Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
7, N
o
. 1
,
Mar
c
h
20
16
,
pp
. 25
4
~
26
4
I
S
SN
: 208
8-8
6
9
4
2
54
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Laboratory-Scale Sing
le
Axis Solar
T
r
acking System: Design
and Implementation
Al
l
a
n So
on
C
h
an
R
o
on
g, S
h
i
n
-H
orn
g
Ch
on
g
Facult
y of Ele
c
tr
ica
l
Eng
i
ne
ering
,
Univer
si
ti
Tekn
ikal
Mala
ysi
a
M
e
lak
a
,
Mala
ysi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 12, 2015
R
e
vi
sed Dec 2,
2
0
1
5
Accepte
d Ja
n
3, 2016
This paper pr
esents the design
and de
velopment
of a labor
ator
y
-
s
cale single
axis solar track
ing sy
st
em. The chronological met
hod was implemented into
the s
y
s
t
em
bec
a
us
e it has
hig
h
accur
a
c
y
and
can s
a
ve m
o
re energ
y
as
com
p
ared to oth
e
r t
y
pes
of s
o
lar
track
ing s
y
s
t
em
. The labor
ator
y-
s
cale s
i
ng
l
e
axis
s
o
lar
tr
ack
ing s
y
s
t
em
can
be us
ed
to
id
e
n
tif
y
the s
u
i
t
abl
e
and
s
a
f
e
works
p
ace for the ins
t
all
a
tion
of the actu
a
l s
o
lar tra
c
king s
y
s
t
em
plant
.
Besides, the validity
of th
e labor
ator
y
-
s
c
a
l
e s
i
ngl
e axis
s
o
lar trac
king s
y
s
t
em
was
exam
ined
experim
e
nt
all
y
.
The angle of
rotation, 15
per hour
is
preferab
le to be
im
plem
ented in
to th
e
designed laborator
y
-
scale single
axis
sun tracking s
y
stem due to the high pe
rformance ratio which is 0.83 and can
save th
e
energ
y
up to 25%
durin
g sunn
y
day
s
.
Keyword:
Lab
o
rato
ry
-Sc
a
le
Si
ngl
e A
x
i
s
Solar Trac
king System
Ch
ro
no
log
i
cal Meth
od
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Ch
ong
Sh
in-
H
o
r
ng
,
Facu
lty of Electri
cal Engineering,
Un
i
v
ersiti Tekn
ik
al Malaysia Melak
a
,
H
a
ng
Tu
ah
Jay
a
, 761
00
Du
r
i
an
Tun
g
g
a
l, Melak
a
, Malaysia
Em
a
il: h
o
r
n
g
@u
tem
.
ed
u
.
m
y
1.
INTRODUCTION
Th
e wo
rl
d
po
pu
latio
n
isin
creasin
g
throug
hou
t th
e y
ear and the electricity de
m
a
nd is also growing
rapi
dl
y
[1]
-
[
2]
.
M
o
st
o
f
t
h
e c
o
u
n
t
r
i
e
s l
i
k
e
B
a
ngl
a
d
esh a
n
d Pa
ki
st
an
wh
i
c
h m
o
st
l
y
use fossi
l
f
u
el
s s
u
ch a
s
crud
e
o
il an
d
co
al to g
e
n
e
rate th
e electricity[3
].
Using
fossil fu
els to g
e
n
e
rate electrici
ty will e
m
it a lo
t of
gree
nhouse
ga
ses s
u
ch as ca
rbon
dioxi
d
e,
CO
2
.
Th
e
green
h
o
u
s
e g
a
ses will
cau
se
g
l
ob
al warm
in
g
,
wh
ich
m
a
y
lead to the climate change in the
world. The te
m
p
erature
on our eart
h
is
in
creasing
throug
hou
t th
e y
ear. The
scien
tists esti
mate
th
at th
e wo
rl
d
te
m
p
eratu
r
e will raise u
p
six
d
e
g
r
ee celciu
s
if t
h
e g
r
eenho
u
s
e g
a
ses
em
i
ssi
ons are l
e
t
unc
ont
r
o
l
l
a
b
l
e [4]
.
The
r
ef
o
r
e, d
u
e t
o
t
h
e c
once
r
n o
n
t
h
e
envi
ro
nm
ent
and
depl
et
i
o
n o
f
fossi
l
fu
els
reserv
es,
man
y
co
un
tries h
a
v
e
started
th
e resear
ch
an
d d
e
v
e
lop
m
e
n
t of ren
e
wab
l
e en
erg
y
to fu
l
f
ill th
e
en
erg
y
d
e
m
a
n
d
in
th
eir
co
un
tries [
5
]-[6
].
Th
er
e ar
e sev
e
r
a
l typ
e
s of
r
e
new
a
b
l
e en
erg
y
su
ch
as so
lar
,
w
i
nd
,
h
ydr
opow
er
and
g
e
o
t
h
e
r
m
al so
u
r
ce
[7]
-
[
8]
.
Ho
we
ver
,
sol
a
r e
n
er
gy
has m
o
re b
e
nefi
t
s
as com
p
are
d
t
o
ot
her
rene
wabl
e en
ergy
.
Ad
va
nt
ages
o
f
sol
a
r e
n
er
gy
a
r
e al
way
s
avai
l
a
bl
e, i
n
e
x
haust
i
bl
e an
d e
n
vi
ro
nm
ent
fri
en
dl
y
.
The
sol
a
r e
n
e
r
gy
ca
n
be c
o
n
v
ert
e
d
in
to
electricity
b
y
u
s
ing
th
e p
h
o
t
ov
o
ltaic (PV) p
a
n
e
ls [9
]. Malaysia
g
o
v
e
rn
m
e
n
t
is su
ppo
rtiv
e in th
e
devel
opm
ent
o
f
rene
wa
bl
e en
ergy
suc
h
as s
o
l
a
r ene
r
gy
by
devel
opi
ng t
h
e Sust
ai
na
bl
e Ener
gy
De
vel
o
pm
ent
A
u
t
h
or
ity (
S
ED
A
Malaysia)
.
SEDA
is a statu
t
o
r
y bod
y und
er
th
e Mi
n
i
stry o
f
En
erg
y
, Gr
een
Techn
o
l
og
y and
Water.
M
a
lay
s
ia Feed i
n
Ta
riff
(FiT
) sc
hem
e
is m
a
n
a
g
e
d
by SEDA
Malaysia. Th
e
ho
use ow
n
e
r
s
wh
o
in
stall
th
e h
o
m
e so
lar syste
m
can
sell th
e g
e
n
e
rated
electricity to
Ten
a
g
a
Nasinal Berh
ad
(TNB) b
y
u
s
ing
the o
n
-
gri
d
sy
st
em
wh
i
c
h co
n
n
ect
ed
wi
t
h
t
h
e
nat
i
on
al
gri
d
net
w
or
k
[
10]
.
Malaysia h
a
s
a p
o
t
en
tial to
wid
e
ly ap
p
l
y so
lar PV syste
m
d
u
e
to
its
co
o
r
d
i
n
a
te on
th
e earth.
Malaysia is at
th
e equ
a
tor
of th
e earth
which
lies b
e
tween
1
N
and
7
N
, and
100
E
and 1
1
9
E
. M
a
laysia
receives
m
o
re
than 10
hours
sunli
ght e
v
e
r
y day a
n
d
6
hours
di
rect s
unl
ight. The
s
o
lar irra
diation le
vel in
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 2
5
4
–
26
4
25
5
Malaysia
is ar
o
und
80
0
W/m
2
t
o
10
00
W/m
2
.
