Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
7, N
o
. 1
,
Mar
c
h
20
16
,
pp
. 7
~
1
6
I
S
SN
: 208
8-8
6
9
4
7
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Power Quality Analysis
of Vi
enna Rectifi
e
r f
o
r BL
DC Mot
o
r
Drive Application
K. Sri
n
i
v
a
s
a
n
*,
S.
Vi
j
a
yan
**
, S
.
P
a
r
a
ma
si
vam
*
*
*
,
K.
Sun
dar
a
m
o
o
r
thi
*
*Anna University
, Chenn
a
i,
Tamil Nadu
, Ind
i
a
** Sur
y
a Eng
i
neering Co
lleg
e
, Erode,
Tamil Nad
u
, India
***Danfoss Industries Pvt. Ltd,
Chennai, Tamil Nadu,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Aug 10, 2015
Rev
i
sed
No
v
26
, 20
15
Accepte
d Ja
n
2, 2016
This pap
e
r presents the power qu
ality
improvements for a B
L
DC
driver using
Vienna re
ctif
ier
as
front end con
v
erter
.
Th
e m
a
j
o
r drawbacks
in
the BLDC
motor drive an
d non linear
lo
ad applications
are the
line p
o
llution
and
depreciation of
the power factor
. The
convention
a
l power f
a
ctor
correction
method is not economical and eff
i
cient.
I
t
requir
e
s bulk
y
compon
ents as load
changes
and pr
oduce h
i
gh TH
D and le
ss Power factor. Th
e front
end
converter of BLDC bridge inver
t
er driv
e
is proposed b
y
th
e Vienna rectifier,
which can con
t
r
i
bute more significan
tl
y
in impr
oving the power
factor and
reduce
the line
pollution
.
Th
e Vienna r
ectifier to
polog
y
is contro
lled b
y
th
e
constant switching frequen
c
y
control
techniqu
e for wide ran
g
e of lo
ad
varia
tion and
it
reduces th
e TH
D, im
pr
ove the
power factor an
d provide
a
stead
y DC link
voltag
e
to th
e br
idge inv
e
rter
to
drive th
e BLDC
m
o
tor. The
des
i
gn cal
cul
a
ti
on and perform
ance
char
a
c
t
e
ris
tics of BLDC m
o
tor and
Vienna r
e
c
tifi
e
r
are v
e
rif
i
ed
b
y
u
s
ing Matl
ab sim
u
lation
.
Keyword:
BLDC Mo
t
o
r
C
onst
a
nt
S
w
i
t
c
hi
n
g
F
r
e
que
nc
y
DC link
Vo
ltag
e
Power Factor Correction
To
tal Harm
o
n
i
c Distortio
n
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
K
.
S
r
in
iv
asan
,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
Ann
a
Un
iv
ersity, Ch
en
n
a
i, Tamil Nad
u
,
Ind
i
a
Em
a
il: k
_
s
risun
@
yah
o
o
.
co
.i
n
1.
INTRODUCTION
In
em
erg
i
ng
m
a
rk
ets t
h
e m
o
to
r
u
s
ag
e is m
o
re in
t
h
e traction
an
d
i
n
du
st
rial ap
p
licatio
ns fo
r
ro
tatio
n
a
l
or m
ovi
n
g
ob
j
ect
s [1]
.
T
h
er
e
are di
ffe
rent
t
y
pes o
f
m
o
to
rs av
ailab
l
e in
t
h
e
m
a
rk
et lik
e in
du
ction
m
o
to
r,
DC
m
o
to
r and
servo
m
o
to
r. Based
o
n
th
e app
licatio
n
requ
irem
en
t th
e m
o
to
r
will b
e
selected
.
