Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
4, No. 4, Decem
ber
2014, pp. 474~
480
I
S
SN
: 208
8-8
6
9
4
4
74
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
A B
a
tt
ery-less Grid Connect
ed Ph
ot
ovolt
a
i
c
P
o
wer gen
e
rati
on
using Five-Level Common-Emi
tter Cu
rrent-Source In
vert
er
Suros
o
1
, Win
a
sis
2
, To
shihiko
Nog
u
chi
3
1,2
Departement o
f
Electr
i
cal
Engineering
,
Jend
eral Soedirman University
, Indonesia
3
Departement of
Electr
i
cal
and
Electronics
Engin
eering
,
Shizuoka University
, Jap
a
n
Article Info
A
B
STRAC
T
Article histo
r
y:
Received J
u
l
8, 2014
R
e
vi
sed Oct
6,
2
0
1
4
Accepted Oct 20, 2014
Renewable power gener
a
tion u
s
ing photovo
ltaic is ver
y
in
ter
e
sting to be
develop
e
d to d
e
al with
the p
r
o
b
lems
of conventional energ
y
sources and
environmental is
sues. The photo
voltaic
power g
e
neration can operate bo
th in
stand-alon
e an
d grid-connected opera
tions. This paper
presents an
appli
cat
ion of t
h
e single-ph
ase
five-l
evel
com
m
on-em
itter cur
r
ent-source
inverter (CE-CS
I) for grid
connected pho
tovoltaic s
y
stem w
ithout batteries as
energ
y
stor
age sy
stem. In th
e pr
oposed s
y
stem, the fiv
e
-lev
el CE-CSI works
generating a sinusoidal output current
from photovoltaic s
y
stem to be
inje
cted d
i
re
ctl
y
into th
e power g
r
id. Th
e tr
ans
f
orm
e
r is
us
ed in th
e s
y
s
t
em
to
step-down the
grid voltage
to
meet the voltag
e
lev
e
l of
the
photovoltaic
s
y
s
t
em
, and
als
o
works
as
a galvanic ins
u
l
a
tion b
e
tween
the pow
er grid an
d
the inv
e
rt
er s
y
s
t
em
. Two
cond
itions of th
e pow
er grid
voltage,
i.e.
a pure
sinusoidal and a distorted power
grid,
are tested through computer simulation
using PSIM soft
ware. Furth
e
rmore,
experi
m
e
nt
al
tes
t
r
e
s
u
lt of
th
e five-
l
ev
el
invert
er is a
l
so
presented
.
Th
e t
e
st results show
that
the
five-
l
e
v
el CE-CSI
works well inj
e
cting
a sinusoi
dal curr
ent
into
the power gr
i
d
with low
harmonic contents, and with unity
power
facto
r
operation
.
The
res
u
lts
als
o
show that the distorted grid vo
ltag
e
affects the harmonic contents of the
current
inj
e
c
t
ed
b
y
the
inv
e
rter
.
Keyword:
Cu
rren
t-Source Con
v
e
rter
C
o
m
m
on-Em
i
t
t
e
r I
nve
rt
er
Power Grid
Pho
t
ov
o
ltaics
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Suros
o
Depa
rtem
ent of Elect
ri
cal
E
n
gi
nee
r
i
n
g,
Jenderal Soe
d
irm
a
n Uni
v
ersit
y
,
Jl. Mayj
en Su
ng
kon
o k
m
. 5
,
K
a
li
m
a
n
a
h
,
Pur
b
alingg
a, Jawa Teng
ah
,
I
ndon
esia.
Em
a
il: su
ro
so
.t
e.un
so
ed@g
m
a
il.co
m
1.
INTRODUCTION
Mu
ltilev
e
l in
verter is an
i
n
v
e
rter tech
no
log
y
g
e
n
e
ratin
g
an
alternatin
g
v
o
ltag
e
and
cu
rrent
wav
e
fo
rm
s from its DC p
o
w
er sou
r
ces,
with
lo
wer grad
i
e
nt
v
o
l
t
a
ge o
r
cur
r
ent
,
a
n
d l
e
ss di
st
o
r
t
i
on
of i
t
s
out
put
wa
vef
o
r
m
co
m
p
ared t
o
t
h
e c
o
n
v
e
n
t
i
o
nal
t
w
o-l
e
vel
i
nve
rt
er c
o
nfi
g
urat
i
o
n
[1]
.
B
a
sed
on
i
t
s
DC
po
w
e
r
so
urces, t
h
e mu
ltilev
e
l inv
e
rt
ers
can
b
e
classified in
to
t
w
o
ty
p
e
s, i.e.
m
u
l
tilev
e
l v
o
l
t
a
g
e
source i
n
v
e
rters
(MVSI) and
mu
ltilev
e
l cu
rrent so
urce inv
e
rt
ers (MCSI)
[2
]
-
[4
].