Due t
o
t
h
e l
o
n
g
pe
ri
o
d
of
rec
e
i
v
i
ng s
u
nl
i
ght
, M
a
l
a
y
s
i
a
has
a great
p
o
t
en
tial to
d
e
v
e
lop
th
e so
lar
en
erg
y
[10
]
-[11
].
In
Malaysia, the su
n
ligh
t
is always d
i
rectly lo
cated
o
n
t
h
e lan
d
and
its so
lar rad
i
an
ce
d
o
es n
o
t
v
a
ry
by
seaso
n
s
.
M
a
l
a
y
s
i
a
i
s
at
equat
o
r a
n
d
do
not
e
x
peri
e
n
c
e
fo
ur
seas
ons
;
t
h
eref
ore
,
i
t
i
s
sui
t
a
bl
e t
o
u
s
e t
h
e
sin
g
l
e ax
is tack
ing
system
in
stead
o
f
du
al ax
is track
i
ng
sy
ste
m
. In
Malay
s
ia, th
e altitu
d
e
o
f
th
e
sun
’
s
po
sitio
n
d
o
e
s
n
o
t
ch
an
ge m
u
ch
[1
1
]
.
Accord
ing
to [1
2
]-[1
3
]
, i
f
th
e altitu
d
e
is sligh
tly
m
i
salig
n
e
d
,
it
on
ly cau
ses less
powe
r los
s
.
Ac
cording t
o
[14], the
greatest s
u
n elev
ation
d
i
fferen
c
e in
UTeM, Melak
a
is on
ly 13
,2
7
wh
ich
leads to less than 3.4% of
power l
o
ss. T
a
ble
1 s
h
ows th
e d
i
rect po
wer lo
ss d
u
e
t
o
so
lar
pan
e
l m
i
sa
lig
n
m
en
t is
shown whe
r
e
)
cos(
1
I
loss
[
12]
.
Tabl
e
1.
Di
rect
p
o
we
r l
o
ss
(%
)
due
t
o
m
i
sal
i
gnm
ent
(a
ngl
e
)
[1
2]
Misalign
m
ent (
I
)
Direct powe
r
loss (
%
)
0 0
1 0.
015
3 0.
14
8 1.
0
15
3.
4
23.
4
8.
3
30
13.
4
45
30
60
>50
75
>75
In
th
is
p
r
oj
ect, sin
g
l
e ax
is solar track
ing
sy
ste
m
is ch
o
s
en rath
er t
h
an
t
h
e d
u
a
l ax
is so
l
a
r track
i
n
g
syste
m
. Single axis solar tracking syst
e
m
has m
o
re bene
ficial as co
m
p
ar
ed
to
th
e dual ax
is so
lar track
ing
syste
m
such as
sim
p
ler
m
echanism
,
low insta
llatio
n
co
st and less m
a
in
ten
a
n
ce is
requ
ired
.
There
are t
h
re
e types of s
o
la
r trac
king syst
e
m
wh
ich are
active solar tra
c
king system
, passive
sola
r
t
r
acki
n
g sy
st
em
and ch
ro
n
o
l
ogi
cal
t
r
ac
ker [
15]
-
[
16]
. H
o
w
e
v
e
r, chrono
log
i
cal so
lar tr
ac
king system is
chose
n
in this re
searc
h
due t
o
m
o
re energy efficient as c
o
m
p
ared to active
sol
a
r trac
ki
ng sys
t
e
m
. The active type
sol
a
r t
r
ac
ki
n
g
sy
st
em
consi
s
t
s
of co
nt
r
o
l
l
e
r
,
l
i
ght
sens
or
and act
uat
o
r t
o
searc
h
an
d di
rect
t
h
e sol
a
r pa
nel
to
w
a
rd
s t
h
e sun
po
sition
.
O
n
th
e o
t
her
h
a
nd
, th
e chrono
l
ogical track
er track
s
th
e sun
b
y
th
e so
lar ti
m
e
(hour
angl
e
)
whi
c
h
d
o
es
n
o
t
re
qui
re
excessi
ve sea
r
ch m
ode.
B
a
sed o
n
R
u
bi
o i
n
[
1
7]
, t
h
e ener
gy
savi
ng i
s
t
h
e
m
o
st
im
port
a
nt
fact
o
r
w
h
i
c
h m
u
st
be consi
d
e
r
ed i
n
desi
g
n
i
n
g t
h
e
sol
a
r t
r
ac
ki
n
g
sy
st
em
. The t
i
m
e
and dat
e
base
d sol
a
r sy
st
em
was desi
gne
d t
o
pre
v
e
n
t
t
h
e
ex
cessiv
e
search
m
o
d
e
o
f
t
h
e su
n po
sition
d
u
ring
th
e
p
r
o
l
ong
ed clou
d
y
weath
e
r co
nd
itio
n wh
ich
m
a
y
con
s
um
e hi
gh po
we
r i
n
dri
v
i
ng t
h
e act
uat
o
r
.
In [
1
8]
, Hua
n
g ha
d desi
g
n
e
d
a one axi
s
an
d
t
h
ree po
si
t
i
on
sol
a
r
t
r
acki
n
g sy
st
e
m
i
n
o
r
de
r t
o
m
i
nim
i
ze t
h
e
ener
gy
c
ons
u
m
pti
on
of
t
h
e
act
uat
o
r
.
B
y
m
i
nim
i
zi
ng t
h
e ene
r
gy
con
s
um
pt
i
on,
m
o
re
ener
gy
c
a
n be save
d f
o
r ot
he
r
a
ppl
i
c
a
t
i
ons usa
g
e.
B
e
si
des,
t
h
e
m
a
i
n
dra
w
bac
k
o
f
dual
axi
s
su
n t
r
ac
ki
ng sy
st
em
m
e
t by
B
a
kos i
n
[
19]
was t
h
e se
nso
r
m
ode fai
l
t
o
t
r
ack an
d f
o
l
l
o
w t
h
e su
n
or
bi
t
accurately duri
ng the l
o
w sol
a
r irra
dia
n
ce le
vel condition.
This c
o
ndition
may cause a si
gni
ficant
decre
a
se in
the overall syste
m
efficiency.
There
are
seve
ral resea
r
ch
es
wh
ich
h
a
d im
p
l
e
m
en
ted
th
e time-b
a
sed system
in
t
h
e de
si
g
n
ed
o
f
t
h
e s
o
l
a
r t
r
ac
k
i
ng sy
st
em
due
t
o
t
h
at
l
o
we
r c
o
st
an
d l
o
we
r
p
o
we
r c
o
n
s
um
pt
i
on
w
h
i
c
h ca
n
save
m
o
re energy [20]-[21]. Furt
herm
ore, acco
rding to S. Ahm
a
d in [22], Mala
ysia
is
m
o
re suitable to install tim
e
and date
base
d solar t
r
acki
ng
syste
m
becaus
e
Malaysia
has the pe
rpetual
cloud form
ation. T
h
e tim
e and date
base
d sol
a
r t
r
a
c
ki
n
g
sy
st
em
is pre
f
er
red i
n
t
h
i
s
pr
o
j
ect
to maxim
i
ze
the total energy
yield and at the meantim
e
can m
i
nim
i
ze the
po
we
r c
ons
um
pt
i
on by
t
h
e
act
uat
o
r.
The
flexi
b
le a
n
d laborat
o
ry
s
cale PV system
and so
la
r tra
c
king system
can
be
use
d
as
t
eaching a
n
d
learn
i
ng
facilities. Fu
rt
h
e
rm
o
r
e, th
e lab
o
ratory scaled
so
lar syste
m
can
al
so
b
e
u
s
ed
as a b
a
sic set o
f
to
o
l
s or
start u
p
for th
e lo
cal researcher [2
3
]
. Th
is facility
can
p
r
ov
id
e an
op
portu
n
ity for th
e
research
ers to
perfo
r
m
th
e research
based
o
n
th
e
so
lar en
erg
y
.