Th
e Bru
s
h
l
ess DC
(BLDC
)
m
o
tor is the best c
hoice for application t
h
at re
qui
re
s hi
g
h
t
o
r
que
wi
t
h
v
a
ry
i
n
g s
p
eed
, m
o
re p
r
e
c
i
s
i
on,
reliab
ility an
d
efficien
cy. BLDC m
o
to
r is deriv
e
d
fro
m
th
e DC m
o
to
r an
d Bru
s
h
e
d DC m
o
to
r. Th
e
maj
o
r
d
i
fferen
ce is t
h
at th
e BLDC
m
o
to
r do
esn
’
t
requ
ire th
e
br
u
s
hes
f
o
r
com
m
u
t
a
t
i
on,
s
o
t
h
er
e i
s
no
sp
ar
k a
n
d
w
e
a
r
o
u
t
,
h
e
n
ce th
e
m
a
in
ten
a
n
ce is less. Th
is mo
tor is lig
h
t
er
and m
o
re efficiency as
com
p
ared t
o
br
us
he
d DC
m
o
t
o
r or co
n
v
e
n
t
i
onal
DC
m
o
t
o
r f
o
r t
h
e sam
e
out
put
p
o
w
er
. The B
L
DC
m
o
t
o
r co
nsi
s
t
s
o
f
a
m
a
gnet
as a rot
o
r
and s
u
rr
ou
n
d
e
d
by
t
h
e st
at
o
r
wi
n
d
i
n
gs. T
h
e
st
at
or wi
n
d
i
n
g
s
are ene
r
gi
ze
d
by
t
h
e i
nve
rt
e
r
o
u
t
p
ut
. Th
e P
W
M
cont
rol
t
e
c
hni
q
u
e i
s
use
d
t
o
c
ont
rol
t
h
e t
h
ree
p
h
ase
bri
dge
i
nve
rt
er.
Th
e t
h
ree ph
ase bridg
e
inv
e
rter is
u
s
ed
in ord
e
r to
d
r
i
v
e t
h
e BLDC m
o
to
r, bu
t th
e inv
e
rt
er requ
ires
th
e stead
y bo
ost DC v
o
ltage for th
e d
i
rect drive application. T
h
e conven
t
i
onal three pha
s
e Diode Bridge, the
Brid
g
e
co
nv
ert
e
r an
d chop
p
e
r b
a
sed
con
v
e
rt
er
will p
r
ov
id
e th
e
d
c
link vo
l
t
ag
e
b
u
t
t
h
e
b
i
g
g
e
st ch
allenge is th
e
p
o
llu
tion
of the in
pu
t lin
e curren
t
du
e to th
e high
c
u
rrent T
H
D
an
d l
o
w power factor.
In t
h
e pa
per
[
2
]
prese
n
t
e
d,
hy
st
eresi
s
cu
rre
nt
cont
rol
t
ech
ni
que i
s
use
d
t
o
cont
rol
t
h
e s
w
i
t
ch i
n
t
h
e
b
o
o
s
t conv
erter to
attain
th
e u
n
ity p
o
wer facto
r
bu
t th
i
s
t
echni
que
op
erat
es i
n
vari
a
b
l
e
swi
t
c
hi
n
g
f
r
eq
uency
whi
c
h ca
use t
h
e
bo
ost
i
n
d
u
c
t
or
desi
g
n
t
o
b
ecom
e
m
o
re com
p
l
e
x an
d
of
bi
g
g
e
r
si
ze
fo
r t
h
e
l
o
w s
w
i
t
c
hi
n
g
fre
que
ncy
an
d i
t
perfo
rm
s onl
y
i
n
t
h
e cont
i
n
uo
us co
n
duct
i
on m
ode. I
n
t
h
e paper
[3]
pre
s
ent
e
d
,
t
h
e
m
o
t
o
r i
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
7
–
16
8
dri
v
en
by
t
h
e v
o
l
t
a
ge so
u
r
ce i
nve
rt
er
(VSI)
whic
h cause
d t
h
e non-sinus
o
i
d
al
vo
ltag
e
and
curren
t
in
the
m
a
in
s
su
pp
ly d
u
e to
p
r
esen
ce of the h
a
rm
o
n
i
cs. To
eli
m
in
ate th
e
s
e h
a
rm
o
n
i
cs,
th
e activ
e sh
unt filter is u
s
ed
alo
n
g
with
VSI b
u
t
th
is
app
r
o
a
ch
may
increase
the size a
n
d c
o
st.
