Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
6
,
No
. 2,
J
une
2
0
1
5
,
pp
. 27
4~
28
1
I
S
SN
: 208
8-8
6
9
4
2
74
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Inves
t
igations
on Cap
a
ci
tor Com
p
ensati
on Topol
o
gies
Eff
e
cts of
Different Inductive Coupling Links Configurations
Norez
mi Jam
a
l, S
h
akir S
a
at ,
Y
.
Yu
smar
n
i
ta,
Thoriq
Z
a
id, M
.
S.
M.
Is
a, A
.
A
.
M
.
Is
a
Faculty
of Electr
onic and
Computer Engineerin
g
,
Universiti
Tekn
i
k
al Ma
la
ysia
, M
e
lak
a
Hang Tuah
Jay
a
, 76100 Durian
Tunggal, Melaka,
Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 22, 2014
Rev
i
sed
Feb
26
, 20
15
Accepted
Mar 20, 2015
This paper presents investigation
s
on
capacitor
co
m
p
ens
a
tion topo
logies
with
differen
t
indu
ctive
coupling
links
for loosely coupled
inductive power
trans
f
er (IP
T) s
y
s
t
em
. In general
,
the
main constraint of the loosely
coup
led
IP
T s
y
s
t
em
is
power los
s
e
s
due to the l
a
rge l
eak
age indu
ctan
ces
.
Therefor
e
,
to overcom
e t
h
e aforem
ent
i
o
n
ed problem
,
in this
work,
capa
c
itor
compensation is
proposed to be used b
y
adding
an extern
al capacitor to th
e
s
y
stem. B
y
using this approach, th
e r
e
sonant inductiv
e coup
ling can b
e
achi
e
ved eff
i
ci
e
n
tl
y
and henc
e t
h
e effic
i
en
c
y
of
the s
y
s
t
em
is
als
o
increas
ed
significantly
. This paper an
aly
z
es
the p
e
rfo
rmance of tw
o differen
t
compensation to
pologies, which
are primar
y
ser
i
es-secondar
y
series (SS) and
primar
y
series-
secondar
y
p
a
rallel (SP)
topolog
y. Th
e performan
ce of such
topologies is evaluated through the expe
r
i
mental results at 1MHz operatin
g
frequency
for d
i
fferen
t
ty
p
e
s o
f
induc
tive cou
p
ling. From the results, SS
topolog
y
produ
ces a high po
wer transfer bu
t SP topolog
y
gives better
e
ffi
ci
e
n
cy
.
Keyword:
Class E circ
uit
Co
m
p
en
satio
n
to
po
log
i
es
I
ndu
ctiv
e Coup
lin
g
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Norezm
i Ja
m
a
l,
Faculty of Elec
trical an
d
C
o
m
put
e
r
E
ngi
neer
i
ng,
Un
i
v
ersiti Tekn
ik
al Malaysia Melak
a
,
H
a
ng
Tu
ah
Jay
a
, 761
00
Du
r
i
an
Tun
g
g
a
l, Melak
a
, Malaysia.
Em
a
il: j
a
m
a
ln
o
r
ezm
i@g
m
ail.
co
m
1.
INTRODUCTION
Recently,
W
i
reless Power
Transfe
r
(WPT) tec
hnologies bec
o
m
e
a
great attenti
on
am
ong
researc
h
ers.
WPT system
provides
tr
ansm
is
sio
n
po
wer
from
th
e sou
r
ce circu
it to
t
h
e load
circu
it witho
u
t
an
y
cable connection. The m
o
st
c
u
rrent popula
r
researc
h
of
WPT syste
m
are; 1) Inductive Po
we
r Tra
n
sfe
r
(IP
T)
syste
m
, 2
)
Cap
acitiv
e Power Tran
sfer
(CPT) system
, and
3
)
Acou
stic
En
erg
y
Tran
sfer (AET)
syste
m
[1
].
Am
ong them
,
IPT has
obtained higher attention
becaus
e
of the hi
ghe
st powe
r trans
f
er can be achieved at
several
l
a
r
g
e ai
r gap
di
st
an
ce [2]
.
The
r
ef
ore
,
i
t
has
bee
n
de
vel
o
ped a
nd
wi
del
y
use
d
i
n
m
obi
l
e
devi
ces,
m
e
di
cal
equi
p
m
ent
,
ve
hi
cl
es an
d i
n
d
u
st
ri
es
[3]
[4]
[5]
.
O
n
t
h
e
ot
her
ha
nd
, C
P
T
an
d
AET sy
st
em
onl
y
ca
n
su
ppo
rts t
h
e po
wer tran
sfer
in
m
i
li-W
a
tt (m
W
)
and
req
u
i
r
e
hi
g
h
i
n
pu
t
vol
t
a
ge t
o
p
r
o
d
u
ce hi
ghe
r
out
p
u
t
po
we
r.
Fi
gu
re
1 s
h
o
w
s t
h
e
ge
nera
l
bl
oc
k di
a
g
ra
m
of l
o
osel
y
cou
p
l
e
d
IP
T s
y
st
em
[6]
.
Ter
m
“l
oosel
y
”
rep
r
ese
n
t
s
t
h
e
pri
m
ary
,
L1 and sec
o
nda
ry
coi
l
s
, L2 are
not
co
u
p
l
e
d
by
com
m
on core a
nd m
ove
freel
y
b
e
tween
t
w
o.
An AC
so
urce is requ
ired
to g
e
n
e
ra
te a mag
n
e
tic
flux
.
Th
e
vo
ltag
e
will b
e
ind
u
c
ed fro
m
p
r
im
ary co
il, L1
o
n
t
o
th
e secon
d
a
ry co
il, L2. Th
e
prim
ar
y a
n
d second
ar
y cap
acito
r
co
m
p
en
sation
is essen
tial
in IPT system
to obtain a gre
a
t effici
ency
fo
r t
h
e l
o
ad
, R
L
by
achi
e
vi
n
g
r
e
so
nant
i
n
duct
i
ve co
upl
i
n
g.
