Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
4
,
No
. 2,
J
une
2
0
1
4
,
pp
. 25
6~
26
4
I
S
SN
: 208
8-8
6
9
4
2
56
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
A
Low Cost Single-Switch Brid
geless Boost PFC Converter
Yo
un
gh
oo
n C
h
o
The Dep
a
rtment
of Electr
i
cal
Eng
i
n
eer
ing, Konkuk University
, Seoul, Korea
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Ja
n
2, 2014
Rev
i
sed
Mar
12
, 20
14
Accepted
Mar 25, 2014
This paper pro
poses the single-sw
itch bridg
e
less boost power facto
r
correction (PFC) conver
t
er
to
achieve h
i
gh ef
ficiency
in low
cost.
Th
e
proposed converter utilizes on
ly
on
e activ
e
switching device forPFC
operation as well as expecting higher
efficien
cy
than ty
p
i
cal boost PFC
converters. On the other hand
, th
e implem
entatio
n
cost is less than traditional
bridgeless boost PFC converters
,
in wh
er
e two activ
e switching
deivces are
neces
s
a
r
y
.
Th
e o
p
erat
ional
princ
i
ple,
th
e modelin
g, and
the
contro
l scheme of
the proposed co
nverter
arediscu
ssed in de
tail. In
order to verif
y
the operation
of the proposed
converter, a 500
W switchi
ng model is bu
ilt in PS
IM software
packag
e.
The simulation results show
that th
e p
r
oposed conver
t
er perf
ectly
achi
e
ves
P
F
C
op
erat
ion with
onl
y
a sing
le
ac
tiv
e
switch.
Keyword:
Power Factor
c
o
rrection
Brid
g
e
less conv
erter
Sin
g
l
e-switch co
nv
erter
Single
-
phase s
y
ste
m
AC/DC rectifier
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Y
oun
gho
on
C
ho
The
De
partm
e
nt of Electrical
Enginee
r
ing
K
onk
uk
Un
iv
er
sity
Seoul, Korea
Em
a
il: yh
ch
o
9
8
@
ko
nku
k.ac.k
r
1.
INTRODUCTION
A p
o
we
r fact
o
r
cor
r
ect
i
o
n (
PFC
) co
n
v
ert
e
rs ha
ve bee
n
em
pl
oy
ed i
n
m
a
ny
appl
i
cat
i
ons s
u
c
h
as
p
o
wer supp
lies, b
a
ttery ch
arg
e
rs, m
o
to
r driv
e app
lica
tio
ns,
and
so
on
[1
]-
[9
].
Trad
itio
n
a
l PFC conv
erters
usu
a
l
l
y
em
pl
oy
s a di
ode
b
r
i
dge
an
d
an
ac
t
i
v
e swi
t
c
hi
ng
de
vi
ce s
u
ch
a
s
I
G
B
T
s a
n
d
M
O
SFET
s
. R
e
cent
l
y
,
bri
dgel
e
ss
PF
C
co
nve
rt
ers
whi
c
h
do
not
re
qui
re
ha
vi
n
g
a di
o
d
e
bri
d
ge
have
been
st
u
d
i
e
d,
beca
use t
h
e
con
v
e
r
t
e
r ef
fi
c
i
ency
can be i
m
prove
d by
e
l
im
i
n
at
i
ng t
h
e
di
o
d
e b
r
i
d
ge.
Ho
we
ver, t
y
p
i
cal
bri
d
gel
e
ss
PFC
co
nv
erters requ
ire two
active switch
e
s to
co
ndu
ct an
inp
u
t
cu
rren
t acco
rd
ing
to
t
h
e p
o
l
arity o
f
the in
pu
t
voltage
.T
his increases the implem
enta
tin
co
st in
clu
d
i
n
g
t
h
e g
a
te driv
er
c
i
rcui
t
r
i
e
s an
d s
n
u
b
b
ers
.
M
o
re
ove
r,
in
creasing
t
h
e
n
u
m
b
e
r
o
f
activ
e switch
i
ng
dev
i
ces also d
e
creases th
e reliab
ility o
f
th
e entire p
o
wer stage. In
term
s o
f
electro
m
a
g
n
e
tic in
teferen
ce (EM
I
), it h
a
s b
een
kn
own
th
at brid
g
e
less t
o
po
log
i
es are
worse th
an
trad
itio
n
a
l
bo
ost PFC t
o
po
logies with
a
d
i
ode bridg
e
.
In
o
r
d
e
r to
ov
erco
me th
is
d
i
sadv
antag
e
, sem
i
-b
ridg
eless
PFC
co
n
v
ert
e
r
s
ha
ve
been
p
r
op
ose
d
[1
0]
, [
11]
.
These
se
m
i
-bri
d
g
el
ess
PFC
co
n
v
ert
e
r
s
ha
ve e
qui
val
e
nt
EM
I
ch
aracteristics with
trad
itio
n
a
l b
o
o
s
t
PFC co
nv
erter wit
h
a d
i
od
e
b
r
idg
e
, bu
t still th
ey e
m
p
l
o
y
two
activ
e
switches.