In the
pa
per
[
4
]
p
r
ese
n
t
e
d t
h
e
B
u
c
k
-
B
oos
t
co
nv
erter is
u
s
ed
to
d
r
iv
e the BLDC m
o
tor. Th
is m
e
t
h
o
d
has
s
o
m
e
dra
w
bac
k
s
l
i
k
e t
o
d
r
i
v
e t
h
e
hi
g
h
si
de
switch
,
vo
ltag
e
stress is
m
o
re
o
n
th
e switch
,
o
u
t
p
u
t
cap
acit
o
r size is larg
e an
d
it is su
itab
l
e o
n
l
y in
lo
w po
wer
ap
p
lication
s
.
The
Vienna
re
ctifier is propose
d to act as
a fr
o
n
t
en
d c
o
n
v
e
r
t
e
r t
o
p
r
ovi
de a st
ea
dy
b
oost
DC
vol
t
a
ge
, hi
gh
p
o
we
r fact
o
r
wi
t
h
l
e
ss THD
.
The Vi
en
na rect
ifier co
nsists of th
ree ph
ase
dio
d
e
bridg
e
rectifier
con
n
ect
ed
wi
t
h
t
h
ree
bi
di
rec
t
i
onal
sem
i
conduct
o
r
,
t
h
e
b
o
o
st
l
i
n
e i
n
d
u
ct
or
i
s
c
o
n
n
ect
e
d
i
n
se
ri
es wi
t
h
i
n
p
u
t
supply and two equal val
u
e
capacitance
of capacitor is
c
o
nnected i
n
se
ries across
th
e DC lin
k. Du
e to
th
e
n
a
ture of th
e t
h
ree lev
e
l ou
tpu
t
vo
ltag
e
+E/
2
,
0
,
-E/2, th
e
v
o
ltag
e
stress
acro
s
s th
e sem
i
co
nd
u
c
t
o
r is
red
u
c
ed
t
o
hal
f
o
f
t
h
e
DC
l
i
nk v
o
l
t
a
g
e
[5]
.
The
Vi
e
nna
rect
i
f
i
e
r i
s
cont
r
o
l
l
e
d
by
vari
ous c
o
nt
rol
t
echni
q
u
e t
o
a
c
hi
eve
t
h
e hi
gh
p
o
we
r fact
or a
n
d l
e
ss TH
D t
o
m
e
et
t
h
e IEC
st
a
nda
r
d
s re
q
u
i
r
e
m
ent
.
In
t
h
e st
udy
of c
o
nt
r
o
l
sy
st
em
anal
y
s
i
s
t
h
e c
onst
a
nt
s
w
i
t
c
h
i
ng
f
r
eq
ue
ncy
cont
rol
t
e
c
h
ni
que
are
m
o
re
rel
i
a
bl
e t
h
a
n
c
o
n
v
e
n
t
i
onal
fe
edba
c
k
cont
rol
m
e
t
hod an
d i
t
i
s
st
r
o
ng t
o
re
ject
s
o
urce a
n
d l
o
a
d
di
st
ur
ba
nce [
6
]
.
The c
o
nst
a
nt
swi
t
c
hi
n
g
fre
que
ncy
cont
rol
m
e
t
hod co
nsi
s
t
s
of l
e
ss no
of c
o
m
p
o
n
e
n
t
s
l
i
k
e i
n
t
e
grat
o
r
wi
t
h
r
e
set
,
com
p
arat
or a
nd fl
i
p
-fl
o
p
an
d i
t
el
im
i
n
at
es t
h
e
m
u
lt
i
p
l
e
xer a
n
d
vol
t
a
ge
sen
s
or
. T
h
i
s
co
nt
r
o
l
m
e
t
hod i
s
a
no
n l
i
n
e
r
c
ont
r
o
l
f
o
r t
h
e s
w
i
t
c
hi
n
g
ci
rcui
t
,
w
h
i
c
h
i
s
ope
rat
i
n
g at
con
s
t
a
nt
s
w
i
t
c
hi
n
g
f
r
e
que
nc
y
m
odul
at
i
o
n,
i
t
reduce
s
t
h
e
i
n
p
u
t
b
o
o
st
i
n
duct
o
r
si
ze an
d t
h
e
r
ef
ore
i
t
re
duces
t
h
e c
o
st
a
n
d
si
z
e
. T
h
e
bl
oc
k
di
agram
of
Vi
e
n
na
rect
i
f
i
e
r
fed
B
L
DC
dri
v
e s
y
st
em
is as show
n in
Fig
u
r
e
1
.