Th
e
po
wer sou
r
ces of the MVSI is a si
n
g
l
e
or
m
u
lt
i
DC
vol
t
a
ge p
o
w
er s
o
ur
ces, de
pe
nds
o
n
i
t
s
ci
rcui
t
con
f
i
g
uratio
n, wh
ile th
e pow
er sources of
t
h
e MCSI
i
s
a si
ngl
e o
r
m
u
lt
i
DC
curr
ent
so
urce
s [
2
]
-
[
8
]
.
Som
e
confi
g
u
r
at
i
o
n
s
o
f
t
h
e M
C
SI ha
ve bee
n
devel
ope
d
by
researc
h
er
s.
T
h
e a
u
t
h
or
has
al
so p
r
op
ose
d
anot
her ci
rcui
t
co
nfi
g
u
r
at
i
o
n
of
M
C
SI cal
l
e
d as t
h
e m
u
l
t
i
-
l
e
vel
com
m
on-em
i
t
t
er C
S
I
pre
s
en
t
e
d i
n
[
3
]
.
T
h
e pe
rf
orm
a
nce
o
f
t
h
e
fi
ve-l
evel
c
o
m
m
on-em
i
t
t
e
r C
S
I
c
i
rcui
t
con
s
t
r
uct
e
d usi
n
g
re
ver
s
e bl
oc
ki
n
g
IGB
T
s wa
s
desc
ri
be
d
i
n
[
4
]
.
In t
h
e re
newa
bl
e ene
r
gy
bas
e
d el
ectric power
ge
neration, there a
r
e
two k
i
nd
op
eration
s
, i.e. stand
alone
operation a
n
d grid connected
op
erati
o
n. Beca
use m
o
st
of t
h
e
power loa
d
s
re
qui
re
AC
powe
r
,
t
h
e
DC
po
we
r ge
nerat
e
d by
t
h
e r
e
ne
wabl
e e
n
er
gy
sou
r
ces s
u
c
h
as ph
ot
o
v
o
l
t
a
i
c
s, i
s
con
v
ert
e
d
i
n
t
o
AC
po
we
r
usi
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Battery-less
Grid C
o
nnecte
d
Photov
oltaic
Power
ge
nerat
i
on usi
n
g
Five-Level
Common-Emitter… (Suroso)
47
5
i
nve
rt
er
.
In ca
se of stand-al
one
operation, this
AC
power
is d
e
liv
ered d
i
rectly to
the lo
ad
v
i
a th
e p
o
wer
i
nve
rt
er
.
Whi
l
e
, i
n
case
of
gri
d
c
o
nne
ct
ed
o
p
e
rat
i
o
n
,
t
h
e
p
o
w
er
gene
rat
e
d
by
t
h
e
rene
wa
bl
e e
n
er
gy
so
u
r
ces i
s
in
j
ected
in
to
the u
tility p
o
w
er g
r
id
i
n
th
e
form o
f
AC
p
o
wer [8
]-[1
3
]
.
In
t
h
e grid
co
nn
ected
op
eration
,
th
ere
ar
e stand
a
r
d
s,
su
ch
as
I
E
C617
27
, I
E
EE1547
,
N
E
C
6
90
and
EN
610
00-
3-2
im
p
o
s
in
g the li
m
i
t o
f
h
a
rm
o
n
i
c
conte
n
ts
for t
h
e
AC
c
u
rrent
generate
d
by t
h
e grid connect
ed i
nve
rter to
be i
n
jecte
d
i
n
to t
h
e
powe
r
grid [8],
[1
0]
-[
1
2
]
.
M
C
SI i
s
a
p
r
o
v
e
n
i
nve
rt
er
t
ech
nol
ogy
t
o
sol
v
e t
h
e p
r
o
b
l
e
m
s
rel
a
t
e
d t
o
t
h
e
har
m
oni
c cont
e
n
t
s
o
f
t
h
e
gri
d
c
o
nnect
e
d
i
n
vert
e
r
.
Th
e i
mmu
n
ity o
f
the grid co
nn
ected
MCSI
fro
m
th
e
po
wer
grid
v
o
ltag
e
flu
c
tu
atio
n
is
higher t
h
an t
h
e gri
d
connected MVSI
[12], [13].
The
grid connected M
C
SI
al
so doe
s not
need
AC
c
u
r
r
ent
sens
ors
,
whi
c
h
are m
a
ndat
o
ry
fo
r t
h
e
gri
d
co
nnect
e
d
M
V
SI
.
Fu
rt
he
rm
ore, t
h
e M
C
SI
ha
s i
nhe
re
nt
sh
o
r
t
-
c
i
rcui
t
pr
ot
ect
i
o
n
beca
use
of
i
t
s
hi
gh
im
pedance
DC
p
o
we
r s
o
urce
[4]
,
[
12]
.
In
t
h
is p
a
p
e
r
,
a n
e
w grid
con
n
ected
pho
tov
o
l
taic syste
m
wit
h
ou
t batteries is p
r
op
osed.