Th
ey can p
e
rform
th
e in
stalla
tio
n
an
d m
a
in
ten
a
n
ce
on
the so
lar
syste
m
in
d
e
p
e
n
d
e
n
tly w
ithout r
e
qu
ir
i
n
g an
y
ov
er
sea ex
p
e
r
t
ise. Th
e
r
e
search
er
s can
also
en
h
a
n
c
e and
i
m
p
r
o
v
e
th
e ex
istin
g solar system
b
y
u
s
ing
t
h
e
k
nowledg
e
g
a
in
ed su
ch
as in
cl
u
d
in
g
t
h
e t
r
ack
er and
m
a
x
i
m
u
m po
wer
poi
nt tracki
n
g
(MPPT
) controller into t
h
e s
y
ste
m
. The ener
gy
harvest efficiency of
the
solar system
can be
i
n
crease
d
by
a
ddi
ng t
h
e t
r
ac
k
e
r an
d M
PPT
cont
rol
l
e
r.
Fu
rt
herm
ore, t
h
e l
a
bo
rat
o
ry
s
cale solar system
is
very
i
m
p
o
r
tan
t
to the d
e
v
e
lop
i
ng
co
un
tries su
ch
as Africa.
In
Africa, th
ere is less th
an
25
%
o
f
th
e pop
u
l
ation w
ho
has acces
s to e
l
ectricity [24].
By introduci
n
g the sm
all-s
caled sta
n
d-alone
PV system
to the
African, the
y
ca
n
gene
rat
e
t
h
ei
r ow
n el
ect
ri
ci
t
y
by
usi
n
g
t
h
e
sol
a
r
so
u
r
ce which
is always available and free [24]. Besides,
according to t
h
e survey done
by
Ya
ungket in [25], t
h
e resi
dents in t
h
e rural area lack of
knowledge re
gardi
ng
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
La
bor
at
ory-
Sc
al
e Si
ngl
e
Axi
s
S
o
l
a
r
Tr
acki
n
g
Syst
em
:
Desi
gn
a
n
d
Im
pl
em
ent
a
t
i
o
n
(
C
ho
n
g
Shi
n-
H
o
rn
g)
25
6
t
h
e P
V
sy
st
em
. The
l
a
b
o
rat
o
r
y
-scal
e sol
a
r
s
y
st
em
can be i
n
t
r
od
uce
d
t
o
t
h
em
t
o
have
a
bet
t
e
r
un
de
rst
a
ndi
ng
rega
rdi
ng t
h
e
PV sy
st
em
. Theref
ore
,
t
h
e res
i
dent
s can pe
rf
orm
t
h
e
m
a
i
n
t
e
nance i
n
di
vi
du
al
l
y
when t
h
e sy
st
em
malfunctioning.Besides, the l
a
boratory-scal
e solar tracki
n
g syste
m
can also be us
ed
as
teaching a
n
d learni
ng
facilities fo
r und
erstan
d
i
n
g
th
e b
e
h
a
v
i
o
r
and
o
p
e
ration
o
f
t
h
e so
lar track
i
ng
system
.
In t
h
i
s
pr
o
j
ect
,
a l
a
borat
ory
-
s
cal
e si
ngl
e axi
s
sol
a
r t
r
ac
ki
n
g
sy
st
em
i
s
desi
gne
d a
nd
de
vel
o
ped
.
B
y
co
nstru
c
ting th
e lab
o
ratory-scale sing
le ax
is so
la
r t
r
ac
king system
, the worki
n
g
mechanism
and the
electrom
echanical syste
m
of the so
lar track
ing
syste
m
are stu
d
i
ed
. Besid
e
s, th
e lab
o
ratory-scale so
lar
track
ing
system
is u
s
er friend
ly.
M
o
re
ove
r,
t
h
e
l
a
bo
rat
o
ry
-scal
e sol
a
r
t
r
ac
ki
n
g
sy
st
em
i
s
conve
ni
ent
t
o
be
m
oved f
o
r
per
f
o
rm
i
ng t
h
e
ex
p
e
rim
e
n
t
s to
id
en
tify a su
itab
l
e worksp
ace fo
r in
stalla
tio
n
o
f
th
e actual so
lar track
i
n
g
system
p
l
a
n
t. Th
is
research
is imp
o
rtan
t
for
Facu
lty o
f
Electrical Eng
i
n
eeri
ng o
f
Un
iv
ersiti Tekn
ik
al
Malaysia Melak
a
(UTeM)
to
id
en
tify a safety work
sp
ace for th
e
so
lar track
i
ng
syste
m
p
l
an
t. Th
e
actu
a
l so
lar t
r
ack
i
ng
system
p
l
an
t is
still cannot
be
ope
rated due t
o
the
lim
ited works
p
ace.
Th
e rest
o
f
this p
a
p
e
r is outlin
ed
as fo
llows: Sectio
n
2 p
r
esen
ts th
e
ex
p
e
rim
e
n
t
al s
e
tu
p
o
f
th
e
d
e
sign
ed
labo
rato
ry-scale si
ng
le ax
is so
lar t
r
ack
i
n
g
syst
em. Besides, t
h
e trans
f
er
f
unct
i
o
n o
f
t
h
e
DC
g
eare
d
m
o
t
o
r
m
echani
s
m
and t
h
e bl
o
c
k di
a
g
ram
of
t
h
e desi
gne
d l
a
bo
rat
o
ry
-scal
e si
ngl
e a
x
i
s
s
o
l
a
r t
r
ac
ki
n
g
s
y
st
em
are p
r
ese
n
t
e
d.
The m
e
t
hod t
o
col
l
ect
and a
n
al
y
s
i
s
t
h
e dat
a
out
put
fr
om
t
h
e sol
a
r
panel
a
r
e al
so
be p
r
es
ent
e
d
.
In sect
i
on
3, t
h
e resul
t
s
obt
ai
ned
fr
om
t
h
e expe
ri
m
e
nt
are anal
y
zed a
nd e
v
al
uat
e
d
.
Fi
nal
l
y
, t
h
e co
ncl
u
s
i
on i
s
prese
n
t
e
d
i
n
se
ct
i
on 4.
2.
DESIGN OF THE
LABORATO
RY-
SC
ALE SIN
G
LE
AX
IS SOLAR TR
AC
KING
SY
STEM
Fi
gu
re
1 s
h
o
w
s t
h
e
act
ual
sol
a
r t
r
acki
n
g sy
st
em
pl
ant
i
n
FK
E,
UT
eM
wi
t
h
t
h
e
di
m
e
nsi
on
of
1
180
0(
l
)x
600
0(
w
) mm
and t
h
e total s
u
rfac
e area is a
r
ound 70
m
2
.
In this p
r
oj
ect, th
e
lab
o
rato
ry
-scal
e so
lar
track
ing
system
is scaled
do
wn
t
o
ratio 46
2
:
1
in
com
p
arison to t
h
e
actual plant. T
h
e
dim
e
nsion
of t
h
e
lab
o
rato
ry
-scal
e so
lar
p
a
n
e
l i
s
340
(
l
)
x
45
0(
w
) mm
as sh
own in Figu
re
2
.
Th
e so
lar track
ing
m
ech
an
ism
is
d
r
i
v
en
b
y
D
C
g
ear
ed
m
o
to
r. Th
e
f
r
e
e body d
i
ag
r
a
m
o
f
t
h
e
D
C
m
o
to
r
g
ear
ed
m
ech
an
ism
is il
lu
str
a
ted
in
Fi
gu
re
3.