2.
PRI
NCI
PLE OF
OPE
R
ATION OF
BL
D
C
MOTO
R
Th
e BLD
C
m
o
to
r
co
nstr
u
c
ti
on
an
d
op
er
ating
p
r
in
ci
p
l
es are m
o
r
e
si
m
ilar
to
th
e
A
C
inductio
n
m
o
to
r
and
b
r
us
he
d
DC
m
o
t
o
r [
7
]
.
B
L
DC
m
o
t
o
r
al
so co
nsi
s
t
s
of st
at
o
r
a
nd
r
o
t
o
r. T
h
e
br
us
hl
ess DC
m
o
t
o
r i
s
a
p
e
rm
an
en
t m
a
g
n
e
t
AC m
o
to
r; th
e torqu
e
- sp
eed
ch
aracteristics are si
m
i
l
a
r to
th
e
DC
m
o
to
r. In th
e
b
r
u
s
h
e
d
DC
m
o
t
o
r,
br
ush
e
s are
use
d
f
o
r
com
m
utat
i
ng t
h
e a
r
matu
re cu
rren
t. Th
e
ro
t
o
r
po
sitio
n
is sensed
by
mechanical commutator and brus
hes
whereas in BLDC
m
o
tor the el
ectro
ni
cs com
m
ut
at
i
on i
s
us
ed an
d
feed
bac
k
i
s
ac
hi
eve
d
by
hal
l
sens
or
o
r
opt
i
c
al
enco
de
r s
o
t
h
at
t
h
e
spee
d c
ont
rol
i
s
m
o
re
preci
se.
Fi
gu
re 1.
Vi
e
n
na rect
i
f
i
e
r fed
B
L
DC
dri
v
e
sy
st
em
Th
e
h
a
ll sen
s
o
r
is fi
x
e
d in th
e
m
o
to
r to
g
e
n
e
rate th
e
h
i
gh
o
r
lo
w
sign
al wh
en
the m
a
g
n
e
tic po
les
p
a
ss
th
e sen
s
o
r
wh
i
c
h
is u
s
ed
to
determin
e th
e po
sitio
n
o
f
th
e
rotor. T
h
e BLDC
m
o
tor is classified as tra
p
e
z
oidal
t
y
pe and si
nus
oi
dal
t
y
pe base
d o
n
t
h
e s
h
ape
of t
h
e
rot
o
r m
a
gnet
a
nd st
at
o
r
wi
n
d
i
n
g.
In t
h
e t
r
apez
oi
dal
m
o
t
o
r
the bac
k
EMF induce
d in t
h
e trapez
oi
dal s
h
ape
an
d it re
qui
res the
q
u
a
s
i-sq
uare
cu
rre
nts f
o
r t
h
e
rip
p
le f
r
ee
to
rq
u
e
op
eration
.
Similarly th
e sin
u
so
i
d
al mo
tor indu
ces
the sinusoi
d
al shaped ba
ck
EMF and
it requ
ires the
si
nus
oi
dal
c
u
r
r
ent
fo
r t
h
e ri
ppl
e
free
t
o
rq
ue
ope
rat
i
o
n.
The st
at
o
r
c
o
i
l
s are e
n
er
gi
z
e
d
by
t
h
e el
e
c
t
r
o
n
i
c
com
m
ut
ati
on depe
n
d
i
n
g o
n
t
h
e hal
l
sens
or
si
gnal
s
. T
h
e s
t
at
or coi
l
s
are
seq
u
ent
i
a
l
l
y
ener
gi
zed
, a
m
a
gnet
i
c
field is c
r
eated
and the
rotor
m
ove
s i
n
a se
que
nt
i
a
l
m
a
nner
.
Th
e co
mm
u
t
ati
o
n electron
i
c circu
it con
s
ists
o
f
sem
i
co
n
ducto
r
switch
e
s an
d its
d
r
iv
e con
t
ro
l system
to
co
n
t
ro
l th
e stato
r
cu
rren
t. To
co
m
p
lete
o
n
e
m
ech
an
ical ro
tatio
n
,
fou
r
po
le BLDC
m
o
to
r requ
ires fou
r
electrical cycles. T
h
e m
a
gnetic field dete
rm
ines the fo
rce and s
p
eed
of t
h
e m
o
tor.