The fiv
e
-lev
el
comm
on-emitter c
u
rrent-so
ur
ce i
nve
rt
er
(C
E
-
C
S
I
)
i
s
use
d
a
s
t
h
e
gri
d
c
o
nnected inverte
r
.
The
operation
of the
pr
o
pose
d
gri
d
con
n
ect
ed
p
h
o
t
ov
ol
t
a
i
c
sy
st
em
i
s
t
e
st
ed t
h
rou
g
h
com
put
e
r
si
m
u
l
a
ti
on u
s
i
ng P
S
IM
S
o
ft
wa
r
e
an
d exp
e
rim
e
n
t
ally in
lab
o
r
at
o
r
y
.
Fi
gu
re 1.
Pr
o
p
o
se
d bat
t
e
ry
-l
ess
g
r
i
d
-co
n
n
ect
ed ph
ot
o
v
o
l
t
a
i
c
sy
st
em
2.
PROP
OSE
D
SYSTE
M
2.
1.
Operation Pri
n
ciple
Fi
gu
re
1 s
h
o
w
s t
h
e p
r
op
ose
d
con
f
i
g
urat
i
o
n
of t
h
e g
r
i
d
c
o
n
n
ect
ed
p
hot
ov
ol
t
a
i
c
sy
st
em
.
The P
V
a
rray
can
be
com
pos
ed
by
s
e
ri
es
an
d
pa
ral
l
e
l
co
nn
ect
i
on
o
f
s
o
m
e
P
V
m
o
d
u
l
e
s t
o
o
b
t
a
i
n
hi
g
h
e
r
o
u
t
p
ut
po
we
r
.
T
h
e
DC-DC conv
erter in
th
is system is u
s
ed
to g
e
n
e
rate
DC
current-s
o
urces
for the inverter circuits.
T
h
e i
n
verte
r
wo
rk
s
gene
rat
i
n
g
a si
n
u
s
o
i
d
a
l
out
put
c
u
r
r
e
n
t
t
o
be i
n
je
ct
ed
i
n
t
o
t
h
e si
n
g
l
e
p
h
ase
AC
bus
or
AC
p
o
w
e
r
gri
d
.
The tra
n
s
f
ormer isolates the
inve
rter syste
m
and the
p
o
w
er
gri
d
[
1
2]
.
The t
r
a
n
s
f
orm
e
r
also works to
step-
d
o
wn
th
e power
g
r
id u
tility v
o
ltag
e
to
m
eet t
h
e
v
o
ltag
e
lev
e
l o
f
th
e
PV
syste
m
.
Fi
gu
re
2 sh
o
w
s t
h
e co
nfi
g
u
r
a
t
i
on o
f
t
h
e
DC
-DC
c
o
n
v
e
r
t
e
r
,
and t
h
e fi
ve-l
e
v
el
C
E
-C
S
I
ap
pl
i
e
d i
n
t
h
i
s
sy
stem
.
The
five-le
v
el CE-C
SI is
co
n
n
ected to t
h
e
powe
r
grid t
h
rough t
h
e
powe
r t
r
ans
f
ormer
.
T
h
e
PV
array is
rep
r
ese
n
t
e
d
by
a DC
vol
t
a
ge
so
urce
V
PV
.
T
h
e fi
ve-l
e
v
el
C
E
-C
SI
w
o
r
k
s
ge
nerat
i
n
g a
f
i
ve-l
evel
pul
se
wi
d
t
h
m
odulation (P
WM)
c
u
rre
nt wave
form
that
will be
filtered by t
h
e ca
pacitor (C
f
)
t
o
bec
o
m
e
a si
n
u
soi
d
a
l
out
p
u
t
current t
o
be i
n
jected i
n
to th
e
AC power grid.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
47
4 – 480
47
6
Fi
gu
re 2.
The
f
i
ve-l
evel
C
E
-C
SI wi
t
h
p
o
we
r gri
d
c
o
n
n
ect
i
o
n [3]
,
[
4
]
The
DC
-
D
C
c
o
n
v
e
r
t
e
r i
s
co
m
posed
by
f
o
ur
co
nt
r
o
l
l
e
d
po
we
r s
w
i
t
c
he
s (
Q
C1
, Q
C2
, Q
C3
,Q
C4
),
f
our
d
i
od
es and four
i
n
du
ctor
s.
The switch
e
s
regu
late th
e cu
rren
ts
flowing
t
h
ro
ugh
t
h
e i
n
d
u
c
to
rs to gen
e
rate DC
currents
for the inve
rter circ
uits.
The fi
ve-l
e
v
el
C
E
-C
S
I
i
s
con
s
t
r
uct
e
d
by
si
x u
n
i
d
i
r
ect
i
o
nal
co
nt
r
o
l
l
e
d
po
we
r
switches, i.e. IGBT
s or MOS
F
ET
s conn
ected in se
ries wit
h
di
ode
s.
All of the inve
rter
’
s
powe
r switc
hes are
connected at a
comm
on-em
itter line
[3
]
,
[
4
]
.