D
e
spi
t
e
a lo
t of
w
o
r
k
s
h
a
v
e
b
e
en
do
ne in
th
e fr
am
e
w
or
k of
I
P
T
syste
m
, it is sti
l
l
q
u
ite less effi
cien
t and
n
eeds to
b
e
im
proved beca
use
of the la
rge leakage m
a
gnetic flux, L
lea
k
age
. [7].
At
present, t
h
ere
are seve
ral studi
e
s to
im
pro
v
e t
h
e b
e
havi
or o
f
t
h
e reso
na
nt
i
n
d
u
c
t
i
v
e cou
p
l
i
ng
by
usi
n
g capac
i
t
o
r com
p
ensat
i
on [
8
]
[9]
[1
0
]
[11]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
274
–
2
81
27
5
[1
2]
[1
3]
[1
4]
.
C
a
paci
t
o
r co
m
p
ensat
i
on i
s
a
m
e
t
hod w
h
e
r
e an ext
e
r
n
al
c
a
paci
t
o
r i
s
co
n
n
ect
ed ei
t
h
e
r
i
n
seri
es
o
r
p
a
rallel with th
e
resp
ecti
v
e
co
ils
t
o
ac
hi
ev
e res
ona
nce c
o
upl
i
n
g.
Fi
gu
re
1.
Gen
e
ral
B
l
ock
Di
a
g
ram
of
IPT
S
y
st
em
Norm
ally, primary capacitor com
p
en
satio
n is requ
ired
t
o
min
i
mize th
e v
o
ltag
e
-am
p
ere
(VA)
rating
of s
u
ppl
y
w
h
i
l
e
seco
nda
ry
ca
paci
t
o
r c
o
m
p
ensat
i
o
n i
s
nee
d
ed t
o
e
nha
nc
e
m
a
xim
u
m
powe
r
t
r
a
n
sfe
r
[
8
]
[9]
.
Aut
h
o
r
s i
n
[
1
0]
prese
n
t
t
h
at
hi
ghe
r p
o
we
r
t
r
ansfe
r
and higher efficiency ar
e caused
by
hi
ghe
r co
upl
i
n
g
coefficient
of
SS c
o
m
p
ensated IPT syst
em
. In
[11],
four c
a
pacitors
are
us
ed i
n
IPT syst
e
m
for com
p
ensation
pu
r
pose
at
50
kHz
o
f
o
p
erat
i
n
g
f
r
e
que
ncy
.
The o
u
t
p
ut
po
wer
p
r
o
d
u
ce
d i
n
bet
w
ee
n n
W
a
n
d
m
W
w
i
t
h
t
h
e
in
pu
t vo
ltag
e
o
f
5V. M
o
reov
er, [12
]
p
r
esen
ts Series
-Se
r
ies (S
S) a
n
d
Series-
P
arallel (SP) co
m
p
en
satio
n
t
o
p
o
l
o
gi
es i
n
I
P
T sy
st
em
. B
a
sed
on
t
h
ei
r
re
sul
t
s
, t
h
e
SS
t
o
pol
ogy
gi
ve
s a
bet
t
e
r
per
f
o
rm
ance am
ong
t
h
e t
w
o
.
Next
, sec
o
nd
ar
y
seri
es and
pa
ral
l
e
l
com
p
ensat
e
d IPT sy
st
e
m
have al
so
be
en st
u
d
i
e
d
by
vary
i
n
g t
h
e
op
erat
i
n
g
fre
que
ncy
i
n
[
13]
.
Whi
l
e
i
n
[1
4]
, ca
paci
t
o
r c
o
m
p
ensat
i
o
n
t
ech
ni
q
u
e
has
been
st
u
d
i
e
d
wi
t
h
t
h
e
di
ffe
rent
geom
et
ry
coi
l
bet
w
ee
n ci
rc
ul
ar a
nd
sq
ua
re
coi
l
s
. S
o
, t
h
e
ci
rcul
ar c
o
i
l
gi
ves
bet
t
e
r c
o
u
p
l
i
n
g
d
u
r
i
n
g
p
e
rfect
alig
n
m
en
t.
In th
is
p
a
p
e
r, t
h
e cap
acitor co
m
p
en
satio
n
meth
o
d
is studied to sol
v
e t
h
e
problem
of l
a
rge
leaka
g
e
in
du
ctan
ces
b
y
ach
iev
i
ng
th
e reson
a
n
ce in
ductiv
e co
up
lin
g. Th
e co
n
t
ribu
tio
n
o
f
th
is p
a
p
e
r is to
facilitat
e
th
e
desi
g
n
er
s t
o
m
a
ke a deci
si
on
i
n
ch
oosi
ng t
y
pes o
f
i
n
duct
i
ve co
u
p
l
i
ng t
h
at
m
o
st
effect
i
v
e ei
t
h
er c
o
upl
ed t
h
e
co
il with
SS
or SP topo
log
y
. So
, the an
alysis o
f
th
e co
u
p
l
i
ng c
o
ef
fi
ci
ent
of
di
ffe
re
nt
t
y
pes o
f
c
o
u
p
l
i
n
g an
d
com
p
ensation
topologies for loosel
y coupled IPT
system
is done at
1MHz
opera
ting freque
ncy. The
effi
ci
ency
o
f
d
i
ffere
nt
t
y
pe of
com
p
ensat
i
o
n
s
i
s
st
udi
ed by
vary
i
n
g ai
r ga
p
di
st
ance an
d u
s
e t
h
e di
ffe
re
nt
t
y
pe
of
i
n
duct
i
v
e
co
upl
i
n
g al
s
o
i
s
i
m
pl
em
ent
e
d.