Tabl
e
2 s
h
ow
s t
h
e
p
a
ram
e
t
e
r of t
h
e
DC
geare
d
m
o
t
o
r m
echani
s
m
use
d
i
n
t
h
e
de
si
gne
d sy
st
em
.
Fi
gu
re
1.
S
o
l
a
r
t
r
acki
n
g
sy
stem
plant in FKE,
UTeM
Figure
2. Laboratory
-
scale s
o
lar trac
king syst
e
m
Th
e relatio
n
s
h
i
p
b
e
tween
th
e arm
a
tu
re
cu
rren
t,
)
(
t
i
a
, th
e ap
p
lied arm
a
tu
re vo
ltag
e
,
)
(
t
e
a
a
n
d
th
e b
ack
e
m
f
)
(
t
v
b
is :
)
(
)
(
)
(
)
(
s
E
s
v
s
sI
L
s
I
R
a
b
a
a
a
a
(1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 2
5
4
–
26
4
25
7
Fi
gu
re 3.
DC
g
ear
ed m
o
tor mechanism
Fi
gu
re
4.
To
r
q
ue-s
pee
d
c
u
r
v
e
s
wi
t
h
an
arm
a
ture
vol
t
a
ge
,
a
e
as a
param
e
ter
The m
echanis
m
is descri
bed
in the t
r
ans
f
er function:
a
b
t
m
m
m
a
t
a
m
R
K
K
D
J
s
s
J
R
K
s
E
s
1
)
(
)
(
)
(
(2
)
Tabl
e 2. Param
e
t
e
r
o
f
t
h
e
DC
geare
d
m
o
tor mechanism
Para
m
e
ters
Valu
es
S.I.
Un
it
E
quivalent iner
tia ,
m
J
2731.
7
5
2
kgm
E
quivalent dam
p
in
g ,
m
D
641
3
10
rad
Nms
Ter
m
inal r
e
sistance ,
a
R
2
Back-
e
m
f
constant ,
b
K
42.
88
1
rads
mV
T
o
r
que constant ,
t
K
42.
90
A
mNm
After th
e
v
a
lues are
sub
s
titu
ed
in
t
o
th
e Eq
u
a
tio
n
2
,
t
h
e
o
v
erall DC g
e
ared
m
o
to
r tran
sfer
fun
c
tion
is:
)
68
.
234
(
10
85
.
7
)
(
)
(
6
s
s
s
E
s
a
m
(3
)
B
a
sed on Fi
g
u
r
e
4
,
whe
n
t
h
e arm
a
t
u
re
vol
t
a
ge,
e
a
is
red
u
c
ed
to
10
V, th
e
m
o
to
r to
rq
u
e
an
d sp
eed
are
redu
ced
.
Howev
e
r, th
e
g
eared
m
o
to
r still h
a
s su
fficien
t
to
rq
u
e
t
o
ro
t
a
te an
d
ho
ld
t
h
e lo
ad
in
t
h
e static
p
o
s
ition
.
Th
e fu
n
c
tion
a
l d
i
ag
ra
m
o
f
th
e ov
erall syste
m
is s
h
own
in
th
e Fi
g
u
re 5. Th
e LDR sen
s
o
r
is
used
t
o
d
e
tect th
e
d
a
y
ti
m
e
an
d
n
i
gh
t tim
e at th
e
surrou
nd
ing
s
. Furth
e
rm
o
r
e, th
e m
i
cro
c
ontro
ller is
u
s
ed as an
in
teg
r
ated
con
t
ro
l un
it fo
r th
e so
lar track
i
ng
syste
m
. Th
e DC g
eared
m
o
to
r is u
s
ed
as an
actu
a
to
r i
n
th
e
so
lar
track
ing
system
wh
ich
driv
en
b
y
th
e m
o
to
r
d
r
i
v
er and
feedb
ack b
y
an
en
co
d
e
r to id
en
tify th
e ang
l
e
o
f
ro
tatio
n
o
f
th
e so
lar track
i
ng
system
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
La
bor
at
ory-
Sc
al
e Si
ngl
e
Axi
s
S
o
l
a
r
Tr
acki
n
g
Syst
em
:
Desi
gn
a
n
d
Im
pl
em
ent
a
t
i
o
n
(
C
ho
n
g
Shi
n-
H
o
rn
g)
25
8
Fi
gu
re
5.
F
unct
i
onal
di
ag
ram
of
desi
gne
d l
a
b
o
rat
o
ry
-scal
e
s
o
l
a
r t
r
ac
ki
ng
s
y
st
em
3.
DAT
A COLL
ECTION
Th
e po
wer m
o
n
ito
ri
n
g
system is
set u
p
wh
ich
fun
c
tio
n
s
to
m
o
n
ito
r the so
lar p
a
n
e
l vo
ltag
e
ou
tpu
t
and
cu
rre
nt
o
u
t
put
.
Al
l
t
h
e
o
u
t
p
ut
pa
ram
e
t
e
rs are m
easure
d
by
usi
n
g t
h
e
DC
p
o
w
er m
e
t
e
r an
d st
o
r
e
d
i
n
t
h
e
d
a
ta logg
er in
ev
ery m
i
n
u
t
e.
Firstly, th
e
d
e
fau
lt an
g
l
e
o
f
ro
tatio
n fo
r th
e
so
lar track
er is set to 15
per
ho
u
r
.
Seco
ndl
y
,
t
h
e
angl
es
o
f
r
o
t
a
t
i
on a
r
e set
t
o
10
pe
r
ho
u
r
a
nd
2
0
p
e
r
ho
ur
, w
h
ich
is
5
diffe
re
nces f
r
o
m
the
defa
ul
t
an
gl
e.
These
ex
pe
ri
m
e
nt
s are c
o
n
duct
e
d t
o
det
e
rm
i
n
e t
h
e p
o
w
er
o
u
t
p
ut
a
n
d
per
f
o
r
m
a
nce rat
i
o
di
ffe
re
nces bet
w
een t
h
em
. The ex
peri
m
e
nt
i
s
cont
i
nue
d
by
chan
gi
ng t
h
e an
gl
e of
ro
t
a
t
i
on t
o
7.
5
per 30
m
i
nut
es. Thi
s
expe
ri
m
e
nt
i
s
con
d
u
ct
ed t
o
de
t
e
rm
i
n
e si
gni
fi
cant
cha
nge
s i
n
t
h
e
po
wer
o
u
t
put
an
d
per
f
o
r
m
a
nce
rat
i
o
of t
h
e s
o
l
a
r
panel
by
c
h
angi
ng
t
h
e
an
g
l
e of
r
o
t
a
t
i
o
n
m
o
re fre
que
nt
l
y
as com
p
ared
t
o
15
p
e
r
ho
ur
.
Each
o
f
t
h
e exp
e
rim
e
n
t
s will b
e
con
d
u
c
ted
fo
r
5
d
a
ys fro
m
8
:
00
a.m
to
3
:
0
0
p
.
m
.
Th
e an
g
l
e
o
f
ro
tation
of t
h
e so
lar
tracker is s
h
own in Figure
6.
Fig
u
re
6
.