The
i
n
vert
e
r
ge
nerat
e
s
a
P
W
M
fi
ve-l
e
v
el
cu
rre
nt
wave
f
o
r
m
b
e
fo
re filtering.
The filter capacito
r C
f
is
use
d
to filter the
high
fre
quency
com
pone
nts of
the
fi
ve-le
v
el P
W
M
cur
r
ent
wave
f
o
rm
t
o
obt
ai
n a
si
nus
oi
dal
out
put
c
u
r
r
ent
.
For analysis purpose, Fi
gure
3 s
h
ows the five
-level
CE-CSI
with
fo
ur id
eal
DC cu
rren
t
-
s
ources, I/2
.
T
a
b
l
e 1
lists th
e switch
i
ng
com
b
ination
of t
h
e fi
ve-level CE-
C
S
I f
o
r t
h
e
fi
v
e
-l
evel
out
put
cur
r
ent
wa
vef
o
rm
generat
i
o
n.
Fi
gu
re 3.
The
gri
d
c
o
n
n
ect
ed
five
-level CE
-CSI
with ideal
D
C
cu
rr
en
t sour
ces
[
3
],
[4
]
Tab
l
e
1
.
Switch
i
ng
co
m
b
in
atio
n of
fiv
e
-lev
el CE-CSI [3
], [4
]
Q1 Q2
Q3
Q4
Q5
Q6
Outp
ut c
u
rren
t le
vel
OFF
OFF
ON
ON
OFF
ON
+I
A
OFF
OFF
ON
ON
ON
ON
+I/2
A
ON
OFF
OFF
ON
ON
ON
0
A
ON
ON
OFF
OFF
ON
ON
-I/2
A
ON
ON
OFF
OFF
ON
OFF
-I
A
2.
2.
Current
Controller and P
W
M Modulation
Str
a
tegy
In
th
e
p
r
op
osed
grid
co
nn
ect
ed
pho
tov
o
ltaic syste
m
u
s
in
g th
e fiv
e
-lev
el CE-CSI, th
e con
t
ro
ller u
s
ed
to
regu
late th
e curren
t
th
at
will b
e
inj
ected
in
to
t
h
e
p
o
wer grid
is th
e pro
portio
n
a
l i
n
teg
r
al
(PI) con
t
ro
llers.
Th
ese con
t
ro
llers
will also
determin
e th
e
DC cu
rren
ts
fl
o
w
i
n
g throug
h th
e
DC sm
o
o
th
in
g indu
cto
r
s of the
five-le
v
el CE-
C
SI, i.e.
L
1
,
L
2
,
L
3
, and
L
4
[
3
]-
[4
],
[
1
2
]
.
T
h
e am
pl
it
udes of t
h
e DC
cur
r
en
ts f
l
ow
ing
thr
oug
h
the sm
oothing inductors are
set at 50%
of
t
h
e pea
k
v
a
l
u
e
of t
h
e fi
v
e
-l
e
v
el
P
W
M
o
u
t
p
ut
cu
rre
nt
. T
h
e
err
o
r
signals bet
w
ee
n the m
easured curre
nt and t
h
e refe
re
nce
current of the PI
cu
rr
en
t co
n
t
ro
ller
ar
e pr
o
c
essed
for
t
h
e gat
i
n
g
si
g
n
a
l
s
ge
nerat
i
o
n
of
t
h
e
DC
-
D
C
con
v
e
r
t
e
r as
sh
ow
n i
n
Fi
gu
re
4.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Battery-less
Grid C
o
nnecte
d
Photov
oltaic
Power
ge
nerat
i
on usi
n
g
Five-Level
Common-Emitter… (Suroso)
47
7
Fi
gu
re
4.
C
o
nt
r
o
l
di
a
g
ram
and
P
W
M
m
o
d
u
l
a
t
i
on st
rat
e
gy
of
t
h
e
gri
d
c
o
n
n
e
c
t
e
d fi
ve-l
e
v
el
C
E
-C
SI
Gene
rat
i
n
g a l
o
w
di
st
ort
i
o
n
of si
n
u
s
o
i
d
al
out
put
cu
rre
nt
t
o
be i
n
ject
ed
i
n
t
o
t
h
e po
we
r gri
d
i
s
t
h
e
m
o
st im
portant feature
of a
gri
d
c
o
nnected inve
rter circ
uits
[1
0]
.
In
o
r
der
t
o
ac
hi
e
v
e
a si
n
u
s
o
dal
o
u
t
p
ut
cu
rren
t
wav
e
form
with
lo
w
d
i
sto
r
tion
,
a carrier based
si
n
u
s
o
i
d
al
pul
se
wi
dt
h m
o
d
u
l
a
t
i
o
n
(P
WM
) t
e
c
h
ni
que
i
s
u
s
ed
to evok
e
th
e gatin
g signals o
f
th
e fi
v
e
-lev
el CE-CSI.