In
th
is
work, th
e p
a
p
e
r is stru
ctured
as
fo
ll
o
w
s; Section
1 co
n
s
ists of literatu
re
rev
i
ew
o
f
SS and
SP
t
o
p
o
l
o
gi
es.
De
si
gn
exam
pl
e i
s
p
r
o
p
o
se
d a
n
d
ve
ri
fi
ed
vi
a
e
xpe
ri
m
e
nt
al
wor
k
i
n
sect
i
o
n
2.
Sect
i
o
n
3 c
o
nt
ai
ns
t
h
e m
a
i
n
resul
t
s and a
b
r
i
e
f di
scussi
o
n
on
SS
and
SP t
o
pol
o
g
i
e
s pe
rf
orm
a
nces fo
r di
ffe
re
nt
t
y
pe of i
n
d
u
c
t
i
v
e
cou
p
l
i
n
g
c
o
n
f
i
g
u
r
at
i
o
ns whe
n
vary
i
n
g
t
h
e
ai
r
ga
p di
st
an
ce. Lastly, sectio
n 4
prov
id
es
th
e con
c
lusion o
f
th
is
wo
rk
.
2.
R
E
SEARC
H M
ETHOD
C
l
ass E conve
rt
er ci
rcui
t
wi
t
h
t
h
em
at
chi
ng reso
na
nce ci
rc
ui
t
i
s
devel
ope
d as sho
w
n i
n
Fi
gu
re 2
(
a
)
and
(b) to dete
rm
ine their perform
ance. Sinc
e the load
resi
st
ance m
a
y
vary
du
ri
n
g
t
h
e e
xpe
ri
m
e
nt
al
w
o
r
k
s,
t
h
e m
a
t
c
hi
ng
ci
rcui
t
i
s
re
qui
red
t
o
pr
o
v
i
d
e t
h
e i
m
pedance
t
r
a
n
sf
orm
a
t
i
on [
15]
. S
o
, t
h
e i
m
peda
nce
trans
f
orm
a
tion is acco
m
p
lished by tappi
ng
the inductor
and capacitor (L
-C) circuit.
Ne
xt, Class E converter
circuit is a DC
resona
nce s
u
pply that offe
rs
a great e
ffi
ciency in
wireless
p
o
wer tran
sfer
d
u
e
t
o
its th
eo
retical
h
a
s zero
switch
i
ng
lo
sses [6
]
[16
]
. It is
u
s
ed
to
conv
ert DC electrical
energy
into
electromagnetic field
energy
[1
7]
. B
a
sed
o
n
t
h
e Fi
g
u
re
2,
I
R
F51
0
M
O
SF
ET i
s
use
d
as
a swi
t
c
hi
n
g
de
vi
ce o
f
C
l
ass E co
nve
rt
er.
T
h
i
s
t
y
pe
of M
O
SF
ET i
s
pre
f
er
re
d
due
t
o
l
o
w
on
-re
si
st
ance, l
o
w c
o
st
and
sui
t
a
bl
e fo
r
fast
s
w
i
t
c
hi
n
g
.
9
V
DC
s
u
p
p
l
y
an
d 1
M
Hz
op
eratin
g frequ
e
n
c
y are ap
p
lied in
th
is wo
rk
.
V
AC
L
leakage
L
2
L
1
R
L
Prim
ary
Co
m
p
en
satio
n
Second
ar
y
Co
m
p
en
satio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
In
vestiga
tion
s
o
n
Capa
cito
r
Co
mp
en
sa
tion
Top
o
l
o
g
i
es Effects o
f
Differen
t
Ind
u
c
tive …
(No
r
ezmi Ja
mal
)
27
6
(
a
)
SS Topo
logy
(
b
)
SP
Top
o
l
og
y
Figu
re
2.
Circu
it Diagram
s
fo
r
Ex
perim
e
ntal Wo
r
k
s
The
n
, t
h
e
val
u
es o
f
passi
ve
e
l
em
ent
s
fo
r C
l
ass E c
o
nve
rt
e
r
ci
rc
ui
t
are
de
t
e
rm
i
n
ed i
n
t
h
i
s
w
o
r
k
base
d
on the e
x
act a
n
alysis[18]. Cla
ss E
resistance
,
R
1
= 0.
55
1
4
(
V
DD
)
2
/P
o
. Ne
xt
,
t
h
e val
u
e
of
s
h
unt
ca
paci
t
o
r c
a
n
be
d
e
term
in
ed
as
C
shunt
= 0.19
7
1
/
(
ω
R
L
)
while the series ca
pacitor,
C
series
= 0.
10
6
2
/
(
ω
R
L
). If th
e
operatin
g
fre
que
ncy
i
s
g
r
eat
er t
h
a
n
t
h
e
reso
na
nt
fre
q
u
ency
,
res
ona
n
t
series circuit represents
an
in
du
ctiv
e lo
ad at th
e
ope
rat
i
n
g fre
q
u
ency
,
f.
T
h
er
efo
r
e, t
h
e seri
e
s
i
nduct
a
nce,
L
series
can be di
vi
de
d i
n
t
o
t
w
o
i
nduct
a
nces,
L
ext
and
L
res
, connected in se
ries s
u
c
h
that L
series
= L
ext
+ L
res
and L
res
whe
r
e L
ext
= 1
.