Th
e
p
o
s
ition
o
f
th
e
so
lar
p
a
n
e
l from
9
:
0
0
a
.m
to
15
:00
p
.m
The perform
ance
ratio [26]
is calculated by
using:
Wh
E
Wh
E
PR
Ratio
e
Performanc
Theoretic
al
Re
,
(4
)
spectrum
reflection
STC
STC
solar
Theoretic
Loss
Loss
I
P
I
E
(5
)
whe
r
e,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 2
5
4
–
26
4
25
9
al
E
Re
= To
tal en
erg
y
ou
tpu
t
fro
m
th
e so
lar p
a
n
e
l,
Wh
Theoretic
E
= To
tal en
erg
y
h
a
rv
ested
from
th
e sun
,
Wh
solar
I
= Acc
u
m
u
late
d s
o
lar
ra
diation
on each day,
2
m
Wh
STC
P
= R
a
t
e
d
po
wer
o
f
s
o
l
a
r
pa
nel
,
W
STC
I
= Stand
a
rd
irrad
i
an
ce con
d
ition
,
2
m
Wh
reflection
Loss
=
Ir
radia
n
ce inci
dence
re
flection
loss
(
reflection
Loss
= 0.9
when t
h
e s
o
lar trac
king
syste
m
is
cove
re
d)
spectrum
Loss
= Irra
diance s
p
ectrum
loss (
spectrum
Loss
=0.
9
whe
n
t
h
e s
o
l
a
r t
r
ac
ki
ng
s
y
st
em
i
s
cover
e
d)
No
m
i
n
a
l Op
eratin
g
C
o
nd
ition
(NOCT)
(
STC
P
=
W
20
and
2
1000
m
Wh
I
STC
)
4.
R
E
SU
LTS AN
D ANA
LY
SIS
The l
a
b
o
rat
o
r
y
-scal
e si
ngl
e
axi
s
sol
a
r t
r
a
c
ki
n
g
sy
st
em
was desi
gne
d
and
devel
ope
d
.
The sol
a
r
tracking syste
m
is conve
n
ient as it can
be
m
oved to
a
n
y
workplace t
o
perform
the experim
e
nts. The
requi
red
workspace
of t
h
e actual sola
r tracking
system plant can be
identified
bas
e
d on the scal
e betwee
n the
actual
so
lar track
i
ng
syste
m
p
l
an
t an
d
th
e
d
e
sign
ed
so
lar track
i
ng
syste
m
. Th
is exp
e
rim
e
n
t
is i
m
p
o
rtan
t to
en
sure th
e
actual sola
r tracking system pla
n
t is
installed at a
suitable and sa
fe
workspace which will
not affect its
p
e
rf
or
m
a
n
ce an
d op
er
atio
n.
The
pe
rform
a
nce of the laboratory-
scale
sol
a
r trac
king
syste
m
is va
lidated
by c
o
nducting a
series
of
expe
rim
e
nt at the selected
workplace at FKE, UTeM. T
h
e
results obtain
ed are disc
usse
d in two
parts. First,
t
h
e po
we
r out
put
an
d pe
rf
o
r
m
a
nce rat
i
o
of
5
a
n
gle differences
from
1
5
per
ho
ur a
r
e
com
p
ared. Ne
xt
, t
h
e
po
we
r o
u
t
p
ut
and
pe
rf
orm
a
n
ce rat
i
o
of
an
g
l
e of
r
o
t
a
t
i
on
7.
5
per 30 m
i
nutes is
com
p
ared
with t
h
e a
ngle
of
ro
tation
1
5
pe
r ho
ur
.
4.1. Per
f
ormances of the So
lar Trac
king
S
y
ste
m
betwee
n
5
Angle
Di
fference
s fr
om Defaul
t Angle, 15
per Hour
Fr
o
m
Fig
u
r
e
7
to
Figu
r
e
12
, t
h
e pow
er
ou
tpu
t
of
th
e so
lar
p
a
n
e
l sho
w
slinear relation
s
h
i
p
of th
e so
lar
irrad
i
ation
level with
ti
m
e
. T
h
e po
wer ou
t
p
u
t
o
f
the so
lar
p
a
n
e
l
v
a
ried
with
th
e v
a
riation
of so
lar irradian
ce
lev
e
l th
roug
hou
t th
e exp
e
rimen
t
fro
m
8
:
0
0
a.m u
n
til 3
p
.
m
.
Fig
u
re 10
sho
w
s t
h
e po
wer o
u
t
pu
t of angle o
f
ro
tation
1
0
fr
om
12:
00
p.m
to 3:
0
0
p
.m
were i
ndepe
n
d
ent
wi
t
h
t
h
e vari
at
i
on
of t
h
e sol
a
r
i
rradi
a
n
ce l
e
ve
l
s
. The
po
we
r out
p
u
t
s
di
d n
o
t
va
ry
l
i
nearl
y
wi
t
h
t
h
e
sol
a
r i
rra
di
anc
e
l
e
vel
duri
ng
no
o
n
t
i
m
e
because t
h
e sol
a
r pane
l
was
n
o
t
facing
p
e
rp
en
d
i
cu
lar to
t
h
e sun
.
At 12p
.m
, th
e so
lar track
e
r
was
ro
tated to 70
fro
m
th
e in
itial
p
o
s
ition
(30
) wh
ich
was n
o
t
in
th
e h
o
rizon
t
al
p
o
s
ition
(90
)
faci
n
g
pe
r
p
e
ndi
c
u
l
a
r t
o
the
sun. T
h
ere
f
ore, there
were so
m
e
p
o
wer lo
sses o
c
cu
rred in
t
h
e afternoo
n.
Fi
gu
re 12 sh
o
w
s
t
h
e p
o
we
r out
put
of
t
h
e angl
e of r
o
t
a
t
i
on 2
0
i
n
t
h
e
m
o
rni
ng
fr
om
9:
0
0
a.m
t
o
11:
30a
.m
. The pow
er o
u
t
p
ut
of t
h
e sol
a
r
panel
was
not
vary
i
ng l
i
n
ea
rl
y
wi
t
h
t
h
e chan
ges o
f
t
h
e
sol
a
r
irrad
i
an
ce lev
e
l. At 11
:00
a.m
,
th
e so
lar track
er
was
ro
tated
to
90
wh
i
c
h
w
a
s aro
und 1
5
m
o
re th
an
th
e
calcu
latio
n
from so
lar ti
me (7
5
). At th
at cu
rren
t ti
m
e
, th
e so
lar track
er was no
t facing p
e
rpend
i
cu
lar
to
th
e
su
n. Th
erefo
r
e, th
ere
were some p
o
wer l
o
sses o
c
cu
rred due to
th
e
po
sition
m
i
s
m
atch
ed
b
e
tween
so
lar t
r
ack
er
and
the sun.
The pe
rform
a
nce ratios
of each angle of
rota
tion were calculated. Table 3 s
h
ows that t
h
e
p
e
rf
or
m
a
n
ce r
a
tio
of
15
pe
r
ho
u
r
i
s
0.
8
3
a
n
d i
t
i
s
9.
6
4
%
h
i
ghe
r t
h
a
n
ot
he
r a
ngl
es
o
f
rot
a
t
i
on.
Al
t
h
o
u
g
h
t
h
ere
are slight diffe
r
ences in the a
v
erag
e of to
tal so
lar irrd
ian
c
e le
vel
,
but
t
h
e angl
e o
f
rot
a
t
i
on 1
5
per ho
ur
h
a
s
sho
w
n t
h
e
hi
g
h
e
st
ener
gy
har
v
est
e
d as c
o
m
p
ared
t
o
ot
he
r a
n
gl
es
of
r
o
t
a
t
i
o
n
.
The ene
r
gy ha
rveste
d of 20
per
ho
ur i
s
2
1
% l
o
wer as c
o
m
p
ared t
o
t
h
e angl
e
of r
o
t
a
t
i
on 1
5
and
10
.