The stre
ngth
of t
h
e
mag
n
e
tic field
is d
e
p
e
nd
ing
up
on
t
h
e cu
rrent th
ro
ugh
th
e co
il. Th
e m
o
st p
opu
lar
PW
M
co
n
t
ro
l tech
n
i
qu
e is
use
d
f
o
r
co
nt
r
o
l
l
i
ng t
h
e s
p
ee
d
of t
h
e m
o
t
o
r
.
The
st
eady
DC
i
n
put
v
o
l
t
a
ge i
s
fed
t
o
t
h
e
bri
d
ge i
nve
rt
er a
n
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Po
wer
Qu
a
lity
Ana
l
ysis o
f
Vien
na
Rectifier fo
r BLDC
Mo
t
o
r Drive
App
lica
tio
n
(
K
. Sri
n
i
v
asa
n
)
9
con
v
e
r
t
i
n
t
o
c
ont
rol
l
e
d
AC
vol
t
a
ge
by
co
nt
r
o
l
l
i
ng t
h
e s
e
m
i
cond
uct
o
r swi
t
c
hes i
n
t
h
e i
nvert
e
r
usi
n
g P
W
M
cont
rol technique and fe
d to t
h
e stator
c
o
il to ene
r
gize
. Therefore t
h
e stat
or c
o
il current
is varied, the s
p
ee
d
and torque
of the m
o
tor ca
n
be adjusted.
2.
1. C
o
ntr
o
l
S
y
ste
m
of
B
L
D
C
Mo
t
o
r Dri
v
e
The
P
W
M
techni
que
is sim
p
le and m
o
re popula
r
m
e
thod i
n
c
ont
rolling t
h
e s
p
ee
d of m
o
tor
[8].
This
cont
rol
sy
st
em
con
s
i
s
t
s
of
o
u
t
e
r l
o
op
spee
d a
nd t
o
r
q
ue co
nt
r
o
l
an
d i
n
ner
l
o
op c
u
rre
nt
co
nt
rol
l
e
r
[9]
.
T
h
e
rot
o
r
p
o
s
ition
is sensed
b
y
h
a
ll sen
s
or and
th
e
sp
eed is d
e
ri
v
e
d
b
y
th
e
in
teg
r
atio
n
o
f
ro
to
r p
o
s
ition
.
In
the
sp
eed
cont
rol
l
o
o
p
, t
h
e
deri
ve
d s
p
e
e
d i
s
c
o
m
p
ared wi
t
h
re
fere
n
ce spee
d a
nd
f
e
d t
o
t
h
e c
ont
r
o
l
l
e
r t
o
ge
nera
t
e
t
h
e
referen
ce t
o
rqu
e
.
In
th
e t
o
rq
u
e
con
t
ro
l loo
p
, th
e act
u
a
l
to
rq
u
e
is co
mp
ared
with
th
e referen
c
e torq
u
e
to
gene
rate the three phase refe
rence curre
nt i
a
*, i
b
*, i
c
*. In the inner c
u
rrent
cont
rol loop, the m
easured i
a
and i
b
current
signals
are
fed to th
e cu
rr
e
n
t c
o
n
t
ro
lle
r
an
d th
e i
c
c
u
rre
nt
value is
c
a
lculated.
Thes
e curre
nt si
gna
ls are
co
m
p
ared
with referen
ce curren
t sig
n
a
l to
gen
e
rate th
e PWM to
ach
ieve th
e d
e
sired
ou
tpu
t
b
y
ad
ju
st
in
g
the
PW
M duty
cyc
l
e.
Fi
gu
re
2.
B
l
oc
k
di
ag
ram
of B
L
DC
m
o
t
o
r
dri
v
e sy
st
em
2
.
2
.
A
d
va
ntages
High
Sp
eed
Op
eration
un
d
e
r
lo
ad
ed
an
d un
l
o
ad
ed
con
d
ition
s
.
R
e
spo
n
si
venes
s
& Qui
c
k Acc
e
l
e
rat
i
on.