15
3R
L
/
ω
and
L
res
= 10.62R
L
/
ω
. RF
Ch
ok
e In
du
ctor
,
L
choke
i
s
chose
n
t
o
be
hi
g
h
en
ou
g
h
so t
h
at
an
AC
ripple ca
n be neglecte
d
[6]. The prim
ary and
seco
nda
ry
si
de
ci
rcui
t
of l
o
os
el
y
coupl
e
d
IP
T sy
st
em
has
an i
d
e
n
t
i
cal
reson
a
nt
f
r
eq
ue
n
c
y
at
1M
Hz. S
o
, t
h
e
cap
acito
r th
at i
s
co
m
p
en
sated
with
th
e co
il
for
b
o
t
h
sid
e
s can
b
e
d
e
term
in
ed
as
C
1
=
C
2
= (
ω
-1
)
2
/L
1/2
.
Tabl
e I
.
C
o
m
pone
nt
s a
n
d Pa
r
a
m
e
t
e
rs Use
d
i
n
IPT
Sy
st
em
Circuit
Co
m
p
one
n
ts and
Para
m
e
te
rs
Values
Power MOSF
ET,
NMOS
IRF510
Oper
ating Fr
equency
,
f
o
1M
Hz
I
nput DC supply
,
V
dc
9.
0V
Rated Power,
P
o
3.
0W
Choke I
nductor
,
L
choke
5.
0
m
H
Shunt Capacitor
,
C
s
hunt
2.
2nF
Series Capacitor
,
C
se
rie
s
1.
0nF
Ser
i
es I
nductance,
L
se
rie
s
22.
0µH
Pri
m
a
r
y and Secon
d
ary Coil,
L
1
and
L
2
10µH,
24µH
Pri
m
a
r
y and Secon
d
ary Capacito
r Com
p
ensation,
C
1
and
C
2
2.
2nF,
1.
0nF
Internal Pri
m
a
r
y R
e
sistance Coil,
R
1
0.
3
Ω
I
n
ter
n
al Secondary Resistance Coil,
R
2
0.
2
Ω
Load Resistance,
R
L
100
Ω
The
pr
ot
ot
y
p
e
of
IP
T sy
st
em
i
s
de
vel
o
pe
d
wi
t
h
t
h
e
c
o
m
pone
nt
s a
n
d
par
a
m
e
t
e
rs gi
ve
n
i
n
Ta
bl
e I
.
The coupling
coefficient, output power
a
n
d efficiency of loosely coupl
ed IPT syste
m
are evaluated for
di
ffe
re
nt
com
p
ensat
i
o
n t
o
p
o
l
ogi
es
an
d t
y
pe
s o
f
i
n
d
u
ct
i
v
e
coupling i
n
thi
s
experim
e
ntal works. T
h
e si
ze
of
t
w
o t
y
pes
of r
eady
-
m
a
de Li
tz wi
re coi
l
i
s
37
.0m
m
x 37.
0m
m
x 1.8m
m
fo
r 1
0
µH a
n
d
53
.3m
m
x 53.
3m
m
x
6
.
0
m
m
fo
r 24µH resp
ectiv
el
y are u
s
ed
.
The reaso
n
o
f
cho
o
s
i
n
g
Litz wi
re co
il is
b
ecau
s
e
o
f
its cap
a
b
ility to
m
i
nim
i
ze t
h
e l
o
sses at
hi
gh
f
r
e
que
ncy
[3]
.
V
1
V
2
V
2
V
1
V
ds
V
ds
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
274
–
2
81
27
7
a)
1
0uH
-1
0uH
b
)
24u
H-
24u
H
c)
1
0uH
-2
4uH
d
)
24u
H-
10u
H
Fi
gu
re
3.
Ty
pe
s o
f
Di
ffe
re
nt
I
n
d
u
ct
i
v
e C
o
upl
i
ng C
o
nfi
g
u
r
at
i
ons
The different s
i
ze of coils is use
d
to evaluat
e
the perform
a
nces of
d
i
fferen
t to
po
log
i
es of in
du
ctiv
e
cou
p
l
i
n
g w
h
en
vary
i
n
g t
h
e ai
r gap
.
The pl
acem
e
nt
of
external capacitor com
p
ensatio
n
eith
er in
series or
p
a
r
a
llel is i
m
p
l
e
m
en
ted
to
stud
y th
e p
e
rf
or
man
ce of
th
e d
i
ff
er
en
t typ
e
o
f
cap
acito
r
co
mp
ensatio
n
topolo
g
i
es.
The ai
r
gap
di
s
t
ance bet
w
e
e
n
t
w
o se
parat
i
o
n
coi
l
s
i
s
vari
e
d
fr
om
5
m
m
t
o
45m
m
.
The exp
e
ri
m
e
nt
al
work
s are
sho
w
n i
n
Fi
gu
r
e
3.
3.
R
E
SU
LTS AN
D ANA
LY
SIS
In
th
is section
,
th
e resu
lts of th
e wo
rk
are exp
l
ain
e
d a
n
d at the sam
e
time the concise of discussion is
g
i
v
e
n
.
Figu
r
e
4
sh
ow
s th
e co
up
ling
co
eff
i
cien
t of
indu
c
tive power t
r
ansfer is
slightly
dec
r
eases as
air ga
p
di
st
ance i
n
c
r
ea
ses fr
om
5
m
m
t
o
50m
m
for di
ffe
rent
t
o
pol
og
i
e
s of i
n
duct
i
v
e cou
p
l
i
n
g. It
c
a
n be
obse
r
ved
t
h
at
t
h
e best
res
ona
nt
i
n
d
u
ct
i
v
e co
upl
i
n
g i
s
t
h
e bi
g i
s
ol
at
i
on c
o
n
f
i
g
urat
i
o
n as s
h
o
w
n i
n
Fi
g
u
re
4(
d) wi
t
h
di
m
e
nsi
o
n
of
53.3 x
6
x 53.3 mm a
m
ong othe
rs. T
h
is is
because the
sl
ope
of that configuration
is the highest with
18.0
v
a
lu
es. So, th
e p
r
im
ary co
il p
r
odu
ced
m
o
re mag
n
e
tic flux
es to
in
du
ce on
t
o
th
e seco
nd
ary co
il. Th
is resu
lt o
n
m
o
re fluxes wi
ll be received
by the seconda
r
y coil. As
the
coupling coe
f
ficient in
creas
e, m
u
tual inductance
o
f
loo
s
ely coup
led
IPT system
wil
l
in
crease to
o at th
e
align
m
en
t p
o
s
ition [1
9
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
In
vestiga
tion
s
o
n
Capa
cito
r
Co
mp
en
sa
tion
Top
o
l
o
g
i
es Effects o
f
Differen
t
Ind
u
c
tive …
(No
r
ezmi Ja
mal
)
27
8
Fi
gu
re
4.