I
n
th
is p
a
p
e
r, a lo
w
co
st sing
le-
s
w
itch
b
r
i
d
geless PFC co
nv
er
ter
is pr
oposed
. Th
e p
r
op
osed
con
v
er
ter
u
tilizes a sin
g
l
e activ
e switch
,
an
d
it o
p
e
rates in
en
tire electrical cycle. S
o
, th
e im
p
l
e
m
en
tatio
n
cost can
b
e
redu
ced
,
an
d
t
h
e u
tilizatio
n
o
f
t
h
e switch
can
b
e
in
creased
.
C
o
m
p
ared to
th
e trad
itio
n
a
l sem
i
-b
oost PFC
con
v
e
r
t
e
r, t
h
e
pr
o
pose
d
c
o
n
v
e
rt
er em
pl
oy
s t
w
o m
o
re di
od
e
s
t
o
av
oi
d a s
h
ort
ci
r
u
i
t
con
d
i
t
i
on,
but
red
u
c
e
t
h
e
num
ber
of t
h
e
act
i
v
e swi
t
c
h
wh
ose
real
i
zat
i
on c
o
st
i
s
hi
g
h
e
r t
h
a
n
se
veral
passi
v
e
swi
t
c
h
i
ng c
o
m
pone
nt
s suc
h
as a
diode. So
the total c
o
st s
a
ving ca
n
be a
c
hieve
d
. T
h
e
E
M
I
ch
a
r
a
c
t
e
r
is
tic
s
o
f
th
e pro
p
o
s
ed
con
v
e
rte
r
a
r
e
b
a
sically id
en
tical to
trad
itio
nal se
m
i
-b
ridg
eless PFC top
o
l
og
ies. Th
is p
a
p
e
r con
s
ists of follo
wing
section
s
.
In
sect
i
on
2, t
h
e
si
ngl
e-
swi
t
c
h
bri
dgel
e
ss
PF
C
t
o
p
o
l
o
gy
i
s
pr
o
pose
d
, a
n
d
i
t
s
operat
i
o
n
m
ode and t
h
e
i
n
d
u
ct
o
r
cu
rren
t equ
a
tion
are an
alyzed
in
d
e
tail. In
sectio
n
3
,
th
e
co
nt
r
o
l
m
odel
of
t
h
e p
r
o
p
o
se
d c
o
n
v
e
r
t
e
r i
s
di
scusse
d,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A L
o
w
C
o
st
Si
ngl
e
-
Sw
i
t
c
h
Br
i
dgel
e
ss
Bo
ost
PFC
C
o
nvert
e
r (
Y
o
u
n
g
h
o
o
n
C
ho)
25
7
and i
t
s
deri
va
t
i
on p
r
oce
d
ure
i
s
expl
ai
ned
.
The co
nt
rol
st
rat
e
gy
i
s
al
so i
n
t
r
od
uce
d
i
n
t
h
i
s
sect
i
on.
The
num
eri
cal
t
r
ansfer
fu
nct
i
o
n a
nd t
h
e si
m
u
l
a
t
i
on m
odel
o
f
an exam
ple case
are disc
usse
d in section 4.
Al
so the
l
o
o
p
-
g
ai
n anal
y
s
i
s
wi
t
h
t
h
e desi
gne
d co
nt
r
o
l
l
e
rs are perf
or
m
e
d. The si
m
u
l
a
t
i
on resul
t
s
are al
so sh
ow
n i
n
t
h
e
sect
i
on t
o
veri
fy
t
h
e pe
rf
or
m
a
nce of t
h
e
pr
o
pose
d
c
o
n
v
e
rt
er. Fi
nal
l
y
, t
h
e co
ncl
u
si
on
i
s
m
a
de i
n
t
h
e l
a
st
sect
i
on.
2.
PROP
OSE
D
SINGLE
-SWI
TCH
B
R
ID
GELESS BOOST PFC
CONVERTER
Fi
gu
re 1 s
h
ow
s t
h
e t
o
p
o
l
o
gy
of t
h
e
pr
o
pose
d
si
n
g
l
e
-s
wi
t
c
h
bri
d
gel
e
ss b
o
o
st
PFC
co
nv
e
r
t
e
r. F
o
r t
h
e
front
-end sta
g
e, only one ac
tive switching device
Q
1
i
s
e
m
pl
oy
ed, an
d
i
t
con
duct
s
i
n
full electrical cycle
.
Since
Q
1
ope
r
a
t
e
s i
n
t
h
e ent
i
re cy
cl
e, t
h
e bl
oc
ki
n
g
di
ode
s
D
3
and
D
4
a
r
e necessa
ry
t
o
av
oi
d c
o
n
f
l
i
c
t
i
on o
f
p
o
s
itiv
e
and
n
e
g
a
tiv
e h
a
lf
cycles.
1
D
2
D
3
D
4
D
1
Q
o
C
o
R
o
V
g
v
5
D
6
D
1
L
2
L
g
i
1
L
i
2
L
i
1
L
v
2
L
v
o
I
c
i
Fi
gu
re
1.
