THD
Refer
e
nces [ 5 ]
2013
T
h
r
ee Phase
5 L
e
vels
SVPWM
5.
68%
Refer
e
nces [20]
2013
T
h
r
ee Phase
5L
evels
SVPWM
9.
0%
5
.
2
.
Dev
i
ce Utility
Co
mpa
r
is
o
n
Tabl
e 2 s
h
ows
t
h
e com
p
ari
s
o
n
o
f
a n
u
m
b
er
of
po
we
r de
vi
ces use
d
i
n
t
h
e pr
op
ose
d
a
p
pr
oac
h
wi
t
h
t
w
o e
x
i
s
t
i
n
g a
p
pr
oac
h
es i
n
fer
r
e
d i
n
[
5
]
an
d
[
7
]
.
Tabl
e 2. Power Devi
ce Uti
lit
y
C
o
m
p
ar
i
s
on
Pa
ra
m
e
t
e
r
s
Pr
opos
ed
Wo
rk
Exis
ting
w
o
r
k
[5
]
Exis
ting
w
o
r
k
[7
]
Switch
es
15 24 24
I
/
P DC
sou
r
ce
1
6
1
Tr
a
n
sfo
r
m
e
r
1
-
2
In t
h
e p
r
o
p
o
se
d w
o
r
k
t
h
e nu
m
b
ers of swi
t
c
hes are re
duc
e
d
to fifteen when com
p
ared to 24 in [5,
7]
.
Reduci
n
g the
num
b
er of s
w
itc
hes
dec
r
ease t
h
e stress
acr
o
s
s
th
e switch
e
s an
d th
e power lo
ss is con
s
i
d
erab
ley
red
u
ce
d by
m
e
ans o
f
t
h
e pr
o
pos
ed a
p
p
r
oac
h
. I
n
ad
di
t
i
on t
h
e DC
so
urce
use
d
i
n
t
h
e i
n
p
u
t
i
s
reduce
d
t
o
o
n
e
wh
ereas it is 6 in
[5
]. Sim
i
larly th
ree tran
sfo
r
m
e
rs we
r
e
used
in
[
7
]
w
h
er
eas in
t
h
e pr
op
o
s
ed
wo
rk
only o
n
e
trans
f
orm
e
r is
used. Usa
g
e
of lesse
r com
p
one
n
ts res
u
lts in
red
u
c
ed
co
st and
redu
ced
co
m
p
lex
ity o
f
th
e
syste
m
.
5
.
3
.
Switching Lo
sses Ca
lcul
a
t
i
o
n
Cascaded Si
ngle Phase
H-Bridge
I
nve
rt
er
wi
t
h
c
o
nve
rt
er
l
o
sses
p
r
ese
n
t
e
d
[2
1]
-[
2
2
]
.
The a
v
e
r
ag
e
switch
i
ng
po
wer lo
ss P
SW
_LOS
S
in
th
e switch
d
u
ring
t
h
e transitio
n
o
f
switch
is
g
i
v
e
n
b
y
:
_
1
2
(1
)
Whe
r
e T
c(ON)
and T
c(OFF)
are t
h
e turn
on and turn
off c
r
oss
ove
r i
n
tervals.
V
DC
is th
e vo
ltag
e
across
th
e switch
and
I
DC
is th
e c
u
rren
t wh
ich
flo
w
s throug
h
th
e switc
h. F
o
r t
h
e sake o
f
cl
ari
t
y
, t
h
e prop
ose
d
to
po
log
y
with 5
lev
e
ls is co
m
p
ared
with fam
i
liar, si
milar to
po
log
i
es
. Fo
r si
m
p
l
i
f
i
cat
i
on, t
h
e p
r
op
ose
d
t
o
p
o
l
o
gy
and t
h
e wel
l
-
kn
o
w
n
i
nvert
e
r
t
o
p
o
l
ogi
es are as
su
m
e
d t
o
ope
rat
e
at
t
h
e sam
e
t
u
r
n
-
on a
nd t
u
rn
-o
ff
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
543
–
5
50
54
8
cross
o
ver i
n
tervals and at the
sa
m
e
I
DC
.
Then, the a
v
era
g
e
sw
itch
i
ng
power
lo
ss
P
SW
_LOS
S
is p
r
opo
rtional to
V
DC
and
f
s
.