C
o
up
l
i
ng C
o
ef
fi
ci
en
t
vs.
Ai
r
Ga
p
D
i
st
ance
SS topo
log
y
pr
odu
ces
h
i
gh
er cou
p
ling co
eff
i
cien
t fo
r th
e
b
i
g
iso
l
atio
n co
nf
igu
r
ation in Figu
r
e
4(b
)
and step
up c
o
nfi
g
ura
tion
in Figure 4(c
)
. It
is
beca
use of the
s
econdary
coil size is larger t
o
receive
m
o
re
magnetic flux. So, se
ries capacitor com
p
ensation sec
o
nd
a
r
y acts as a voltage source that supplied a stable
vol
t
a
ge
[
20]
.
From
t
h
e m
e
asurem
ent
of l
a
bo
rat
o
ry
sessi
on
, co
u
p
l
i
n
g c
o
ef
fi
ci
ent
as i
n
Fi
g
u
r
e 4
det
e
rm
i
n
ed
fro
m
th
e fo
llowing
eq
u
a
tion after th
e vo
ltag
e
ap
p
lied
t
o
th
e prim
ary c
o
il, V
1
an
d seco
nd
ar
y co
il,
V
2
are
measu
r
ed durin
g relativ
e
op
en
loop
v
o
ltage
as fo
llo
ws[2
1
]
:
݇ൌ
ඨ
ܮ
ଵ
ܮ
ଶ
ൈ
ܸ
ଶ
ܸ
ଵ
(1
)
whe
r
e L
1
is tran
sm
it
ter co
il an
d
L
2
is receiver coil, a
r
e linked togethe
r
.
If
the two ide
n
tical coilshave
the sam
e
inductance
val
u
e, t
h
e c
o
upling
factor,
k
is d
e
termin
ed
b
y
݇ൌ
ܸ
ଶ
ܸ
ଵ
(2
)
In sho
r
t
,
th
e main
fact
o
r
s th
at
affect t
h
e c
oupling fact
or,
k
value a
r
e t
h
e ai
r
gap distance
betwee
n the
two c
o
ils
and their relative size. If th
e
two coils a
r
e a
x
ially aligned, a
dis
p
l
acem
ent
of transm
itter coil causes
a
de
crease
in
k
v
a
lu
e. So
,
th
e cap
acito
r co
m
p
en
satio
n top
o
l
o
g
y
and
th
e typ
e
of i
n
du
ctiv
e co
up
ling
will n
o
t
g
i
v
e
m
a
jo
r
im
pact on
coupling coe
fficie
n
t val
u
e.
From
Fi
gur
e 5, i
f
ai
r g
a
p
di
st
ance i
s
s
m
al
l
,
t
h
e hi
gh
est
out
p
u
t
p
o
w
er
pr
od
uce
d
for
di
f
f
ere
n
t
topologies. T
o
note
here that t
h
e ou
tput power is
m
easured
acros
s 100
Ω
of load resista
n
c
e
, and the air gap is
vari
e
d
. The m
e
asure
d
o
u
t
p
ut
po
we
r of sec
o
nda
ry
seri
es com
p
ensated and secondary pa
rallel co
m
p
ensated at
1M
Hz
fre
q
u
en
cy
are com
p
ar
ed a
n
d
i
t
i
s
sh
ow
n i
n
Fi
g
u
r
e
5.
At
5 m
m
ai
r ga
p
di
st
an
ce, SS t
o
pol
og
y
has
pr
o
duce
d
hi
gh
er o
u
t
p
ut
po
we
r as com
p
ared
t
o
SP t
o
pol
ogy
for
bi
g i
s
ol
at
i
on i
n
Fi
g
u
re
5
(
b
)
w
h
i
c
h i
s
1
.
25
W
and
f
o
r
st
ep
u
p
i
s
1.
2
W
res
p
ect
i
v
el
y
as s
h
ow
n i
n
Fi
g
u
re
5
(
c).
T
h
ese c
o
n
f
i
g
urat
i
o
ns
have
p
r
od
uce
d
hi
g
h
e
r
o
u
t
p
u
t
p
o
wer du
e to
h
i
gh
co
up
lin
g
co
efficien
t as d
i
scu
ssed b
e
fo
re. So
, t
h
e o
u
t
p
u
t
po
wer will b
e
d
e
creased
as
air ga
p
distanc
e
increase
s
.
0
10
20
30
40
50
0
0.
2
0.
4
0.
6
0.
8
1
(
a
)
10uH
-
10u
H
0
10
20
30
40
50
0
0.
2
0.
4
0.
6
0.
8
1
(
b
)
24uH
-
24u
H
0
10
20
30
40
50
0
0.
1
0.
2
0.
3
0.
4
0.
5
C
oupl
i
ng C
o
e
f
f
i
c
i
e
n
t
,
k
(
c
)
10
uH
-
24uH
0
10
20
30
40
50
0
0.
5
1
1.