Pr
o
p
o
se
d si
n
g
l
e
-s
w
i
t
c
h b
r
i
d
gel
e
ss
bo
ost
P
F
C
c
o
n
v
ert
e
r
3
D
1
Q
o
C
o
R
o
V
g
v
6
D
1
L
g
i
1
L
i
1
L
v
o
I
c
i
c
v
(a) w
h
en
v
g
is po
sitiv
e, and
Q
1
is tu
rn
ed
o
n
1
D
o
C
o
R
o
V
g
v
6
D
1
L
g
i
1
L
i
1
L
v
o
I
c
i
c
v
(b
) whe
n
v
g
is
po
sitiv
e, and
Q
1
is tu
rn
ed
o
ff
4
D
1
Q
o
C
o
R
o
V
5
D
2
L
g
i
2
L
i
2
L
v
o
I
c
i
g
v
c
v
(c) w
h
en
v
g
is neg
a
tiv
e,
and
Q
1
is tu
rn
ed
o
n
2
D
o
C
o
R
o
V
5
D
2
L
g
i
2
L
i
2
L
v
o
I
c
i
g
v
c
v
(d
) whe
n
v
g
is neg
a
tiv
e, and
Q
1
is tu
rn
ed
o
ff
Fi
gu
re 2.
O
p
er
at
i
on of
t
h
e p
r
o
pos
ed
co
n
v
ert
e
r
Figure 2 illustrates the operat
i
on m
odes of the prop
osed c
o
nve
r
ter according
to the pol
arity of the
in
pu
t vo
ltag
e
v
g
and t
h
e st
at
us
of
Q
1
. In fig
u
r
e
2(a
)
,
v
g
is
p
o
sitiv
e, and
Q
1
i
s
t
u
r
n
e
d
o
n
.
I
n
this case, the i
n
put
current
i
g
f
l
ows th
r
oug
h
L
1
,
D
3
,
Q
1
, a
n
d
D
6
, and
D
1
,
D
2
,
D
4
,
D
5
are
blocked. The i
n
put energy is stored in
L
1
wh
ile t
h
e load
R
o
is supp
lied fro
m
th
e en
erg
y
ch
arg
e
d in
th
e
d
c
-link
cap
acito
r
C
o
. B
y
i
g
no
ri
n
g
t
h
e
vol
t
a
ge
d
r
op
s indu
ced
b
y
D
3
,
D
6
, a
n
d
Q
1
, t
h
e
voltage
across
L
1
is written
as fo
llows:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
25
6
–
26
4
25
8
1
11
L
L
di
vL
dt
(1)
Fo
r t
h
e switch
o
f
f-stag
e
in
positiv
e
v
g
, t
h
e equi
val
e
nt
ci
rcu
i
t
i
s
shown i
n
Fi
gu
re 2
(
b
)
.
H
e
re,
i
g
flo
w
s via
L
1
,
D
1
,
C
o
,
R
o
, and
D
6
. The active switch
Q
1
and ot
her di
ode
s d
o
not
co
n
duct
.
I
n
t
h
i
s
st
age, t
h
e energi
es st
o
r
e
d
i
n
L
1
and
from
the source
v
g
are si
m
u
ltaneously trans
f
erre
d to t
h
e dc
-
link
and th
e lo
ad. Th
is o
p
e
ration
is ex
actl
y
sam
e
to
typ
i
cal
bo
o
s
t
conv
erters.
As
similar to
th
e prev
i
o
us
one
, t
h
e
i
n
du
ct
or
v
o
l
t
a
ge i
s
re
prese
n
t
e
d
as
(2
).
1
11
L
Lg
o
di
vv
V
L
dt
(2
)
No
te th
at th
e in
du
ctor curren
t
i
L
1
is
th
e sa
m
e
to
i
g
fo
r th
e positiv
e h
a
lf cycl
e. Fo
r th
e neg
a
tiv
e h
a
lf cycle,
D
4
or
D
2
is turne
d
on accordi
ng to the status of
Q
1
. Un
lik
e th
e p
r
ev
iou
s
two
cases,
D
5
and
L
2
are conducting as i
n
Fi
gu
res 2
(
c) a
nd
2(
d)
. In t
h
ese
m
odes, t
h
e
m
a
gni
t
ude o
f
i
L
2
is
id
en
tical to
i
g
, but
i
t
s di
rect
i
on i
s
op
p
o
si
t
e
according t
o
the de
finition in
Fi
gure
2. The
e
x
pressi
ons of
i
L
2
are re
present
e
d in (3) and
(4).
2
22
L
Lg
di
vv
L
dt
(3
)
2
22
L
Lg
o
di
vv
V
L
dt
(4)
For t
h
e capaci
tor voltage,
only the status of
Q
1
is co
n
s
i
d
ered
withou
t referr
ing
th
e
p
o
l
arity o
f
th
e in
pu
t
vol
t
a
ge
. Wh
en
Q
1
is turn
ed on, th
e cap
acito
r
cu
rren
t is written
as (5
).
cc
co
o
dv
v
iC
I
dt
R
(5)
The ca
pacitor
current i
n
the
off sta
g
e
of
Q
1
is rep
r
esen
ted as b
e
l
o
w:
12
or
cc
co
L
L
o
g
dv
v
iC
i
i
I
i
dt
R
(6)
3.
MO
DELIN
G
AN
D CO
NTR
O
L
OF
T
H
E PROP
OSE
D
CO
NVE
RTER
3.1. Modeling of
the
Duty-to-input Current
Fo
r
PFC conver
t
er
con
t
ro
l, usu
a
lly tw
o
contr
o
l lo
op
s, th
e in
pu
t cu
rr
en
t an
d
the d
c
-
lin
k
v
o
ltag
e
, ar
e
necessa
ry
. F
o
r
t
h
e i
n
p
u
t
cu
rre
nt
co
nt
r
o
l
l
o
o
p
desi
gn
, t
h
e
du
t
y
-t
o-i
n
duct
o
r
cur
r
ent
m
odel
sho
u
l
d
be e
v
al
uat
e
d.