Hi
g
h
P
o
wer
D
e
nsi
t
y
– i
t
i
s
ha
vi
n
g
t
h
e
hi
gh
es
t
ru
n
n
i
n
g t
o
rq
u
e
pe
r c
ubi
c i
n
c
h
of
any
DC
m
o
t
o
r.
It
d
o
es
n’t
ha
ve
b
r
us
hes,
i
t
i
s
m
o
re rel
i
a
bl
e.
3.
PRI
NCI
PLE OF
OPE
R
ATION OF VIE
N
N
A
RECTI
F
IER
Th
e
Vienn
a
rectifier is
m
o
stly u
s
ed
for th
e
p
o
wer qu
ality i
m
p
r
ov
em
en
t i
n
th
e
g
r
i
d
sid
e
for v
a
riou
s
and
wide loa
d
range. T
h
ere a
r
e vari
ou
s con
t
ro
l techn
i
qu
es
u
s
ed
to
con
t
ro
l th
e Vien
na rectifier to
o
b
t
ai
n
th
e
hi
g
h
po
we
r f
a
ct
or a
n
d l
e
ss i
n
p
u
t
c
u
r
r
ent
T
H
D
.
T
h
e
pr
o
p
o
se
d c
onst
a
nt
swi
t
c
hi
n
g
fre
q
u
ency
c
o
nt
r
o
l
m
e
t
hod
has m
o
re a
d
va
ntage
com
p
are
d
to c
o
nve
n
tional control m
e
th
od
s. Th
e Vi
en
n
a
rectifier i
s
u
s
ed
as fro
nt en
d
conve
r
ter
for t
h
e BL
DC
drive application t
o
a
voi
d
th
e line po
llu
tio
n an
d i
m
p
r
ov
ing
t
h
e
p
o
wer fact
o
r
.
Figure
3. Thre
e phase
Vienna
r
ect
i
f
i
e
r a
s
f
r
o
nt
en
d c
o
nve
rt
er
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
7
–
16
10
The
Vienna rectifier topology consists
of three bi
directional switch which corresponds t
o
each
phase
wh
ich
in
turn
is co
nn
ected
with
th
ree
ph
ase dio
d
e
b
r
idg
e
rectifier. Th
e
DC b
u
s
ou
tpu
t
vo
ltag
e
is con
n
ect
ed
t
o
th
e lo
ad
(BLDC driv
er). Th
e thr
ee
b
i
d
i
rectio
n
a
l switch
is switch
i
ng con
tin
uou
sly at co
n
s
tan
t
switch
i
ng
freq
u
e
n
c
y t
o
draw th
e line cu
rren
t i
n
ph
ase with lin
e
v
o
l
t
a
ge
res
p
ectively; it ensures t
h
e unity powe
r
factor
and l
e
ss
TH
D.
The s
w
i
t
c
hi
n
g
st
at
e and t
h
e s
i
gn
of t
h
e i
n
p
u
t cu
rren
t
d
e
fine th
e rectifier i
n
pu
t vo
ltag
e
.
When
th
e switch
is t
u
rn
on
th
e inpu
t
in
du
ctor starts
ch
arg
i
ng
a
nd i
n
put curre
nt increases a
nd
when the s
w
itch i
s
turn
o
f
f
th
e in
pu
t in
du
ctor
cur
r
e
nt d
i
sch
a
rg
e th
ro
ugh
th
e d
i
od
e b
r
idg
e
rectifier. Th
e
Vienn
a
rectifier b
i
d
i
rectio
n
a
l
swi
t
c
h i
s
swi
t
c
hi
n
g
On/
O
f
f
st
at
e depe
n
d
s
o
n
t
h
e
pha
se c
u
r
r
e
nt
o
f
i
n
eac
h
pha
se.
kN
k
k
k
V
V
dt
di
L
(
1
)
Whe
r
e k=a,
b, c
Wh
en
t
h
e
p
h
a
se curren
t
is
p
o
s
itiv
e,
1
0
0
2
k
k
kN
S
S
E
V
(
2
)
Whe
n
t
h
e
pha
s
e
cu
rre
nt
i
s
neg
a
t
i
v
e,
1
0
0
2
k
k
kN
S
S
E
V
(
3
)
3.