_
(2
)
The
n
u
m
b
er o
f
p
o
we
r
sem
i
co
nd
uct
o
r
de
vi
ces i
m
perat
i
v
e f
o
r
gene
rat
i
n
g
5
l
e
vel
s
(t
hree
p
h
ase)
i
n
t
h
e
pr
o
pose
d
i
n
ver
t
er i
s
15
an
d
t
h
e v
o
l
t
a
ge a
p
pe
ar ac
ros
s
t
h
e
s
e
swi
t
c
he
s i
s
V
DC
. The
one
l
e
g
i
n
eac
h i
n
ve
rt
er (i
.e.
two
switch
e
s)
switch
e
s
op
erated
at funda
m
ental freque
n
cy (f
m
) an
d re
m
a
in
in
g
three switch
e
s in
H b
r
i
d
ge
i
nve
rt
er s
w
i
t
c
h
e
s o
p
erat
e
d
at
hi
g
h
fre
qu
enc
y
(i
.e. s
w
i
t
c
hi
n
g
f
r
e
que
ncy
,
f
s
) .T
ot
al
l
y
ni
ne
swi
t
c
hes
swi
t
ch at
hi
g
h
fr
eq
ue
ncy
(f
s
) a
nd si
x sw
i
t
c
hes swi
t
c
h a
t
fun
d
am
ent
a
l
fre
que
ncy
(
f
m
). There
f
ore, the
sw
itch
i
ng
lo
sses of
th
e pro
p
o
s
ed
i
n
v
e
rter can
b
e
written
as:
_
9
6
(3
)
In
t
h
e
p
r
o
p
o
s
ed
inv
e
rter, at an
y po
in
t in time,
th
e nu
m
b
er of switch
e
s in
cond
u
c
tion is o
n
l
y
6
(2
swi
t
c
hes
f
o
r ea
ch
pha
se).
T
h
e
r
ef
ore
,
t
h
e
co
n
duct
i
o
n l
o
sses
P
closs
of t
h
e
pr
o
pos
ed
inverter are:
6
(4
)
Whe
r
e R
ON
is t
h
e inte
rnal
resi
stance
of t
h
e s
w
itching
devic
e
and
I is th
e cu
rren
t
flowing
in
to
th
e d
e
v
i
ces.
6.
CO
NCL
USI
O
N
The c
o
m
p
arative study
of t
h
ree phas
e grid connected
PV inve
rter
is
e
ffe
ct
i
v
el
y
cont
r
o
l
l
ed by
usi
n
g
PI an
d F
u
zzy
l
ogi
c c
ont
rol
l
e
r
i
s
prese
n
t
e
d i
n
t
h
i
s
p
a
pe
r. T
h
e cu
rre
nt
ha
r
m
oni
cs of
the
syste
m
are effectively
min
i
mized
thro
ugh
SVPWM
techn
i
qu
e
with
the
u
tilizatio
n
o
f
fu
zzy log
i
c con
t
ro
llers. Fin
a
ly to
tal h
a
rm
o
n
i
c
s
di
st
ort
i
o
n (
T
H
D
) c
o
m
p
ari
s
on
i
s
m
a
de bet
w
een PI a
nd
Fuzz
y
Logi
c C
o
nt
r
o
l
l
e
r. Th
us t
h
e p
r
o
p
o
sed
fuzzy
l
ogi
c
co
n
t
ro
ller m
e
e
t
s th
e requ
iremen
t o
f
fast resp
on
se an
d
m
i
n
i
m
u
m THD th
an
co
nv
en
tion
a
l PI con
t
ro
ller. Th
i
s
in
v
e
rter top
o
l
og
y is b
u
ilt u
s
in
g
o
n
l
y fifteen p
o
wer se
m
i
co
n
d
u
c
tor switches an
d
h
e
n
ce switch
i
ng
lo
sses also
m
i
nim
i
zed. T
h
e pe
rf
orm
a
nce
of
p
r
o
p
o
se
d i
n
vert
er
i
s
val
i
d
a
t
ed t
h
ro
u
g
h
M
A
TL
AB
si
m
u
l
i
nk
.
ACKNOWLE
DGE
M
ENTS
The a
u
t
h
ors t
h
ank
De
part
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
Go
vt
. C
o
l
l
e
ge
of Tec
h
nol
ogy
,
C
o
i
m
bat
o
re,
Tam
i
l
n
adu,
I
n
di
a f
o
r
p
r
o
v
i
d
i
n
g
us
t
h
e Li
ce
nse
d
S
o
ft
ware
-
M
ATLAB
Ve
r
s
i
o
n
8
.
3
R
2
0
14a
w
h
i
c
h
was
pr
ocu
r
e
d
u
n
d
e
r TEQIP (Tech
n
i
cal
Edu
catio
n Quality I
m
p
r
o
v
emen
t Pro
g
ram
)-Ph
a
se-II-Su
b Mod
u
l
e-C
e
n
t
er
o
f
Excellence
-
Alt
e
rnate Ene
r
gy Research
and also authors thank to Mana
gem
e
nt
of Kar
p
agam
Acade
m
y
of
High
er Edu
cati
o
n fo
r pro
v
i
d
i
ng
th
e n
ecessary
facilities.