In
ord
e
r t
o
simp
lify th
e m
o
d
e
l
,
let’s assu
m
e
t
h
at
L
1
and
L
2
h
a
ve t
h
e
sam
e
val
u
es as
L
g
. T
h
en,
Equation (
1
)
and
(3) are t
h
e sa
me as well as Equations
(2)
and
(4) a
r
e ide
n
tical. The
n
, t
h
e well-
known state-space a
v
eragi
n
g
t
echni
q
u
e ca
n
be a
ppl
i
e
d
t
o
o
b
t
a
i
n
t
h
e
co
nt
r
o
l
m
odel
s
[
12]
.
B
y
usi
n
g E
q
u
a
t
i
ons
(1
) a
n
d (
5
)
,
t
h
e
st
at
e eq
uat
i
o
n
whe
n
Q
1
is t
u
rn
ed on
can
b
e
written
as fo
llows:
00
0
0
1
00
,,
1
0
0
g
g
g
g
cc
oo
di
i
dt
L
AB
v
A
B
dv
v
RC
dt
(7)
On
t
h
e
ot
he
r
h
a
nd
, t
h
e
st
at
e e
quat
i
o
n
w
h
en
Q
1
i
s
t
u
r
n
ed
o
f
f i
s
al
s
o
deri
ve
d as
(
8
)
by
usi
n
g
(
2
)
an
d
(
6
).
11
1
1
1
0
1
,,
11
0
g
g
o
g
g
cc
oo
o
di
i
R
dt
L
AB
v
A
B
dv
v
CR
C
dt
(8)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A L
o
w
C
o
st
Si
ngl
e
-
Sw
i
t
c
h
Br
i
dgel
e
ss
Bo
ost
PFC
C
o
nvert
e
r (
Y
o
u
n
g
h
o
o
n
C
ho)
25
9
Let
’
s
defi
ne
c
o
nst
a
nt
m
a
t
r
i
ces
A
an
d
B
for
st
ate-space analy
s
is
as:
01
0
1
(1
)
,
(
1
)
A
Ad
A
d
B
B
d
B
d
(9)
Whe
r
e
d
rep
r
e
s
ent
s
t
h
e
d
u
t
y
refe
rence
.
Aft
e
r t
h
at
t
h
e
dc
co
m
ponent
s
of
t
h
e st
at
es
i
g
and
v
c
can be deri
v
e
d
as
fo
llows b
y
u
tili
zin
g
t
h
e
m
a
tric
es
A
an
d
B
.
1
g
X
AB
V
(10)
Whe
r
e
X
i
s
t
h
e
dc c
o
m
pone
nt
vect
o
r
, a
n
d
V
g
is the
peak va
lue of
v
g
. By applying La
plac
e trans
f
orm
,
(11) is
obt
ai
ne
d a
s
f
o
l
l
ows:
1
01
01
()
10
()
,
01
()
()
g
g
c
is
ds
sI
A
A
A
X
B
B
V
I
vs
ds
(11)
B
y
sol
v
i
n
g
(
1
1
)
, t
h
e
dut
y
-
t
o
-i
nd
uct
o
r c
u
r
r
e
n
t
an
d t
h
e
d
u
t
y
-t
o-ca
paci
t
o
r
vol
t
a
ge m
odel
s
ar
e de
ri
ve
d as
f
o
l
l
o
ws:
2
2
()
2
()
11
gg
o
o
oo
is
V
R
C
s
ds
Ld
R
C
s
s
d
(12)
2
22
2
1
()
()
11
og
c
oo
RV
d
s
vs
ds
Ld
R
C
s
s
d
(13)
3.
2. C
o
ntr
o
l
S
t
ra
teg
y
As desc
ri
be
d b
e
fo
re, t
h
e v
o
l
t
a
ge an
d t
h
e cu
rre
nt
c
o
n
t
ro
l lo
op
s as in
Figu
re
3 are
nece
ssary for the
PFC
co
n
v
ert
e
r
.
Tw
o
pr
o
p
o
r
t
i
onal
-
i
n
t
e
g
r
al
(
P
I)
co
nt
r
o
l
l
e
rs
are em
pl
oy
ed
fo
r eac
h c
ont
rol
l
o
o
p
.
I
n
o
r
der t
o
im
pro
v
e t
h
e cu
rre
nt
cont
rol
p
e
rf
orm
a
n
ce, the duty feed-forward term
is
a
p
p
lied. Th
ank
s
to
th
e feed-forward
t
e
rm
,
t
h
e i
n
t
e
gral
p
o
r
t
i
on i
n
t
h
e P
I
cu
rre
nt
co
nt
rol
l
e
r i
s
red
u
ce
d, s
o
t
h
at
t
h
e dy
na
m
i
c prope
rt
y
can be
i
m
p
r
ov
ed. For
th
e vo
ltag
e
contro
ller, a 120
Hz b
a
nd
stop
filter is e
m
p
l
o
y
ed to
filter o
u
t
120
Hz
p
e
ri
o
d
i
c
vo
ltag
e
ri
p
p
l
e
cause
d b
y
t
h
e si
ngl
e-
p
h
a
se po
we
r fl
uc
t
u
at
i
on
phe
n
o
m
enon
[1
3]
. B
y
doi
n
g
s
o
, t
h
e
dy
nam
i
c prop
ert
y
of
the voltage control loop
can
be im
prove
d
without introducing unneces
sary 120Hz com
ponent in the current
refe
rence
.