5
A
i
r
Gap Di
s
t
a
n
c
e
(
m
m
)
(
d
)
24uH
-
10u
H
SP
SS
SP
SS
SP
SS
SP
SS
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
274
–
2
81
27
9
Fi
gu
re
5.
O
u
t
p
ut
P
o
we
r
vs.
A
i
r Ga
p
Di
st
anc
e
The
m
easured efficiencies of s
econda
ry seri
es com
p
ensate
d a
nd
secondary parallel compensated a
r
e
com
p
ared a
n
d
they are s
h
own in Figure
6
.
It is o
b
se
rve
d
t
h
at the e
fficie
n
cy o
f
IPT syste
m
slig
h
tly in
creased
with the i
n
crea
sing
of the c
o
upling
coe
fficien
t, k fo
r
d
i
fferen
t typ
e
s of in
duct
i
v
e
co
u
p
l
i
n
g
.
F
r
om
Fi
gu
re 6
,
i
f
co
up
ling
co
efficien
t, k is larg
e,
th
e m
a
x
i
mu
m
efficien
cy of secon
d
a
ry
p
a
rallel co
m
p
en
sated is
g
e
nerally
higher tha
n
se
conda
r
y series com
p
ensat
e
d at
1 M
H
z ope
r
a
t
i
ng fre
q
u
enc
y
.
Moreover, there is a ferrit
e
core
attach
ed
with
t
h
e co
il to
sh
ield
th
e m
a
g
n
e
tic flux
th
at
ca
use
d
hi
g
h
e
ffi
ci
en
cy
of
i
n
duct
i
v
e
co
upl
i
n
g
occ
u
rre
d.
Figure 6.
Efficiency
vs. C
o
upl
i
ng C
o
efficient
0
10
20
30
40
50
0
0.
2
0.
4
0.
6
0.
8
(
a
)
10uH
-
10u
H
0
10
20
30
40
50
0
0.
5
1
1.
5
(
b
)
24uH
-
24u
H
0
10
20
30
40
50
0
0.
5
1
1.
5
A
i
r
Gap
Di
s
t
a
n
c
e
(
m
m
)
O
u
t
p
u
t
Po
w
e
r
,
Po
(
W
)
(
c
)
10
uH
-
24uH
0
10
20
30
40
50
0
0.
1
0.
2
0.
3
0.
4
(
d
)
24uH
-
10u
H
SP
SS
SP
SS
SS
SP
SP
SS
0
0.
2
0.
4
0.
6
0.
8
1
0
0.
2
0.
4
0.
6
0.
8
1
Co
u
p
l
i
n
g
Co
ef
f
i
c
i
en
t
,
k
E
f
f
i
ci
en
cy
,
n
(
a
)
10uH
-
10u
H
0
0.
2
0.
4
0.
6
0.
8
1
0.
2
0.
4
0.
6
0.
8
1
(
b
)
24uH
-
24u
H
0
0.
2
0.
4
0.
6
0.
8
0
0.
2
0.
4
0.
6
0.
8
1
(
c
)
1
0uH
-
24uH
0
0.
5
1
1.
5
0.
4
0.
6
0.
8
1
(
d
)
24uH
-
10u
H
SP
SS
SP
SS
SP
SS
SP
SS
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
In
vestiga
tion
s
o
n
Capa
cito
r
Co
mp
en
sa
tion
Top
o
l
o
g
i
es Effects o
f
Differen
t
Ind
u
c
tive …
(No
r
ezmi Ja
mal
)
28
0
4.
CO
NCL
USI
O
N
In
t
h
i
s
pa
per
,
t
h
e
per
f
o
rm
ance o
f
di
ffe
re
nt
c
a
paci
t
o
r
com
p
ensat
i
o
n t
o
p
o
l
ogi
es
ha
ve
bee
n
st
udi
e
d
.
A
com
p
ari
s
on
be
t
w
een t
h
e
di
f
f
e
rent
c
o
m
p
ens
a
t
i
on t
o
p
o
l
o
gi
es yield
th
at th
e ou
tpu
t
power
delivere
d
ac
ross the
load
resistance
is highe
r for SS capacitor com
p
ensati
o
n
top
o
l
o
g
y
wh
ile th
e ind
u
c
tiv
e li
n
k
efficien
cy
re
m
a
in
s
hi
g
h
f
o
r
SP t
o
pol
ogy
of ca
pa
ci
t
o
r com
p
ens
a
t
i
on. M
o
re
ov
er, t
h
e
per
f
o
rm
ance o
f
di
ffe
re
nt
t
y
pes o
f
i
n
d
u
ct
i
v
e
co
up
ling
co
nfig
uration
s
also
h
a
s
b
een an
aly
zed
.
High
er ind
u
c
tan
ce
o
f
i
n
d
u
c
tiv
e coup
lin
g
li
n
k
s
will deliv
er
t
h
e hi
ghe
st
o
u
t
put
p
o
we
r ac
r
o
ss t
h
e l
o
ad
re
sistance.
Ne
xt, t
h
e in
ten
tion
futu
re wo
rk
that sh
ou
l
d
b
e
co
n
s
id
ered
i
s
t
o
st
udy
t
h
e
per
f
o
r
m
a
nce o
f
I
P
T
syste
m
with
a self-tunin
g
Class E con
v
e
rter circu
it
an
d wit
h
ou
t the self-
t
uni
n
g
ci
rcui
t
.
ACKNOWLE
DGE
M
ENTS
Sin
cerely to ex
press th
e h
i
gh
ly app
r
eciation
t
o
Un
i
v
ersiti Tekn
ik
al
Malaysia Melak
a
(UTeM
)
for
fu
n
d
i
n
g t
h
i
s
w
o
r
k
(PJP/
2
0
1
3
/
F
KE
KK
(
1
0
A
)/
S1
17
7 a
n
d PJ
P
/
20
13/
F
K
E
K
K
(4
0C
)
/
S
0
1
2
5
4
)
.