REFERE
NC
ES
[1]
D.V.N Ananth and G.V. Nages
hkumar,
"Design of Solar PV
Cell Based Inv
e
rter for Unbalan
ced and Distorted
Industrial Loads
"
,
Indonesian
jo
urnal of
Electrical
Eng
i
neering
a
nd Informatics,
Vol. 3
,
No. 2, pp
. 70-77
, 2015
.
[2]
K.S. Srikant, "
A
Three Phase
Multi Lev
e
l Co
nverter for gr
id
Connect
ed PV S
y
stem
",
Intern
ational Journal
of
Power Electronics
and Drive Sys
t
em,
Vol. 5
,
No
.
1, pp
. 71-75
, July
2014.
[3]
N. Deveraj
a
n an
d A. Reena
,
"Re
duction of Switc
hes
and DC Sources in Cascad
ed
Multilev
e
l Inve
rter",
Bu
lle
tin of
Ele
c
trica
l
Eng
i
n
eering and
Infor
m
atics,
Vol. 4
,
No. 3, pp. 186-1
95, Sep
2015.
[4]
Chetan
ya
,
et
al
.,
"Harm
onic Ana
l
y
s
is of Sev
e
n
a
nd Ni
ne L
e
vel
Cascade
Multil
e
v
el Inve
rter
Using Multi-Carr
ier
PWM Technique",
International Journal of Pow
e
r
Electronics a
nd Drive System
,
Vol. 5, No
. 1,
pp. 76-82, July
2014.
[5]
M. Valan Rajku
m
ar and P.S. Ma
noha
ran, "FPGA Based Multilev
e
l Cascad
ed
Inverters with MSVPWM Algorithm
for Photovoltaic
S
y
stem",
Solar
Energy,
87, pp.
229–245, 2013
.
[6]
Y. S
u
res
h
and
A.K. P
a
nda
, "Res
earch
on Cas
c
ade M
u
lt
ilev
e
l I
nverter
B
y
Em
plo
y
ing Thr
ee P
h
as
e Tr
ans
f
orm
e
r"
,
IET
Power
El
ect
r
onics
,
vol. 5
,
pp
. 561-51
, 2012
.
[7]
Sung Geun Song, Feel Soon Kang, S
ung-Jun Park, "Cascad
e
Multilevel
In
verter
Emplo
y
ing Three Phase
Transformer and
Single DC Inpu
t",
IEEE Transactions on I
ndustrial Electronics,
vol. 56
, No. 6,
pp. 2005–2014
,
2009.
[8]
Ngu
y
en Gia Minh Thao
and Kenko Uchida
, "Activ
e and
Reactive Power Cont
r
o
l Techniqu
es Based on Feedback
Line
ariz
ation
an
d F
u
zz
y Logi
c f
o
r Three
-
P
h
as
e
Grid-Connect
ed
P
hotovoltai
c
Inv
e
rters
"
,
Asian Jo
urnal of Control,
vol. 17
, No
. 5
,
p
p
. 1–25
, Sep
201
5.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Com
p
. study of
3
Ф
G
r
id Conn. PV
In
v.
U
s
ing PI
an
d FLC w
ith
switch
i
ng
l
o
sses ca
l. (M.
Ven
k
a
t
esan
)
54
9
[9]
Kumar Subash, and V. Gopalakr
ishnan,
"Design
of S
y
nchronous
Referen
c
e
Frame Based
Harmonic Detection
an
d
Space Vector Pu
lse W
i
dth Modulation Base
d Swit
ching of Shunt Active Filt
er",
Australian Journal of Electrica
l
&
Electronics Engineering,
vol. 10
, No.3, pp. 362,
Nov. 2015.
[10]
J. Raju and M. Kowshree aly
a
,
"Var
y
i
ng Vector
Pluse Width Modulation for Th
ree Phase Inverter",
Bull
et
in of
Ele
c
trica
l
Eng
i
n
eering and
Infor
m
atics,
vo
l. 3, No. 2
,
pp
. 91-100
, June 2014
.
[11]
A. Soeted
jo e
t
al
, "Modeling
of
Maxim
u
m
Powe
r Point Tr
ack
ing
Controll
er for
Solar Power S
y
st
em
",
Telkomnika,
vol. 10
, No
.3, pp
. 419-430
, Sep
.
2012.