*
o
V
o
V
g
v
g
i
*
||
g
i
||
o
g
o
V
vV
sin
()
bs
Gs
Fi
gu
re
3.
The
c
ont
rol
sc
hem
e
of
t
h
e
pr
o
p
o
s
e
d
c
o
n
v
e
r
t
e
r
4.
SIMULATION ST
UDY
4.1. Power Ci
rcuit
Switching Model
Fi
gu
re 4 s
h
ows
t
h
e devel
ope
d
swi
t
c
hi
n
g
m
odel
i
n
PSIM
.
I
n
t
h
e swi
t
c
hi
n
g
m
odel
,
bot
h t
h
e 15
perce
n
t
and
85 pe
rcent
of the
rated load are
c
o
n
f
i
g
ur
ed. I
n
or
der t
o
see t
h
e dy
nam
i
c per
f
o
r
m
a
nce of t
h
e e
n
t
i
r
e c
o
nt
r
o
l
sy
st
em
, t
h
e 85
perce
n
t
l
o
a
d
ca
n be
co
n
n
ect
ed
or
di
sc
on
n
ecte
d
in ste
p
. T
h
e
param
e
ters of t
h
e power ci
rcuit is
su
mm
arized
in
Tab
l
e 1.
All
activ
e
and
pas
s
ive s
w
itching de
vices a
r
e a
ssum
e
d as i
d
e
a
l ele
m
ents, s
o
t
h
eir
v
o
ltag
e
dro
p
s
are igno
red
.
Th
e ti
m
e
step
fo
r t
h
e sim
u
latio
n
is selected
as 25
0n
sec.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
25
6
–
26
4
26
0
Fi
gu
re
4.
De
ve
l
ope
d
po
we
r ci
rcui
t
i
n
PS
IM
Tab
l
e
1
.
Th
e Param
e
ters fo
r th
e Sim
u
latio
n
Contents
Values
I
nput inductance
L
g
1
m
H
Output capacitance
C
o
330
μ
F
I
nput r
oot-m
ean-
s
quar
e
(
R
M
S
)
voltage
V
rm
s
220
V
Rated output powe
r
P
o
500
W
Output voltage r
e
f
e
r
e
nce
400 V
Oper
ating fr
equency
60 Hz
Switching fr
equen
c
y
200 kHz
4.2. Contr
o
lle
r
Desi
gn and
I
m
plementati
on
Fo
r the cu
rren
t co
n
t
ro
ller
d
e
sign
, th
e tran
sfer
fu
n
c
tion
in
(12) is u
tilized
. By s
u
b
s
titu
ting
th
e
p
a
ram
e
ters in
to
th
e tran
sfer
fu
n
c
tion
,
th
e numerical
m
o
d
e
l in
(14
)
is ob
tain
ed.
52
()
27.38
6
22.3
(
)
6.842
1
0
0.0007
775
0.0004
7
g
is
s
ds
s
s
(14)
In
(1
4)
, the d
u
t
y
refere
nce
d
was selected as 0.2225 wh
ich
co
rr
esp
ond
s the r
e
qu
ir
ed
du
ty r
e
f
e
r
e
n
ce to
pr
odu
ce
40
0
V
out
put
at
t
h
e
peak
o
f
t
h
e i
n
p
u
t
vol
t
a
ge
. B
y
usi
ng t
h
e
M
A
TLAB
SI
S
O
TO
OL
, t
h
e
p
r
o
p
o
rt
i
o
nal
an
d t
h
e
i
n
t
e
gral
gai
n
s
of t
h
e P
I
c
u
r
r
e
n
t
co
nt
r
o
l
l
e
r a
r
e desi
g
n
e
d
as
0
.
1
5
5
6
a
n
d
21
0
3
,
res
p
ect
i
v
el
y
.
These
val
u
es
gi
ve
7
8
deg
o
f
pha
se
m
a
rgi
n
at
1
0
k
H
z, a
n
d i
t
m
a
y be a
n
e
n
ou
g
h
cont
rol
l
e
r
desi
gn
speci
fi
cat
i
on f
o
r t
h
e
PFC
cur
r
ent
cont
rol
.
In
or
der t
o
des
i
gn t
h
e
vol
t
a
ge
cont
r
o
l
l
e
r, t
h
e
pl
ant
m
odel
is deri
ved as
(1
5)
rat
h
er t
h
an
usi
n
g (
1
3),
because of
t
h
e consideration
of
the
curre
nt c
o
ntrol loop.
()
()
1
co
go
o
vs
R
is
R
C
s
(15)
Th
e
12
0Hz
b
a
n
d
s
t
o
p
filter is
i
m
p
l
e
m
en
ted
as fo
llo
ws:
2
2
2
2
2
()
22
c
bs
bc
sf
Gs
s
fs
f
(16)
Whe
r
e
f
c
and
f
b
represen
t th
e cu
t-o
f
f freq
u
e
n
c
y and
th
e
p
a
ssb
an
d
of th
e
b
a
nd
st
o
p
filter. In
t
h
e sim
u
lat
i
o
n
,
f
c
and
f
b
are sel
ected
as 12
0Hz an
d
1
0
Hz.