The
r
e
were som
e
irradia
n
ce losses
(Irradiance i
n
ci
de
nce
reflection l
o
sses a
n
d
Irradiance s
p
ectrum loss
)
occurre
d
which ca
used
by the trans
p
are
n
t c
ove
r as s
h
o
w
n in
Figu
r
e
13
. Th
e en
erg
y
lo
sses
d
i
ff
er
en
ce w
a
s
cal
cul
a
t
e
d by
u
s
i
ng E
q
uat
i
on
6 an
d t
h
e
dat
a
com
p
ari
s
on
s ar
e obt
ai
ne
d
fr
o
m
Tabl
e 4 (T
ot
al
sol
a
r i
rra
di
at
i
on
on
9/
4/
2
0
15 a
n
d 22/
4/
2
0
1
5
we
r
e
46
12
Wh
/m
2
and
46
4
7
Wh/
m
2
and the tot
a
l energy outputs were
64.6
Wh
and
50
.2
Wh
)
.
Fr
om 1
7
/
4
/
201
5
t
o
24
/4
/201
5, th
e tr
an
sp
ar
en
t
cage was a
dde
d to preve
n
t da
m
a
ge to the actuator
due
to rain. T
h
e irra
diance
losses
were
con
s
id
ered
in th
e perfo
r
m
a
n
ce rat
i
o calculation t
o
have
a c
o
m
p
arative
analysis with t
h
e a
ngle
of rot
a
tion
15
and 10
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
La
bor
at
ory-
Sc
al
e Si
ngl
e
Axi
s
S
o
l
a
r
Tr
acki
n
g
Syst
em
:
Desi
gn
a
n
d
Im
pl
em
ent
a
t
i
o
n
(
C
ho
n
g
Shi
n-
H
o
rn
g)
26
0
Fi
gu
re
7.
S
o
l
a
r
i
rra
di
ance
l
e
v
e
l
fr
om
31/
3/
2
0
1
5
t
o
6
/
4
/
201
5
Fi
gu
re 8.
P
o
we
r out
put
fr
om
31/
3/
2
0
1
5
t
o
6/
4
/
20
15
o
f
15
p
e
r
hou
r
Fi
gu
re
9.
S
o
l
a
r
i
rra
di
ance
l
e
v
e
l
fr
om
8/
4/
2
0
1
5
t
o
16/
4/
2
0
1
5
Fi
gu
re 1
0
. Po
w
e
r out
put
fr
om
8/
4/
2
0
1
5
t
o
1
6
/
4
/
2
01
5
of
1
0
pe
r ho
u
r
Fi
gu
re
1
1
.
Sol
a
r i
r
radi
a
n
ce l
e
v
e
l
fr
om
17/
4/
2
0
1
5
t
o
24/
4/
2
0
1
5
Fi
gu
re 1
2
. Po
w
e
r out
put
fr
om
17/
4/
2
0
1
5
t
o
2
4
/
4
/
2
0
1
5
of
2
0
pe
r ho
u
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 2
5
4
–
26
4
26
1
Figure
13. T
r
a
n
spare
n
t cage
was a
d
ded to t
h
e s
o
lar t
r
acki
n
g system
Table
3.T
o
tal s
o
lar irra
diance
and total e
n
ergy harv
ested
on each day
from
31/
3/2015 t
o
24/4/2015
Angle of 15
Angle of
10
°
Angle
of
20
°
Date
Total
Solar
Irrad
i
an
ce
)
(
2
m
Wh
Total
En
erg
y
)
(
Wh
Date
Total
Solar
Irrad
i
an
ce
)
(
2
m
Wh
Total
En
erg
y
)
(
Wh
Date
Total
Solar
Irrad
i
an
ce
)
(
2
m
Wh
Total
En
erg
y
)
(
Wh
31/3
4707
74.
3
8/4
5235
75.
8
17/4
4824
60.
1
1/4
4706
77.
4
9/4
4612
64.
6
18/4
5160
60.
3
2/4
4939
80.
2
14/4
4581
72.
1
21/4
4917
62.
8
3/4
4476
70.
7
15/4
4402
63.
2
22/4
4647
50.
2
6/4
5061
84.
2
16/4
5091
76.
2
24/4
4276
46.
1
AVG.
4778
77.4
AVG.
4784
70.4
AVG.
4765
55.9
P.
R 0.
83
P.
R
0.
75
P.
R
0.
74
%
21
%
100
6
.
64
2
.
50
6
.
64
Difference
Energy
(6)
4.
2.
Perf
orm
a
nce E
v
al
u
a
ti
o
n
o
f
Fre
quen
t
Turning the So
la
r
Pa
nel
towards the Sun
The po
wer o
u
tput fr
om
the
solar panel has the
linear
relat
i
onship
with t
h
e sola
r irra
di
ance level as
sho
w
n in Fig
u
r
e 14 a
nd
Fig
u
r
e
15
. The e
n
er
gy
har
v
este
d fr
om
the solar p
a
nel can be i
n
c
r
eased
by
tur
n
i
ng t
h
e
solar pa
nel m
o
re fre
q
u
ently
.
B
a
sed o
n
Tabl
e 4, the pe
rf
o
r
m
a
nce ratio of
7.
5
pe
r 3
0
m
i
nutes is 0
.
8
7
w
h
ich is
4.
6%
hi
ghe
r th
an 1
5
per
h
o
u
r
. T
h
e pe
rf
orm
a
nce ratio
of t
h
e sy
st
em
was increase
d
bec
a
use the solar t
r
acke
r
was t
u
r
n
ed
m
o
re f
r
e
que
ntly
(
e
very
3
0
m
i
nutes) to
align
the
solar pa
nel
for facing
pe
rp
end
i
cu
lar to
th
e su
n.
The total e
n
e
r
gy
har
v
ested
fr
om
25/4/
20
15
to
30/
4/2
0
1
5
we
re inc
r
e
a
sed
by
2
0
%
to h
a
ve
a
com
p
arative analysis with
the angle of rotation 15
.
Fro
m
2
5
/
4
/
20
15 to
30
/4
/201
5, th
e so
lar
tr
ack
er
was
cove
re
d with a
trans
p
are
n
t ca
ge to
pre
v
e
n
t f
r
om
dir
ectly get caught in the rain.
Although t
h
e pe
rform
a
nce
ratio
of angle
of rotation 7.5
pe
r
3
0
m
i
nutes was
hi
g
h
er
than t
h
e a
n
gle
of
r
o
tation
1
5
pe
r
ho
u
r
, t
h
e
po
w
e
r
con
s
um
ption
was
hig
h
d
u
e
to fre
q
u
ent act
uating t
h
e
DC
geare
d
m
o
tor as shown in
Table 5. T
h
e
energy
consum
ption
of the actuat
o
r
was two tim
es
m
o
re as com
p
a
r
ed t
o
15
per
h
o
u
r
. T
h
e
r
ef
ore
,
the an
gle o
f
r
o
tation
7.
5
per 3
0
m
i
nutes
is not pr
efera
b
le
to be im
plem
ented
in the
designe
d
laboratory
-sca
led single axis solar
trackin
g sy
stem
.
The ener
gy
har
v
ested
of a
ngle o
f
r
o
tatio
n 7.
5
per
30
m
i
nutes is insufficient to ope
r
ate the
solar t
r
acki
n
g syste
m
due to the total powe
r c
onsum
ption is
42
%
m
o
re tha
n
the e
n
er
gy
har
v
ested
.
There
f
ore, a
n
gle of rotation
15
per
ho
ur
i
s
p
r
efe
r
a
b
le to
be
us
ed
in
th
e desi
gne
d
sol
a
r trac
kin
g
syste
m
due to
high ene
r
gy saving which ca
n sa
ve up
to 25% during
the sunny
c
o
ndition. Ta
ble 6 shows that
Malaysia is a suitable locati
o
n to de
velop
the solar
PV
syste
m
because
the
weathe
r i
n
Malaysia is
m
o
stl
y
sunny c
o
ndition
with the
average
daily so
lar
irradia
n
ce le
ve
l higher tha
n
600
W/m
2
[2
7]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
S
SN:
208
8-8
6
9
4
La
bor
at
ory-
Sc
ale Si
ngle
Axis
S
o
lar
Tr
ackin
g
System
:
Desi
gn
a
n
d
Im
plem
entatio
n
(
C
ho
n
g
Shi
n-
H
o
rn
g)
26
2
Figu
re
1
4
.