Fou
r
triangu
lar carrier
wavefo
rm
s with
d
i
fferen
t
DC o
ffset leve
ls (C
r1
, C
r2
, C
r3
, C
r4
), at
t
h
e s
a
m
e
freq
u
e
n
cy
and
p
h
ase ar
e
use
d
i
n
t
h
i
s
m
odul
at
i
on st
r
a
t
e
gy
.
Som
e
literatures called this
m
e
thod as
level-
shifte
d m
u
lti-carrier base
d sinus
oidal P
W
M.
T
h
e fre
quency of
the m
odulated signal (the si
nus
oi
dal
wave
form
, S) will
assign the
fundam
en
tal frequency of the i
nve
rter’s
out
put
c
u
rre
nt
.
The
switchi
n
g
fre
que
ncy
o
f
the
five
-leve
l
CE-CSI
is s
p
ecified
by
t
h
e fre
q
u
ency
o
f
the
trian
g
u
l
ar carrier
wav
e
form
s u
s
ed
in th
e m
o
du
latio
n circu
its
[3
]-
[4
],
[
1
2
]
-
[
13
].
Figur
e 4
show
s the
co
n
t
r
o
l
di
ag
ram
and m
o
d
u
l
a
t
i
o
n
st
rat
e
gy
o
f
t
h
e grid-connected five-level
CE
-CSI.
3.
TEST
R
E
SU
L
T
S
AND
A
NAL
Y
S
IS
The p
r
op
ose
d
gri
d
c
o
nnect
ed p
h
o
t
o
vol
t
a
i
c
sy
st
em
usi
ng t
h
e fi
ve-l
e
v
el
C
E
-C
SI i
s
t
e
st
ed and
ex
am
in
ed
th
rou
g
h
co
m
p
u
t
er
si
m
u
latio
n
s
with
a
PSIM
soft
ware.
Th
e
p
a
rameters o
f
th
e tested
system
are listed
i
n
T
a
bl
e
2.
T
w
o
co
nd
itio
ns of th
e
po
wer
g
r
id
vo
ltag
e
are
ev
alu
a
ted
in
t
h
is syste
m
, i.e. p
u
re si
n
u
s
o
i
dal g
r
i
d
vol
t
a
ge
an
d di
st
ort
e
d
p
o
w
er gri
d
.
Fi
gu
re
5
pre
s
ent
s
t
h
e
com
put
er si
m
u
l
a
t
i
on t
e
st
re
sul
t
s
o
f
t
h
e
p
r
op
ose
d
syste
m
when t
h
e power
gri
d
is
a pure
sinusoi
d
al grid
voltage.
T
h
e fi
ve-le
v
el PW
M
current (I
PW
M
), the
in
v
e
rter
’
s
cu
rren
t in th
e
p
r
im
a
r
y sid
e
o
f
tran
sform
e
r (I
inv
), t
h
e curre
nt i
n
ject
ed i
n
to the
powe
r
-gri
d
(I
i
)
,
an
d th
e
p
o
wer
grid voltag
e
(V
Grid
)
a
r
e
sh
ow
n
in
t
h
is
fig
u
re
.
Th
e fi
ve-le
v
el C
E
-CSI
works
properly i
n
ject
ing a
si
nus
oi
dal
c
u
r
r
e
nt
i
n
t
o
t
h
e
po
wer
gri
d
.
T
h
e
pha
se di
f
f
ere
n
t
bet
w
ee
n t
h
e i
n
ject
e
d
cu
rre
nt
and t
h
e g
r
i
d
v
o
l
t
a
ge
i
s
alm
o
st
zero.
In a
n
ot
her
w
o
r
d
t
h
e
pr
o
pose
d
sy
st
em
wor
k
s
wi
t
h
hi
gh
p
o
w
e
r fact
o
r
(
u
ni
t
y
po
we
r fat
o
r)
.
Figure
6 s
h
ows
t
h
e
ha
rm
oni
c spect
ra
o
f
t
h
e c
u
r
r
e
n
t
i
n
ject
e
d
by
t
h
e
i
n
vert
er
(
I
i
)
.
A
l
l
of
l
o
w
harm
oni
c
com
p
o
n
e
n
t
s
a
r
e
less th
an
1
%
,
p
r
ov
ing
h
i
g
h
qu
ality p
o
wer i
n
j
ecting
b
y
th
e in
v
e
rter
.
Figure 7 s
h
ows
the
harm
onic s
p
ec
tra the
p
o
wer
g
r
id vo
l
t
ag
e wh
ich is
on
ly th
e
fund
amen
tal co
m
p
on
en
t of
50
Hz (a
p
u
re si
n
u
so
i
d
al vo
ltag
e
).
Tabl
e
2.
Param
e
t
e
rs o
f
t
h
e sy
s
t
em
Power
gr
id voltage (
r
m
s
)
220 V
DC input voltage o
f
inver
t
er
48 V
Sm
oothing inducto
r
s
of inver
t
er
2.