Ag
ai
n
,
th
e
M
A
TLAB SISOTOOL is u
tilized
to
d
e
termin
e th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A L
o
w
C
o
st
Si
ngl
e
-
Sw
i
t
c
h
Br
i
dgel
e
ss
Bo
ost
PFC
C
o
nvert
e
r (
Y
o
u
n
g
h
o
o
n
C
ho)
26
1
pr
o
p
o
r
t
i
onal
a
nd t
h
e i
n
t
e
g
r
al
gai
n
s
of t
h
e PI
vol
t
a
ge c
o
nt
r
o
l
l
e
r as 0.
1 a
nd
5.
W
i
t
h
t
h
e
gai
n
s, t
h
e e
n
t
i
r
e
v
o
l
t
a
ge
l
o
o
p
has 8
0
.
6
deg
of p
h
ase
m
a
rgi
n
at
72.
5
H
z. Fi
g
u
re
5 sho
w
s t
h
e o
p
e
n
-l
o
op gai
n
o
f
t
h
e cur
r
ent
an
d t
h
e
v
o
ltag
e
co
n
t
rol lo
op
s. Fro
m
th
e fi
g
u
re, it is con
f
i
r
m
e
d
that th
e
o
p
e
n-loo
p
gain
resu
lts with th
e d
e
sig
n
e
d
co
n
t
ro
llers satisfy th
e
d
e
si
g
n
sp
ecification
s
.
-5
0
0
50
10
0
15
0
M
a
gn
i
t
u
d
e (
d
B
)
10
1
10
2
10
3
10
4
-2
2
5
-1
8
0
-1
3
5
-9
0
P
has
e
(
d
e
g
)
B
o
d
e
D
i
agr
a
m
Gm
=
-
7
4.
8 dB
(
a
t
62
.
3
H
z
)
,
P
m
=
78
d
e
g
(
a
t
1.
0
1
e
+
00
4
H
z
)
F
r
equ
e
n
c
y
(
H
z
)
(a) t
h
e
dut
y
-
t
o
-
i
nd
uct
o
r c
u
r
r
en
t
m
odel
(b) th
e du
ty-to-cap
acito
r vo
ltag
e
m
o
d
e
l
Fi
gu
re 5.
The
ope
n
-
l
o
op
gai
n
s
Fi
gu
re
6.
The
i
m
pl
em
ent
e
d co
nt
r
o
l
l
e
r i
n
PS
I
M
4.
3. Si
mul
a
ti
o
n
Res
u
l
t
s
Th
e sim
u
latio
n
resu
lt using
the d
e
v
e
l
o
ped
switch
i
ng
m
o
d
e
l at th
e fu
ll lo
ad
stead
y-state co
nd
itio
n
is
sho
w
n i
n
Fi
gu
r
e
7
.
As s
h
ow
n
i
n
t
h
e
fi
gu
re,
t
h
e i
n
p
u
t
c
u
r
r
en
t
i
s
re
gul
at
e
d
s
i
nus
oi
dal
l
y
, a
n
d t
h
e
out
put
v
o
l
t
a
ge
is con
t
r
o
lled
to 40
0V
. In
t
h
e
ou
tpu
t
vo
ltag
e
, t
h
e
w
e
ll-
kno
wn do
ub
le
f
r
e
q
u
e
n
c
y r
i
p
p
l
e, h
e
re 12
0H
z, app
e
ar
s.
(a) I
n
p
u
t
c
u
r
r
e
n
t
(b
) Out
put
v
o
l
t
a
ge
Fig
u
re
7
.
Th
e si
m
u
latio
n
resu
l
t
at th
e fu
ll lo
ad
stead
y
-state
co
nd
itio
n
-3
00
-2
00
-1
00
0
10
0
M
a
g
n
i
t
ud
e (
d
B
)
10
1
10
2
10
3
10
4
-2
25
-1
80
-1
35
-9
0
-4
5
0
P
h
as
e (
d
e
g
)
Bo
d
e
D
i
a
g
r
a
m
G
m
=
3
1
.2
d
B
(
a
t 1
2
0
Hz
)
,
P
m
= 8
0
.6
d
e
g
(a
t
7
2
.5
H
z
)
Fr
e
q
ue
nc
y
(
H
z
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
25
6
–
26
4
26
2
Fig
u
re
8
sh
ows th
e sim
u
late
d
wav
e
form
s o
f
th
e
d
e
v
i
ces fo
r
po
sitiv
e and n
e
g
a
tiv
e half
cycles. Th
e
wav
e
fo
rm
s co
rrespon
d
s
th
e an
alysis tak
e
n in
th
e
prev
i
o
us
sectio
n
.
No
te th
at th
e switch
cu
rren
t
i
Q
1
f
l
ow
s
b
o
t
h
in
th
e
po
sitiv
e
an
d th
e
n
e
g
a
tive cycles wh
ereas o
t
h
e
r
d
e
v
i
ces cond
u
c
ts i
n
each
h
a
lf
cycle
as an
alyzed b
e
fore.
(a) For po
sitiv
e
h
a
lf
cycle
(b) For negative halfcycle
Fi
gu
re 8.
The
wave
f
o
rm
s
of devi
ces
Fi
gu
re
9.