[12]
M
.
Kaliam
oorth
y,
et a
l
.
,
"S
ingle-P
h
as
e F
i
fte
e
n
-
Leve
l
Grid-Co
nnect
ed Invert
er
fo
r Photovolta
ic S
y
st
em
with
Evolution
a
r
y
Pr
ogramming
Based MPPT Algorithm",
Solar Ener
gy,
105
pp.314–
329, 2014
.
[13]
Nasrudin A. Rahim
and Je
y
r
a
j
S, "M
ultistring Five Level Inv
e
rter with Nove
l PW
M Control Schem
e
for PV
Applica
tion",
IEEE Transactions
on I
ndustrial Electronics,
vo
l. 5
7
, pp
. 2111–212
3, 2010
.
[14]
Agelidis V. G,
et al
., "A Multil
evel PWM Inve
rter Topolog
y
f
o
r Photovoltai
c
Applications",
in P
r
oc
.
t
h
e
IE
EE
International Symposiu
m on Ind. Electronics,
pp
. 589-594,
1997
.
[15]
P
e
ng M
a
o,
et
al
.
,
"A Rev
i
ew of
Current Con
t
rol
S
t
rateg
y
for S
i
n
g
le P
h
as
e
Grid
Connect
ed Inv
e
r
t
er",
Telkomnika
,
vol. 12
, No
. 3
,
p
p
. 563-580
, Sep
.
2014.
[16]
K. Vinothkumar, et
al., "Simulation
and Comparison of SPWM and SVPWM c
ontrol for thr
ee
phase inver
t
er",
ARPN
Journal o
f
Engg
. and
Appl
ied S
c
ien
ces,
vol. 5
,
No.7
, pp
. 61-
74, 2010
.
[17]
N. Ammasai Gounden,
et
al.,
"F
uzzy
log
i
c
contr
o
ller with MPPT using
Lin
e
Commutated Inv
e
rter
for Three-Phase
Grid Connected
Photovoltaic S
y
s
t
ems",
Ren
e
wable En
ergy,
vol. 3
4
, pp
. 909-915
,
2009.
[18]
Mohammed
sho
e
b Mohiuddin, Performance co
mparision of Co
nvention
a
l Contr
o
ller with Fuzzy Logic Controller
using Chopper circu
it and Fuzzy
Tuned PID Controller"
,
Ind
onesian ournal of Elec
trica
l
Engineering
and
Informatics,
vo
l. 2, No 4, pp.
189
-200, Dec. 2015
.
[19]
M. Venkatesan
et al., "A Fuzzy
Logic
Bas
e
d
Th
ree phas
e
Inv
e
rt
er with S
i
ngle D
C
S
ource for Grid Connect
ed P
V
S
y
s
t
em
Em
plo
y
i
ng Three P
h
as
e
Trans
f
orm
e
r",
In
ternational
Journal of Re
n
e
wable Energy Research,
vol. 05, no. 3
,
pp. 739-745
, 20
15.
[20]
Venkata
chal
am
Kum
a
r
Chinnai
y
an
, et
al
., "An Exper
i
mental I
nvestigation on
a Multilevel I
nverter
for Solar
Energ
y
Applications",
Internatio
nal Journal o
f
Electr
ical Power
&
E
n
ergy Systems,
Volume 47,
pp. 157–167, May
2013.
[21]
M
.
Kali
am
oorthy,
et
al
.,
"Exper
i
m
e
ntal Va
lida
tio
n of a C
a
s
caded
S
i
ngle P
h
as
e H-
Bridge Inve
rter
with a S
i
m
p
lif
ie
d
Switching Algor
ithm",
Journal o
f
Pow
e
r
El
ec
tr
onics
,
vo
l. 14, No. 3
,
pp
. 507-518
, May
2014
.
[22]
M.Kaliam
oorth
y, et
al
., "Gen
eral
ised H
y
br
id Switching
T
opolog
y for a Singl
e-Phase Modular Mu
ltil
evel
Invert
er"
,
IET
Power
El
ect
r
onics
,
vol. 7
,
N
o
.10, pp. 2472-2
485, July
2014
.
BIOGRAP
HI
ES OF
AUTH
ORS
Ve
nkate
san M
was
receiv
e
d h
i
s
B.E.
, in E
l
e
c
t
ronics
and Co
m
m
unication E
ngineer
ing from
Anna University, Chennai, Tamil
Nadu, India, in
2008, and his
M.E. in Power Electronics and
Drives from Go
vernment colleg
e of Technolog
y,
Coimbatore, Tamil Nadu,
India, in 2010. He is
currently
working towards to
his Ph.D and also
working a
s
a
n
Assista
n
t P
r
ofe
ssor in the
Department
of Electrical and
Ele
c
troni
cs
Eng
i
neer
ing, F
acu
lt
y of Eng
i
neer
i
ng, Karpagam
Academ
y of Hi
gher Edu
cat
ion,
Coim
batore
, T
a
m
il Nadu, Indi
a
.