Sola
r ir
radia
n
ce lev
e
l fr
om
25/4/
2
0
1
5
t
o
30/
4/2
0
1
5
Figu
re 1
5
. Po
w
e
r out
put fr
om
24/
4/2
0
1
5
t
o
3
0
/4/2
0
1
5
of
7
.
5
per 3
0
m
i
nutes
Table
4.
Per
f
o
r
m
a
nce com
p
arison
b
e
twee
n a
ngle
o
f
r
o
tatio
n
15
p
e
r hou
r
an
d 7.
5
per
3
0
m
i
nutes
Table
5. T
o
tal
ener
gy
c
ons
um
ption
o
f
t
h
e s
o
lar trac
kin
g
sy
st
em
in an
gle
of
rotatio
n
15
a
n
d
7.
5
Angle of 15
Angle of 7.
5
T
y
pes
T
o
tal E
n
er
g
y
Consu
m
ption
(
Wh
)
T
y
pes
T
o
tal E
n
er
g
y
Consu
m
ption
(
Wh
)
E
l
ectr
i
cal Co
m
ponents
16.
5
E
l
ectr
i
cal Co
m
ponents
16.
5
Ar
duino Boar
d
0.
94
Ar
duino Boar
d
0.
94
DC Gea
r
ed Motor
45.5
DC Gea
r
ed Motor
91.0
T
o
tal 62.
94
T
o
tal
108.
44
Table
6.
A
v
era
g
e s
o
lar i
rra
dia
n
ce level
f
r
om
31/
3/2
0
1
5
t
o
3
0
/4/2
0
1
5
Date
Average of
Solar
Irrad
i
an
ce
Lev
e
l
(
W/m
2
)
Date
Average of
Solar
Irrad
i
an
ce
Lev
e
l
(
W/m
2
)
Date
Average of
Solar
Irrad
i
an
ce
Lev
e
l
(
W/m
2
)
Date
Average of
Solar
Irrad
i
an
ce
Lev
e
l
(
W/m
2
)
31/3
627.
6
8/4
697.
9
17/4
643.
2
25/4
615.
9
1/4
627.
4
9/4
615.
0
18/4
688.
0
27/4
548.
0
2/4
658.
6
14/4
610.
7
21/4
655.
6
28/4
690.
5
3/4
596.
8
15/4
587.
0
22/4
619.
6
29/4
629.
0
6/4
674.
7
16/4
678.
9
24/4
570.
2
30/4
388.
4
Aver
age of over
a
ll solar
irr
a
diance level = 621.
2
5.
CO
NCL
USI
O
N
The laborat
o
ry
-scale single a
x
is solar trac
ki
ng sy
stem
was successf
ully
designe
d an
d c
onst
r
ucte
d.
The workspac
e li
m
itat
i
on of
the solar tra
c
king system
can be id
e
n
tif
ied an
d deter
m
ined by
usi
ng th
e
labo
ratory
-scal
e solar trac
kin
g
sy
stem
. The labo
ratory
-scal
e solar trac
king system
can
be used i
n
the te
aching
and lear
nin
g
p
r
ocess. B
y
per
f
o
rm
ing a series of ex
pe
rim
e
nts on the desi
g
n
ed s
o
lar trac
k
i
ng sy
stem
,
the angle
of rotatio
n 15
per
hour is the
m
o
st pre
f
era
b
le as com
p
are
d
to
othe
r
an
gl
es
of r
o
tation. The
a
ngle of r
o
tation
15
per hour is prefe
r
able
because it
ha
s high perform
a
nce ratio
that is
0.83 a
n
d low
power c
onsum
ption
whic
h can sa
ve energy up to 25%
. Malaysi
a
is suitable
to develop the solar P
V
sy
stem
because the avera
g
e
daily solar i
rra
diance le
vel in
Malaysia is ar
ou
nd
62
1.
2
W/m
2
whic
h is m
o
stly sunny c
o
ndi
tion.
Angle of 15
Angle of 7.
5
Date
Total
Solar
Irradia
n
ce
(
Wh
/
m
2
)
Total Energ
y
(
Wh
)
Date
Total
Solar
Irradia
n
ce
(
Wh
/
m
2
)
Total Energ
y
(
Wh
)
(
C
over
e
d by
Cage)
Total Energ
y
(
Wh
)
(Increase
20%)
31/3
4707
74.
3
25/4
4619
66.
1
79.
3
1/4
4706
77.
4
27/4
4110
64.
6
77.
5
2/4
4939
80.
2
28/4
5179
69.
0
82.
8
3/4
4476
70.
7
29/4
4717
59.
2
71.
0
6/4
5061
84.
2
30/4
2913
36.
9
44.
3
AVG. 4778
77.4
AVG. 4308
59.2
71.0
P.
R 0.
83
P.
R
0.
87
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN:
2
088
-86
94
I
J
PEDS Vo
l.
7,
No
.
1,
Mar
c
h
2
016
: 2
5
4
–
26
4
26
3
ACKNOWLE
DGE
M
ENTS
The a
u
thors woul
d like t
o
be
obliged t
o
M
o
tion
Control Research Laborat
ory, Unive
r
siti Teknikal
Malaysia Mela
ka for
provi
ding the la
boratory
facilitie
s and equipm
ent support. Be
sides, the a
u
thors woul
d
also like t
o
tha
n
k C
.
K
,
Ga
n a
n
d
AA
bR
ahm
a
n
f
o
r
p
r
o
v
idi
n
g assistance with
the num
erical
analysis.
REFERE
NC
ES
[1]
A.
Zubair, A.
A.
Tanvir,
and
M.
Hasan, “Optimal Planning
of
Standalone Solar-Wind-Dies
el
H
y
br
i
d
Energ
y
S
y
s
t
e
m
for a Co
as
tal
Area of B
a
ngl
ades
h”,
In
ternationa
l Journal of Elect
rical and Compu
t
er Engin
eering
,
vol. 2
,
no. 6, pp.
731–738, 2012
.
[2]
E.S
.
P
e
rc
is
, S
.
M
a
nivannan
,
an
d A. Nalini, “
E
l
e
ctri
c Vehic
l
e as
an Energ
y
S
t
ora
g
e for Grid Connect
ed S
o
lar P
o
wer
S
y
s
t
em
”,
International Journal of
Po
wer
Electr
onics and Drive
System
, vo
l. 6, n
o
. 3
,
pp
. 567–57
5, 2015
.
[3]
K. Sindh, S.F.
Khahro, A. M.
Soom
ro, K. Tab
b
assum, and L. Dong, “A
ssessment of wind power potential at
Hawksbay
”,
TELKOMNIKA Indonesian Journal
of Electrical En
gineering
, vol. 1
1
, no
. 7
,
2013
.
[4]
“Global warming close to becoming irreversib
le
-scien
tists | Reuters”
,
[Online]
. Availabl
e
:
http://www.reuters.com/article/
20
12/03/26/us-climate-thresholds-
i
dU
SBRE82P0U
J20120326. [Accessed: 21-Oct-
2014]
.
[5]
N.
A.
Handay
a
ni and D.
Ariy
anti,
“Potency
of
Solar Ene
r
g
y
Ap
plic
ations in Ind
onesia”
,
Interna
tional Journal o
f
Renewab
l
e Ener
gy
Developmen
t
, vol. 1, no. 2, pp. 33–38, 2012.