The
t
r
ansi
e
n
t
res
p
on
se o
f
t
h
e
de
vel
ope
d
swi
t
c
hi
ng
si
m
u
l
a
ti
on m
odel
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A L
o
w
C
o
st
Si
ngl
e
-
Sw
i
t
c
h
Br
i
dgel
e
ss
Bo
ost
PFC
C
o
nvert
e
r (
Y
o
u
n
g
h
o
o
n
C
ho)
26
3
The t
r
ansi
e
n
t
r
e
sp
onse
o
f
t
h
e
de
vel
o
pse
d
si
m
u
l
a
t
i
on m
ode
l
i
s
sh
o
w
n
i
n
Fi
gu
re
9.
I
n
t
h
e si
m
u
l
a
ti
on,
the load is cha
nge
d at
t
= 0.2
s
fr
om
15 perc
ent
t
o
1
00
perc
ent
i
n
st
ep.
As
sho
w
n i
n
t
h
e fi
gu
re, t
h
e c
u
r
r
e
n
t
an
d
th
e vo
ltag
e
con
t
ro
ls are stab
le, and
th
e curren
t is v
e
ry well reg
u
l
ated
.
At
t
=0.4
s
, the l
o
ad is change
d
to 15
p
e
rcen
t. Ev
en
in
th
at co
nd
itio
n, th
ere is
no sig
n
i
fican
t tran
sien
t
p
r
ob
lem, and
t
h
e
o
v
e
rsh
o
o
t
o
f
th
e
dc-lin
k
v
o
ltag
e
is less
th
an
20
V. At
15
p
e
rcen
t lo
ad
, th
e curren
t
is slig
h
tly d
i
sto
r
ted
,
b
ecau
s
e th
e
co
nv
erter
o
p
e
rates in
di
sco
n
t
i
n
uo
us
con
d
u
ct
i
o
n
m
ode i
n
s
u
ch
a s
m
al
l
out
p
u
t
p
o
w
er
[
14]
-
[
15]
.
Ho
we
ver
,
t
h
e
effect
of
t
h
e
c
u
r
r
ent
d
i
sto
r
tion
is so
litt
le, th
at it is
n
o
t
a b
i
g
p
r
ob
le
m
in
th
e en
tire syste
m
p
e
rform
a
n
ce.
In s
u
m
,
t
h
rou
gh t
h
e si
m
u
l
a
ti
ons
, t
h
e o
p
er
at
i
on o
f
t
h
e si
ngl
e
-
swi
t
c
h
br
i
dgel
e
ss PFC
con
v
e
r
t
e
r ha
s
been
ve
rifie
d
.
5.
CO
NCL
USI
O
N
The si
n
g
l
e
-s
wi
t
c
h bri
dgel
e
ss
PFC
con
v
ert
e
r has bee
n
p
r
o
p
o
sed i
n
t
h
i
s
pape
r. F
o
r t
h
e p
r
o
p
o
se
d
con
v
e
r
t
e
r,
t
h
e
t
o
pol
ogy
,
t
h
e
o
p
erat
i
o
n
m
odes,
t
h
e
m
odel
i
ng a
n
d c
ont
r
o
l
s
have
been
deal
t
i
n
det
a
i
l
.
The
num
erical transfer function
of the
propose
d
conve
rter ha
s been eval
ua
t
e
d using the s
t
ate-space ave
r
aging
t
echni
q
u
e, a
n
d
t
h
e sim
u
l
a
t
i
on
m
odel
m
a
t
c
hed wi
t
h
t
h
e n
u
m
eri
cal
funct
i
on
ha
ve bee
n
t
e
st
ed. I
n
o
r
der
t
o
see
th
e p
e
rfo
rm
an
ce o
f
th
e
p
r
o
p
o
s
ed
conv
erter, a 5
00W
switch
i
n
g
m
o
d
e
l was
b
u
ilt in
PSIM so
ft
ware
p
ack
age. By
usi
n
g t
h
e de
v
e
l
opt
ed
si
m
u
lat
i
on m
odel
,
bot
h t
h
e
t
r
a
n
s
i
ent
an
d t
h
e
st
eady
-
st
at
e o
p
erat
i
o
ns
ha
ve
bee
n
eval
uat
e
d. Th
r
o
u
g
h
t
h
e si
m
u
lat
i
ons, i
t
has b
een co
nfi
r
m
e
d
t
h
at
t
h
e ope
rat
i
on
of t
h
e
pr
o
p
o
se
d co
nve
rt
er
i
s
very
well
m
a
tch
i
n
g
th
e th
eo
retical an
alyses. Sin
ce th
e propo
se
d
co
nv
erter em
p
l
o
y
s o
n
l
y on
e si
ng
le activ
e swit
ch
, it
is ex
p
e
ted
th
at
th
e i
m
p
l
e
m
en
tatio
n
co
st can b
e
redu
ced
,
an
d
th
e
reliab
ility o
f
th
e en
tire p
o
wer stag
e can
b
e
im
pro
v
ed
.
REFERE
NC
ES
[1]
L Huber, Y Jang, MM J
ovanovic. Performance Evalu
a
tion of
Br
idgeless PFC Bo
ost Rectif
iers.
I
EEE T
r
ansactio
ns
on Power
Electr
onics
. 2011
; 23
:
1381-1390.
[2]
F Musavi, W Eberle, WG Dunford. A
High-Per
f
ormance Single-Phase Bridge
less Interleaved P
F
C Converter
fo
r
P
l
ug-in H
y
b
r
id
Ele
c
tri
c
Veh
i
cl
e
Bat
t
er
y Ch
arge
rs.