REFERE
NC
ES
[1]
A.J. Moradewicz, “Unplugged
B
u
t Connected
”,
I
EEE
Ind.
El
ectron. Mag
.
, no. December, pp. 47–
55, 2012
.
[2]
W
.
Zhang
,
S
.
M
e
m
b
er, S
.
W
o
ng, S
.
M
e
m
b
er,
C.K.
Ts
e,
and
Q. Chen
, “
D
es
ign for Ef
fic
i
enc
y
Opt
i
m
i
za
tion
and
Voltage Controllability
of
Seri
es – Series Compensated
Inductive Power Tr
ansfer S
y
stems”,
I
EEE T
r
ans.
Po
wer
Electron.
, vol. 2
9
, no
. 1
,
pp
. 191
–200, 2014
.
[3]
J. Sallan, J.
L. V
illa
, a
.
Llom
bart
, a
nd J.F. Sanz,
“
O
ptim
al Desi
gn of ICPT
Sy
stem
s Applied to Elec
tric Veh
i
c
l
e
Batter
y
Charg
e
”,
IEEE Trans. In
d. Electron.
, vol. 56, no. 6, pp.
21
40–2149, Jun. 2
009.
[4]
M. Yilmaz and
P.T. Krein
,
“Review of Batter
y
Charger
Topolo
g
ies, Charg
i
ng Power Levels, an
d Infrastructur
e
for
Plug-In Electr
i
c
and H
y
brid V
e
hicles”,
I
EEE
T
r
ans. Power
El
ectr
on.
, vol. 28, no.
5, pp
. 2151–216
9, May
2013.
[5]
H. Ali, T.J
.
Ah
mad, and S. a
Khan, “Induc
tiv
e link
design fo
r medical implants”,
in
2009 I
E
EE Symposium
on
Industrial Electroni
cs &
Applications
, 2009, no. I
s
iea, pp. 694–69
9.
[6]
N. Jamal, S. Saat, and
A.
Z. Sh
ukor, “A stud
y
on performances of diffe
r
e
nt co
mpensation topo
logies for
loosely
coupled
inductiv
e
power tr
ansfer
s
y
stem”,
in
201
3 IEEE In
ternat
ional Confer
enc
e
on Control Sy
stem, Computin
g
and Engin
eering
, 2013
, vol. 2
,
no
. 1
,
pp
. 173–178
.
[7]
J.L. Villa, J. Sallán
, A.
Llombart, and J.F. Sanz,
“Design of a high frequency
Ind
u
ctiv
ely
Coupled Power Transfer
s
y
s
t
em
for
el
ectr
i
c v
e
hic
l
e
bat
t
er
y
charg
e
”
,
Trans. App
l
. En
ergy
, v
o
l. 86
, no
. 3
,
pp
.
355–363, Mar
.
2
009.
[8]
A.
Kumar and
AP.
Hu,
“Linearly
tu
n
e
d wireless power pick-up”, in
2010 IEEE Internationa
l Conference o
n
Sustainable Energy Technolog
ies (
I
CSET)
, 2010, pp. 1–6.
[9]
C. W
a
ng,
G.A.
Covic,
and
O.H. S
c
e
l
au
, “
G
ene
r
al S
t
abil
it
y Cr
it
erions
for
Zero
P
h
as
e Angle Co
ntrolled
Loos
e
l
y
Coupled Inductive Power Transf
er S
y
stems”, in
Conferenc
e
of I
EEE Industria
l
Ele
c
tronics Soc
i
e
ty
, 2001, pp
. 10
49–
1054.
[10]
R. Chen, C
.
Zh
e
ng, Z.U
.
Zah
i
d,
E. F
a
ra
ci
, W
.
Yu, J.S
.
Lai, M
.
Senesk
y
,
D. And
e
rson,
a
nd G.
Lisi,
“Ana
ly
sis a
nd
parameters optimization of a contactle
ss IPT sy
stem for EV charger”, in
201
4 IEEE Appl
ied
Power Elec
tronics
Conference and
Exposition
-
AP
EC 2014
, 2014,
pp. 1654–1661
.
[11]
R. Azam
buja
,
V.
J
.
Brus
am
arello
,
S
.
Haffner,
and
R.W
.
P
o
rt
o, “Full four capacitor
circ
uit compensation for indu
ctiv
e
power trans
f
er
”,
in
2013 IEEE I
n
ternational Instrumentation and
Me
asurement T
echnolog
y
Conference (
I
2MTC
)
,
2013, pp
. 183–1
87.
[12]
K.
Adity
a
,
S.
M
e
mbe
r
,
S.
S.
Willia
m
son,
a
nd S.
Me
mbe
r
,
“Comparative Stud
y
o
f
Series
-S
eries
a
nd
S
e
ries
-P
aral
l
e
l
Topolog
y
for
Lo
ng Track
EV
Ch
arging Application”,
Ind
.
Electro
n. (
I
SIE)
, 2014 I
EEE 23rd Int. S
y
mp.
, 2014
.
[13]
L.V. Ratio, W. Zhang, S.
Member, S. Wong, S. Member, and C.K. Ts
e, “Analy
sis and Comparison of Secondar
y
Series and Parallel Compensated
Induc
tive Power Transfer S
y
stems Operati
ng for Optimal Efficiency
and
Load-
independ
ent Vol
t
age-
Trans
f
er
Ra
tio”
,
I
EEE Trans. Pow
e
r Electron.
, no. X, pp
. 1–1
2, 2013
.
[14]
B. Fahimi and
M. McDonough, “Compa
rison between
cir
c
ular and squar
e
coils for use in
Wireless Power
Tra
n
smission”
,
in
9th IET Intern
ational Conference on Com
puta
tion in Electromagnetics (
C
EM
2014)
, 2014, no. 9,
pp. 5
.