His
curr
ent r
e
s
earch
int
e
res
t
s
includ
e Power
el
ectron
i
cs, DC-DC conver
t
er
, Mu
ltil
evel
inv
e
rt
er,
PV based s
y
st
em
design.
Rajesw
ari R
She rece
ived he
r B.E.
, in E
l
e
c
tr
ica
l
and E
l
ec
tro
n
ics Engine
erin
g and M.E.
in
Power Sy
st
em
s
Engineering fro
m Thiagarajar C
o
lleg
e
of Engine
ering, Madur
ai
Kamaraja
r Unive
r
sity
,
Ma
dura
i
,
Tamil Nadu
, In
dia, in
1995 an
d 1998 resp
ectivel
y
.
She was
completed
her
Ph.D in Power
S
y
stems Engineeing in 2009,
Anna Uinversity
,
Ch
ennai, Tamilnadu, Indi
a.
She is currently
working as
an
As
s
i
s
t
ant P
r
ofes
s
o
r (S
enior Grad
e)
in th
e Dep
a
rtm
e
nt of
Ele
c
tri
c
a
l
a
nd El
ectron
i
cs
Engineering, Go
vernment Colleg
e of Technolo
g
y
, Coimbatore, Ta
mil Nadu, In
dia. More
than
Ten scholars are pursuing resear
ch under her G
u
id
ence. Her cu
rrent research in
terests include
Sm
art Grid, Pow
e
r s
y
s
t
em
prot
ection, oper
a
tion
and contro
l
and in
tell
igent
t
echn
i
q
u
es.
Deverajan
N
was rec
e
ived
his
B.E.
, in
El
ect
ric
a
l
and
El
ec
troni
cs
Engi
neering from
Madras
Uinversity
,
Tamil Nadu, India,
in 1982. and his M.E. in pow
er sy
stems Engineering from
Bharath
i
y
a
r University
, Coimbatore,
Tamil N
a
du
,
India,
in 1989
.
He was completed his Ph.D in
Control s
y
stem from Bharathiy
a
r University
, Co
im
batore,
Tamil Nadu, Indi
a, in
2000. He is
current
l
y
worki
ng as
a P
r
ofes
s
o
r & Hea
d
in
th
e Dep
a
rtment of Electr
ic
al a
nd
Ele
c
tron
ics
Engineering, Go
vernment Colleg
e
of Techno
log
y
, Coim
batore
, Ta
m
il Nadu,
India. More than 30
scholars has co
mpleted Ph.D under
his guidence. His current r
e
sear
ch interests
includ
e control
s
y
tem
,
power s
y
stem
, PV based
s
y
stem
design. He
is life m
e
m
b
er of the Instituti
on of Engineers
(India) and
ISTE.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
543
–
5
50
55
0
Kaliamoor
thy Mylsamy
r
e
c
e
iv
ed his
B E in El
ectr
i
ca
l and
Electronics Engineering at Madras
University
, Ch
ennai, Ind
i
a, in 1
999, and his M.
Tech d
e
gree in
Electrical Dr
ives and Control
from Pondicher
r
y
Univ
ersity
,
Puducherr
y
,
Ind
i
a,
in 2006
. He was a go
ld medalist for
the
acad
em
ic
y
ears
2004-2006. He has one decad
e of teach
ing exp
e
rien
ce for unde
r graduate
and
post graduate students of electr
i
cal
and el
ectron
i
cs
engine
ering
.
He is
pres
entl
y working as
a
Professor in the Department of
Electrical and
Electronics
Engin
eering
,
Karp
agam College of
Engineering, Co
imbatore,
Tamil Na
du, India. His current resear
ch
inter
e
sts incl
ude alt
e
rna
tive
energ
y
sources,
fuel cells
, en
erg
y
conversion
,
m
u
ltil
evel
inver
t
er
s, anal
y
s
is
and control of power
e
l
ec
t
r
onic
s
de
vic
e
s
,
powe
r
qua
lity
a
nd ac
ti
ve
harmoni
c
a
n
a
l
y
s
i
s
. For furt
he
r det
a
i
l
s
pl
ea
se
vi
si
t
www.
kaliasgoldmedal.y
olasite.
c
om
Evaluation Warning : The document was created with Spire.PDF for Python.