2
m
H
Switching fr
equen
c
y
of inver
t
er
22 kHz
Filter c
a
pacitor of
inverter
10
F
Filter inductor of inverter
1
m
H
Local Load
R
= 6.
5
Ω
,
L
=10
m
H
Output cur
r
e
nt fr
equency
of inver
t
er
50 Hz
Power
transform
e
r r
a
tio
1:10
Fi
gu
re
5.
Si
m
u
l
a
t
i
on res
u
l
t
s
w
h
en
t
h
e i
nve
rt
e
r
i
s
c
o
n
n
ect
ed
wi
t
h
a
p
u
re
si
n
u
soi
d
al
po
wer
gri
d
vol
t
a
ge
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
47
4 – 480
47
8
Fi
gu
re
6.
Ha
rm
oni
c
spect
ra
o
f
t
h
e i
n
vert
er
’
s
o
u
t
p
ut
current
Fi
gu
re 7.
Ha
rm
oni
c spect
ra
o
f
po
we
r gri
d
v
o
l
t
age
Fig
u
re
8
.
Sim
u
latio
n
resu
lts
wh
en th
e i
n
v
e
rter is co
nn
ected
with
a
d
i
storted
p
o
wer
g
r
id vo
ltag
e
Figu
re 9.
Ha
rm
onic spectra
o
f
the
in
verte
r’s o
u
tp
ut
current
Fi
gu
re 1
0
. Har
m
oni
c
spect
ra of
t
h
e p
o
we
r gr
i
d
vol
t
a
ge
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Battery-less
Grid C
o
nnecte
d
Photov
oltaic
Power
ge
nerat
i
on usi
n
g
Five-Level
Common-Emitter… (Suroso)
47
9
Furt
herm
ore, F
i
gu
re 8 s
h
ows
t
h
e t
e
st
resul
t
s
whe
n
t
h
e
po
w
e
r g
r
i
d
vol
t
a
ge
i
s
a di
st
ort
e
d
po
we
r g
r
i
d
(co
n
t
a
i
n
l
o
w
harm
oni
cs co
m
ponent
s)
. Fi
gu
re 9 a
nd
Fi
gu
re 1
0
s
h
o
w
t
h
e harm
oni
c
spect
ra o
f
t
h
e cur
r
ent
in
j
ected
b
y
th
e in
verter in
to t
h
e
p
o
wer
g
r
i
d
(I
i
), and
th
e d
i
sto
r
ted pow
er gr
id
vo
ltag
e
(
V
Gr
i
d
), re
spectivel
y
.
Th
e
3
rd
, 5
th
and
7
th
harm
oni
cs
or
d
e
rs are
t
h
e m
a
jor
ha
rm
oni
c co
m
ponent
s
of
t
h
e gri
d
vol
t
a
g
e
.
C
o
m
p
ared t
o
t
h
e fi
rst
co
nd
itio
n
o
f
t
h
e
g
r
id
vo
ltag
e
, th
e
5
th
and the
7
th
h
a
rm
o
n
i
c ord
e
rs of th
e curren
t
in
creased in
th
is co
nd
itio
n. It
i
s
caused
by
t
h
e harm
oni
cs co
m
ponent
s
of t
h
e po
we
r g
r
i
d
v
o
l
t
a
ge. Fi
gu
re
11 s
h
ow
s t
h
e t
r
ansi
ent
t
e
st
res
u
l
t
o
f
t
h
e pr
o
pose
d
s
y
st
em
. In t
h
i
s
fi
gu
re, t
h
e am
pli
t
ude o
f
t
h
e i
n
vert
er
’s o
u
t
p
ut
curre
nt
was c
h
an
ge
d fr
om
5 A t
o
8
A. I
L1
and I
L2
are t
h
e DC
cur
r
e
nt
s fl
o
w
i
n
g t
h
ro
u
gh t
h
e sm
oot
hi
n
g
i
n
duct
o
rs L
1
and L
2
of the inverter circuits.
It can
b
e
seen th
at th
e co
n
t
ro
ller
work
s
well k
eep
i
n
g stab
le
DC cu
rrents flowing
t
h
ro
ugh
t
h
e sm
o
o
t
h
i
ng
i
n
d
u
ct
o
r
du
ri
n
g
t
h
i
s
st
ep
res
p
o
n
se
. Fi
g
12
prese
n
t
s
a
n
ex
peri
m
e
nt
al
t
e
st res
u
l
t
sh
o
w
i
n
g t
h
e
out
put
c
u
r
r
en
t
wave
f
o
rm
of t
h
e i
n
ve
rt
er.
Si
nus
oi
dal
an
d
fi
ve-l
e
v
el
P
W
M
cu
rre
nt
wa
ve
f
o
rm
s are
pr
op
erl
y
ge
nerat
e
d
by
t
h
e
five-le
v
el CE-
C
SI.
Figu
re
1
1
. T
r
a
n
sient test
resu
lt wave
fo
rm
s
Fi
gu
re
1
2
.