14–5.14
.
[15]
D.
C.
K.
Kazimierczuk, Marian,
Resonant Pow
e
r
Converters
, Second. Wiley
,
201
1, p
.
600
.
[16]
N. Jamal, S. Saat, N.
Azman
,
and T. Zaid, “Th
e
expe
r
i
mental
analy
s
is of Clas
s E converter circuit for ind
u
ctive
power
trans
f
er
appli
cat
ions
”, i
n
2014 Interna
tional S
y
mposium on Technolo
g
y Managemen
t
and Emerging
Technologies
, 2
014, no
. Istmet,
pp. 516–520
.
[17]
P.
T
.
De
vi
ce
s,
“DC-Re
sona
nc
e Powe
rs Wi
re
l
e
ss Tra
n
sfe
r
”,
ASI
A
Electron.
, 2013.
[18]
M
.
Kazim
i
erc
z
u
k
and K. P
u
czko, “
E
xact an
al
ys
is
of clas
s
E tuned
power am
plifier
at an
y
Q and s
w
itch dut
y c
y
c
l
e”,
IEEE Trans. Circuits S
y
st.
, vol. 3
4
, no
. 2
,
pp
. 149
–159, Feb
.
1987
.
[19]
T. Linlin
, Q. Hao, H. Xueliang
,
C.
Weijie, and S
.
Wenhui, “A Novel Optimizat
io
n Means of Tr
an
sfer Efficien
cy
f
o
r
Resonance Coup
led Wire
le
ss Powe
r Tra
n
sfe
r
”,
T
E
LKOMNIKA
, v
o
l. 11
, no
. 5
,
201
3.
[20]
C.
Wang,
O.
H.
Stielau,
G.
A.
Covic,
and S. Member, “Design Considerations
f
o
r a Contac
tl
es
s
Elec
tri
c
Vehic
l
e
Batter
y
Charg
e
r
”
,
I
E
EE Trans. I
nd. Electron.
, vo
l. 52
, no
. 5
,
pp
. 1
308–1314, 2005
.
[21]
N. Jamal, S. Saat, a
nd Y. Yusmarnita, “A Development of Class E
Converter C
i
r
c
uit for Loosely
Coupled Inductive
P
o
wer Trans
f
er
S
y
s
t
em
”,
WSEAS Trans. CIRCUITS Syst.
, vol. 13
, pp
. 422–428
, 2
014.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
274
–
2
81
28
1
BIOGRAP
HI
ES OF
AUTH
ORS
Norez
mi Jamal
was born in
Melaka, Malay
s
ia in 1989.
She obtained her Diploma in Electronic
Engineering in
Universiti Teknologi Malay
s
ia
in 2010, Bachelor Degree in Electron
i
c
Engineering (Ind
u
str
y
) from
Univ
ersiti
Tekn
ikal
Malay
s
ia Melak
a
in 2013
,
and currentl
y
doing
a
Master degree i
n
Electron
i
c En
gineer
ing from
Universiti Tekn
i
k
al Malay
s
ia M
e
lak
a
, in 2013.
Her are
a
s
of int
e
res
t
res
e
arch
in
clude
appli
cat
io
n of wireles
s
po
wer trans
f
er
, po
wer ele
c
tron
ics
and con
t
rol tech
nique.
Shakir
Saat
wa
s
born in
Kedah,
M
a
la
y
s
i
a
, in 19
81. He receiv
e
d the B.Eng
.
and M
E
ng. degres
e
in electrical eng
i
neer
ing from
th
e Universiti
Tek
nologi Malay
s
ia, Malay
s
ia, in 20
02 and 2006
,
res
p
ect
ivel
ys
an
d the P
h
.D. degr
ee in e
l
ec
tric
al
engineer
ing (Nonlinear Control Theor
y
)
from the
University
of A
u
ckland
, New Zealand, in
2013.
His career as academician begin
s
in 2004 as a
Tutor at Dep
a
rt
m
e
nt of Industrial El
ectronic,
Universiti
Teknik
a
l Malay
s
i
a
Mel
a
ka and now h
e
is
a Sen
i
or
Lecturer at
the s
a
me univ
e
rsity
.
His current resear
ch in
terests
include nonlinear
control theor
y
,
pol
y
nom
ia
l
disc
rete-
tim
e
s
y
s
t
e
m
s, networked
control s
y
stems,
and
wireless
power transf
er technologies.
Yusmar
nita Y
u
sop
was born in
Melaka, Malay
s
ia in 1979.
She receiv
e
d the B.En
g in Electrical
Engineering (M
echatronic)
fro
m University
o
f
Techno
log
y
,
Malay
s
ia, in 20
01, the M.Eng
degree in
Electrical
Engin
eer
ing
from Tun Hussein Onn Univ
ersity
of Malay
s
ia,
in 2004. From
2005 to 2014, she was a Lectu
r
er in the Faculty
of Electronics and Computer
Engineer
ing
,
Universiti
Tekn
i
k
al Mal
a
y
s
ia Melak
a
. Sin
c
e that tim
e, she h
a
s
been
involved
i
n
teaching
for
m
a
n
y
s
ubje
c
ts
s
u
ch as
P
o
wer El
ectron
i
cs
, Adva
nced P
o
wer E
l
ec
tronics
,
El
ectron
i
c S
y
s
t
em
s
an
d
Manufactur
ing Automation. She is currently
work
ing towards the PhD.
Degree.
Her area of
res
earch
int
e
res
t
s
includ
e e
l
e
c
t
ronic s
y
s
t
em
des
i
gn, wir
e
les
s
power trans
f
er and powe
r
ele
c
troni
cs
.
Evaluation Warning : The document was created with Spire.PDF for Python.