IEEE Transactions on
Industry Applications
. 2011; 47
: 1833
-
1843.
[3]
Y Cho, H Mok, JS Lai. Analy
s
is of
the Admittance Component
for Digitally
C
ontrolled
Single-Phase Bridgeless
PFC Converter.
Journal of Power Electronics
. 20
13; 13: 600-608.
[4]
MKH Cheung,
MHL Chow, YM Lai, KH Loo
.
Effect o
f
Impe
r
f
ect Sinusoidal I
nput Curren
t
s on
the Performance of
a Boost PFC Pre-Regulator.
Jour
nal of Power
Electronics
. 2012; 1
2
: 689-698.
[5]
GG Park, KY Kwon, TW Kim.
PFC Dual
Boost Converter B
a
sed on Input Voltag
e Estimation
fo
r DC Inver
t
er Air
Conditioner
.
Jou
r
nal
of Power Electronics
. 2010
;
10: 293-299.
[6]
P Das, M Pahlevaninezhad
,
J D
r
obnik, G Moschopoulos, PK Jain. A Non
linear Controller B
a
sed on
a Discr
e
te
Energ
y
F
unction
for an AC/DC Boost P
F
C
Converter
.
IEEE Transactions on Power Electronics
. 2013; 28: 545
8-
5476.
[7]
YK Lo,
CY Lin,
HJ Chiu,
SJ Che
ng,
JY Lin.
Ana
l
y
s
is
and
Design of a Push-Pull Quasi-Resonant Boost Power
F
actor Corr
ec
tor
.
IEEE Transactions
on Power
Electronics
. 2013
;
28.
[8]
SA Khan, Md
I Hossain, M
Aktar. Sing
le-P
hase PFC C
onverter
for Plug-in H
y
brid
Electr
ic Veh
i
cle Batter
y
Chargers.
Intern
ational Journal of
Pow
e
r Electronics and
Drive Systems
. 2012; 2
.
[9]
D Lenine, ChS Babu, G Shanka
raiah
.
Performan
ce Ev
aluation of
Fuzzy
and
PI C
ontroller for Bo
ost Converter with
Active
P
F
C
.
International
Journal of Powe
r
Electronics and Drive Systems
. 2012;
2.
[10]
P Kong, S Wang, FC Lee. C
o
mmon
Mode EMI No
ise Suppresion for Br
idgeless PFC
Converters.
IEEE
Transactions on
Power Electronics
. 2008; 23: 29
1-297.
[11]
F Musavi, W Eberle, WG Dunf
ord. A Phase-Shifted Gati
ng Technique With Simplified Curren
t
Sensing for the
Semi-Bridgeless AC-DC Conver
t
er.
IEEE Transactions on
Vehicu
lar Technolog
y
.
2013; 62: 1568-
1576.
[12]
RW Erickson,
D Maksimovic.
Fundamentals o
f
Power
Electro
n
ics
. Norwell,
MA: Kluwer
Academic. 2002: 2
13-
226.
[13]
S
Bus
o
, P
M
a
ttavel
li, L Ros
s
e
t
t
o
, G
S
p
iazzi
. S
i
m
p
le D
i
gital Co
ntrol Im
proving D
y
n
a
m
i
c P
e
rfo
rm
ance of P
o
w
e
r
Factor Prer
egulators.
IEEE Transactions
on
Power Electronics
. 19
98; 13: 814-823.
[14]
L Huber, L Gan
g
, MM Jovanovic. Desi
gn-Oriented Analy
s
is and
Performance
Ev
aluation of Buck
PFC Front End.
IEEE Transactio
ns
on Power
Electronics
. 2010: 2
5
: 85-94.
[15]
Y Cho, JS Lai. Digital Plug-
in Repetitive
Cont
roller
for
Single-Phase B
r
idgeless PFC
Converters.
IEEE
Transactions on
Power Electronics
. 2013; 28: 16
5-175.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
25
6
–
26
4
26
4
BI
O
G
R
A
P
HY
OF
A
U
T
HO
R
Young
hoon Ch
o
was born in Seoul, Korea, in
1980. He r
eceiv
ed the B.S. de
gr
ee in electrical
engineering fro
m Konkuk
Univ
ersity
, Seoul, in 2002,
the M.S.
degree in electrical eng
i
neering
from Seoul National University
,
Seoul, in 2004
, a
nd the Ph.D. deg
r
ee from Virginia Poly
techn
i
c
Institute and
State Univ
ersit
y
, B
l
acksburg, VA,
USA, in 2012.
From
2004 to 2009, he was an
Assistant Research Engin
eer with the H
y
und
ai
MOBIS R&D
Center
, Yongin, Korea. Sin
ce
2013, He is no
w an Assistant
Professor in the
Department of
Electrical Engin
eering
,
Konkuk
U
n
ivers
i
t
y
,
in S
e
oul. H
i
s
curr
en
t res
ear
ch int
e
re
s
t
s
include dig
i
t
a
l con
t
rol t
echni
ques
for pow
er
electronic
conv
erters
in veh
i
cle and
grid
ap
plications, multilev
e
l
converter
s, and h
i
gh
-
perform
ance m
o
tor driv
es.
Evaluation Warning : The document was created with Spire.PDF for Python.