O
u
t
put
c
u
rre
nt
wa
vef
o
rm
s of
t
h
e
fi
ve-l
e
v
el
C
E
-
C
SI
4. CO
N
C
L
U
S
I
ON
A ne
w
gri
d
co
nnect
e
d
p
h
o
t
o
vol
t
a
i
c
sy
st
em
usi
n
g t
h
e
fi
ve
-l
evel
C
E
-C
S
I
i
s
pr
op
ose
d
a
n
d exam
i
n
ed.
The propose
d syste
m
does not use
d
battery
syste
m
that
make the system need less m
a
intena
nce and c
h
eape
r
.
Th
e test resu
lts sho
w
th
e
prop
er
o
p
e
ration
o
f
th
e
fiv
e
-l
evel CE-CSI as
a grid c
o
nn
ect
ed inverter i
n
jecting a
si
nus
oi
dal
o
u
t
put
c
u
rre
nt
i
n
t
o
t
h
e
p
o
w
er
g
r
i
d
wi
t
h
a
u
n
i
t
y
po
wer
fact
or
o
p
erat
i
o
n.
Al
l
of
t
h
e
ha
r
m
oni
c
com
pone
nt
s
of
t
h
e i
n
ject
e
d
c
u
r
r
ent
a
r
e l
e
ss
t
h
an
1
%,
ev
en t
h
e
sy
st
em
i
s
co
nnect
e
d
wi
t
h
a
di
st
o
r
t
e
d
gri
d
v
o
ltag
e
.
A
g
ood
tr
an
sien
t test
r
e
su
lt is also
ach
i
ev
ed
,
show
ing
a
go
od
p
e
r
f
o
r
man
ce of
th
e pr
opo
sed system
.
REFERE
NC
ES
[1]
J. Rodiguez
,
J. S
.
La
i,
and F.
Z.
Peng, “
M
ultilev
e
l inv
e
rt
er: a
surve
y
of topo
logie
s
, controls
, and
appli
cat
ion,
”
IEEE
Trans. on Industr
ial Electronics
,” vol. 49
, no
. 4
,
p.p. 724-738, August 2002.
[2]
Z. H. Ba
i, Z
.
C.
Zhang, “
C
onfor
m
a
tion of m
u
ltil
evel
current
sour
ce conv
erter
top
o
logies using th
e duali
t
y
princ
i
p
l
e,
IEEE Trans. on
Power Electronic
, vo
l. 23, p.p
.
2
260-2267, September 2008.
0
-5
-1
0
5
10
Ii
n
v
0
-5
-1
0
5
10
IP
W
M
0
1
2
3
4
5
IL
1
0.
08
0.
1
0
.
1
2
0
.
1
4
0
.
1
6
Ti
m
e
(
s
)
0
2
4
IL
2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
47
4 – 480
48
0
[3]
Suroso and T
.
Noguchi, “Com
m
on-em
itter top
o
log
y
of m
u
lt
ilevel curren
t
-source
pu
lse
wid
t
h m
odulation inverter
with chopp
er b
a
sed DC-curren
t
s
ources”,
IET
Po
wer
El
ectr
oni
cs
,
vol. 4
,
issue 7, p.p. 759-766
, Aug
u
st 2011.
[4]
Suroso and T. Noguchi, “Five-l
e
vel com
m
on-Em
itter
inver
t
er usi
ng reverse-blo
c
k
i
ng IGBTs”,
TELKOMNIKA
, vol.
10, no
. 1
,
p
.
p.25
-32, Mar
c
h 2012
.
[5]
S. Kwak, and
H. A. Tol
i
y
at
, “
M
ultilev
e
l
conv
erter
t
opolog
y
u
s
ing two t
y
pes
of curren
t
-source inver
t
ers,”
IEEE
Trans. on Inductry Applications
,
vol. 42
, p
.
p. 155
8-1564,
Novemb
er/December 20
06.
[6]
D.
Xu,
N
.
R.
Zargari, B. Wu,
J. Wiseman,
B.
Yuwen a
nd S.
Rizzo
, “A medium voltage
AC drive
with
para
ll
e
l
current source in
verters fo
r high
power applicatio
n,
in
Proc. o
f
I
E
EE
PESC2005
, p.p.
2277-2283.
[7]
F. L. M. Antun
e
s, A. C. Brag
a,
a
nd I. Barbi
,
“
A
pplic
a
tion of
a ge
neral
i
zed
curren
t
Multilev
e
l
cel
l t
o
current sourc
e
inverters,”
IEEE Trans. on Pow
e
r Electronic
,” vo
l. 46
, no
.1, p.p
.
3
1
-38, Febru
a
r
y
1
999.
[8]
P
.
G
.
B
a
r
b
o
s
a
,
H
.
A
.
C
.
B
r
a
g
a
,
M
.
C
.
B
a
r
b
o
s
a
,
a
n
d
E
.
C.
Te
ixeri
a
, “
B
oost c
u
rrent m
u
lti
leve
l inver
t
er
and it
s
application on single phase grid
connected photo
voltaic s
y
stem,”
IEEE T
r
ans. on Power Ele
c
troni
c
, vol. 21, no.