[6]
S. Bazy
ar
i, R
.
Key
pour
, S. Far
h
angi, A
.
Ghaedi, and
K
.
Bazy
ar
i, “A Stud
y
on the Eff
e
cts of Solar Tr
acking
S
y
s
t
em
s
on the P
e
rform
ance of P
hotovoltai
c
P
o
wer P
l
ants
”,
Jou
r
nal of Power and Energy Engineering
, no
. A
p
ril
,
pp. 718–728
, 20
14.
[7]
V.
K.
N.
Lau
and D.
H.
K.
Tsang,
“Op
tim
al
En
erg
y
Schedu
lin
g for Resid
e
nti
a
l Sm
art Grid
W
ith Centr
a
li
ze
d
Renewable Ener
g
y
Source”,
I
E
EE System Journa
l
, vo
l. 8, no. 2,
p
p
. 562–576
, Jun. 2014.
[8]
V. Devabhak
t
un
i, M. Alam, S. S
h
ekara
S
r
een
adh
Redd
y Depuru
,
R.C. Gre
e
n,
D.
Nim
s
, and C. Ne
ar, “
S
olar
energ
y
:
Trends and
en
ab
ling techno
logies”,
Renewab
l
e a
nd Sustainable Energy Reviews
, v
o
l. 19
, pp
. 555–5
64, Mar
.
2013
.
[9]
R. Dhanab
al, V.
Bharath
i
, R
.
Ran
jitha, A. Ponni,
S. Deepth
i
,
and P.
Mageshkannan,
“Com
parison of Effi
cien
cies o
f
S
o
lar Tr
acker
s
y
s
t
em
s
with s
t
ati
c
panel
S
i
ngle
-
A
x
is
Tr
acking S
y
s
t
em and Dual-Axis
Tracking S
y
s
t
em with Fixed
Mount”,
In
terna
tional
Journal o
f
Engin
eering
an
d Technolog
y
, v
o
l. 5
,
no
. 2
,
pp
. 1
925–1933, 2013
.
[10]
“
F
iT-SEDA-Mala
y
s
i
a
- Hom
e
solar|
P
hotovoltaic|
S
olar voltaic|
S
un solar|
Sola
r sun|
Solar panel|
Po
wer solar|
Panel
s
o
lar|
S
o
lar ce
lls
|
R
enewable
energ
y
|
S
ol
ar
energ
y
|
S
ol
ar|
S
olar pv|
S
o
lar power|
s
olar el
ectr
i
ci
t
y
|
g
r
een
energy
|Renewable Energy
||Go green|pa
ssive income”,
[Online]
.
Available: http://www.
fi
t-seda-malay
sia.
com/.
[Accessed: 21-Oct-2014]
.
[11]
A. Ghazali M.
and A. M. Abdul Rahm
an, “The
Performance of
Three Differ
e
nt
Solar Panels for
Solar
Electr
icity
Appl
y
i
ng
Solar
Track
ing Devi
ce under
the Malay
s
ian
Clim
ate C
ondition”,
Energ
y
and Environm
ent Research
vol.
2, No. 1;2012
, v
o
l. 2
,
no
. 1
,
pp
. 2
35–243, May
20
12.
[12]
M.H. Tania and
M.
S. Alam, “Sun tracking sch
e
me
s for photovo
ltaic p
a
nels”,
20
14 3rd International Confer
ence on
the Developments in Re
newable Energy
Technology
, pp
. 1–5
, M
a
y
2014.
[13]
P. Sharma and N. Malhotri, “Solar Track
ing
Sy
stem using Microcontroller”, in
Proceed
ings of 2014 1st
International Co
nference on
No
n
Conven
tional Energy (
I
CONCE
2014)
, 2014, no
. Iconce, pp. 77–
79.
[14]
“Calculation of
sun’s position in
the sk
y
for each location
on
th
e ear
th a
t
an
y
ti
m
e
of da
y”,
[Online]
. Avai
labl
e:
http://www.sunearthtools
.
com/dp
/tools/pos_s
un.p
hp#help_Date. [
A
ccessed: 21
-Oct-2014]
.
[15]
J
.
F
.
Lee
and N.
A. Rahim
,
“
P
erform
ance com
p
ar
is
on of dual-axis
s
o
lar track
er vs
s
t
atic s
o
l
a
r s
y
s
t
em
in M
a
la
y
s
ia”
,
2013 IEEE Conference Cl
ean En
ergy Techno
logy
, pp
. 102–107
, N
ov. 2013
.
[16]
R.
A.
Fe
rda
u
s,
M.
A.
Moha
mme
d,
S.
Ra
hman, S. Salehin
,
and M.
A. Mannan, “Energ
y
Efficient
H
y
brid Dual Axis
S
o
lar Tr
ackin
g S
y
s
t
em
”
,
Journal of
Renewable En
ergy
, vo
l. 2014,
pp. 1–12
, 2014
.
[17]
F.R. Rubio, M.
G. Ortega, F.
Gordillo
, and
M. López-Mar
t
í
n
ez, “
A
pplic
atio
n of new control strateg
y
for
sun
track
ing”,
En
ergy Conversion an
d Management
,
vol. 48
, no
. 7
,
pp
. 2174–2184
, Jul. 2007
.
[18]
B.J
.
H
u
ang, Y
.
C. H
u
ang, G
.
Y
.
C
h
en,
P.C
.
Hsu, and K. Li, “Impro
ving Solar
P
V
S
y
s
t
em
Eff
i
ci
enc
y
Us
ing One-Axis
3-Position Sun Tracking
”
,
Energ
y
Proc
edia
, vol.
33, pp
. 280–287
, 2013.
[19]
G.C. Bakos, “Design and construction of a tw
o-axis S
un tracking s
y
stem for parabolic troug
h collector (PTC
)
effic
i
enc
y
im
pro
v
em
ent”,
Renew
able Energy
, vol. 31
, no
. 15
, pp
.
2411–2421, Dec. 2006
.
[20]
K.
Sambasiva,
Harish,
V.
N.
V Ramana
, and M
.
V.S. Krishna, “Time operate
d solar tracking for
optimum powe
r
generation”,
In
ternational
Journal of Scient
ific an
d Engin
eering
Research
, vol. 4,
no. 5
,
pp
. 1909–
1912, 2013
.
[21]
R. Fauzan
, A.S. Amir, and H. Mi
y
a
u
c
hi, “Microcontroller ATmega8535
Based Solar Track
er
Design for PV
S
y
stem Applications
in Equator
Region”,
Intern
ational
Journalo
f
Control and
Automation
, vol.
7, no. 4, pp. 217
–
234, Apr. 2014.
[22]
A. Al-Mohamad, “Efficiency
impr
ovements of photo-voltaic pan
e
ls
using a Sun-tracking s
y
stem”,
Applied En
ergy
,
vol. 79
, no
. 3
,
pp
. 345–354
, Nov.
2004.
[23]
G. Niko, “Construction of
a small scal
e labor
ator
y
for solar co
llectors and
solar
cells in a d
e
veloping countr
y
”,
Engineering
, vol. 05
, no
. 01
, pp
.
75–80, 2013
.
[24]
H. Davidsson, R. Bernardo
, J.
Gom
e
s, N. Gentile
, C. Gruff
m
an, L. Ch
ea
,
and B. Karlsso
n, “
C
onstruction
of
Laboratories
for
Solar En
erg
y
R
e
search
in Dev
e
lo
ping Countr
i
es”,
Energy
Proc
edi
a
, vol. 57
, pp
. 98
2–988, 2014
.
Evaluation Warning : The document was created with Spire.PDF for Python.