4
,
p.p. 1116-1124,
July
2006
.
[9]
F
.
Blaab
jerg
,
Z. Che
n
,
and
S
.
B. Kjaer
,
P
o
wer
Ele
c
troni
cs
as
effic
i
ent
int
e
rfa
ce in d
i
s
p
ers
e
d
power gener
a
tio
n
sy
s
t
e
m
, I
E
EE Trans. on
Power Electronic
, vol. 1
9
, no
. 5
,
p
.
p.
118
4-1194, September 2004.
[10]
S. B. Kjaer
, J
.
K. Pedersen
,
an
d F. Blaab
jerg
,
“A review
of
single-phase grid
connect
ed
inver
t
ers for pho
tovoltaic
modules”,
I
EEE
Trans. on Indus
try Apllica
tion
, v
o
l. 41
, no
. 5
,
p
.
p. 1292-1306, Sep
t
ember/Octob
e
r
2005.
[11]
R. T. H. Li, H. S. Chung
and T.
K.
M. Chan
, “An active modulat
ion techniqu
e fo
r single-ph
ase gr
id conn
ected CS
I,”
IEEE Trans. on
Power Electronic
, vo
l. 22, p.p
.
1
373-1380, July
2
007.
[12]
Suroso, D. Trin
ugroho and T.
Noguchi,
“H-Bridge based
five-level curr
ent-
so
urce inv
e
rter fo
r grid conn
ected
photovoltaics po
wer condition
e
r”,
TE
LKOMNIKA
, vol. 11
, no
. 3
,
p
.
p. 489-494, Sep
t
ember 2013
.
[13]
Suroso and T. Noguchi, “A new three-level
cu
rrent-source
PWM
inverter and its
applic
ation f
o
r grid connected
power condition
e
r”, En
erg
y
Con
v
ersion and
Man
a
geme
nt, vol. 51
, issue 7, p.p
.
14
91-1499, July
20
10.
BI
O
G
R
A
P
HY
OF
A
U
T
HO
R
Suroso
received
the B.
Eng. d
e
gree in
ele
c
tr
ica
l
engin
eering
,
fr
om
Gadjah M
a
da Univers
i
t
y
,
Indonesia
in 20
01, and
the M. Eng. degree
in
electr
i
cal
and
electro
n
i
cs en
gineer
ing from
Nagaoka Univer
sity
of
Technolog
y
,
Japan in 2
008. He was a re
search
student at
electr
ical
engineering dep
a
rtment,
Tok
y
o University
, Jap
a
n from 2005 to 2
006. He earned
the Ph.D degree
in energ
y
and en
vironment engin
eering d
e
partment
, Nagaok
a University
of Techn
o
log
y
, Japan
in
2011. He was a
visiting research
er at el
ectr
i
cal
and electronics en
gineer
ing depart
m
e
nt, Shizuoka
University
, Japan from 2009 to
2011.
Curren
t
ly
, He is an
assistant
prof
essor at
department of
electrical
engineering, Jender
a
l Soedirman Univ
ersity
, Purwokerto, Jawa
Tengah
,
Indonesia. His
research
inter
e
st includes sta
tic power converters, and its ap
plication in r
e
n
e
wable
ener
g
y
conversion and distribut
ed
power gener
a
tion.
Winasis
is a
Lecturer of El
ec
tri
cal Eng
i
neer
ing
Departem
ent
,
J
e
ndera
l S
o
edirm
a
n Univers
i
t
y
,
Indonesia.
Toshihiko Noguchi
was born in 1959. He received the B
.
Eng. degree in
electr
ical eng
i
neering
from
Nago
y
a
In
stitute of
Te
chn
o
log
y
, Nago
ya
,
Japa
n, and
the
M. Eng.
and D.
Eng. degr
ees in
electrical and
electronics s
y
stems engineer
in
g from Nagao
k
a University
of Technolog
y
,
Nagaoka, Japan
,
in 1982, 1986, 1996, r
e
spectiv
ely
.
In 1982
, h
e
join
ed Toshib
a Corporation,
Tok
y
o
,
J
a
p
a
n.
He was
a L
ectu
r
er at
Gifu Nat
i
onal Col
l
ege
of
Techno
log
y
, Gif
u
, J
a
pan
,
from
1991 to 1993 and a Resear
ch Associate in electri
cal
and electronics s
y
stems engineering at
Nagaoka Univer
sity
of
Technolog
y
from 1994 to
1995. He
was an Associate Professor at
Nagaoka Univer
sity
of Technolo
g
y
from 1996 to
2009. He has been a Professor at Shizuoka
University
sin
c
e 2009. His rese
ar
ch interests ar
e static power converters and motor drives. Dr.
Noguchi is
a Member of th
e I
EE-
Japan
and
a Senior Member of
th
e IEEE.
Evaluation Warning : The document was created with Spire.PDF for Python.