1. C
o
ntr
o
l
S
y
ste
m
of Vi
en
na Rec
t
i
f
i
e
r
The c
onst
a
nt
s
w
i
t
c
hi
n
g
f
r
eq
u
e
ncy
co
nt
r
o
l
m
e
t
hod i
s
fi
r
m
ness for
po
wer
di
st
ur
ba
nc
e, i
t
excl
ude
s
sou
r
ce a
n
d l
o
a
d
di
st
ur
ba
nce.
The
OC
C
i
s
ve
ry
si
m
p
l
e
, desi
rabl
e t
h
an
c
o
n
v
ent
i
o
nal
feed
back
c
ont
r
o
l
m
e
t
h
o
d
.
Thi
s
c
o
nt
r
o
l
m
e
t
h
o
d
i
s
ope
rat
i
n
g
at
c
o
n
s
t
a
nt
swi
t
c
hi
n
g
fre
q
u
ency
m
odul
at
i
o
n
o
f
t
h
e
o
u
t
p
ut
wave
f
o
rm
i
n
st
ead
o
f
PWM; th
erefore m
a
g
n
e
tic size will b
e
small. It co
n
s
is
ts o
f
o
n
e
o
r
t
w
o
i
n
tegrato
r
with
reset,
flip-flop
s,
com
p
arators
,
l
ogic, linea
r de
vices. It
does
n’
t re
qui
re a
n
y
m
u
l
tip
liers
and
th
e v
o
ltage
sen
s
or
. It
can o
p
erate b
y
sensi
n
g ei
t
h
e
r
t
h
e i
n
duct
o
r c
u
r
r
ent
or s
w
i
t
c
hi
ng c
u
r
r
e
n
t
.
T
h
e
im
port
a
nt
i
d
ea
of
one
-cy
c
l
e
cont
rol
i
s
f
o
rci
n
g t
h
e
switch
e
d
v
a
riab
le ex
actly eq
u
a
l to
reference sig
n
a
l.
Assu
m
i
n
g
th
at th
e Vien
n
a
rect
ifier is o
p
e
rat
e
d
in
co
n
tinuo
us-con
du
ction
-
m
o
d
e
(CCM), a g
e
n
e
ral equ
a
tio
n
th
at relates th
e
in
pu
t ph
ase
vo
ltag
e
and
du
ty ratio
of
swi
t
c
hes i
s
de
ri
ve
d f
r
om
an
avera
g
e m
o
d
e
l
of t
h
e Vi
e
n
na rect
i
f
i
e
r
[
1
0]
. Th
e bl
ock
di
ag
ram
of const
a
nt
sw
itch
i
ng
f
r
e
qu
en
cy con
t
ro
l syste
m
as sh
own
in Figur
e
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Po
wer
Qu
a
lity
Ana
l
ysis o
f
Vien
na
Rectifier fo
r BLDC
Mo
t
o
r Drive
App
lica
tio
n
(
K
. Sri
n
i
v
asa
n
)
11
Fi
gu
re
4
.
Uni
f
i
e
d s
w
i
t
c
hi
n
g
f
r
eq
ue
ncy
co
nt
r
o
l
sy
st
em
The
vector vol
t
age at node
A, B,
C with
resp
ect to
th
e
n
e
utral p
o
i
n
t
O is
eq
u
a
l t
o
th
e
p
h
ase v
ector
vol
t
a
ge
m
i
nus t
h
e i
n
duct
o
r
v
o
l
t
a
ge La, L
b
, L
c
, w
h
ere
L
is the inductance
of t
h
e input i
n
duct
o
rs
. T
h
e a
v
era
g
e
no
de
v
o
l
t
a
ge i
n
eac
h s
w
i
t
c
hi
ng
cy
cl
e V
AN
, V
BN
, V
CN
a
r
e
g
i
ven i
n
e
quat
i
o
n
(4
).
0
*
1
0
*
1
0
*
1
0
*
1
0
*
1
0
*
1
2
2
2
2
2
2
c
E
c
c
E
c
CN
b
E
b
b
E
b
BN
a
E
a
a
E
a
AN
i
when
d
i
when
d
v
i
when
d
i
when
d
v
i
when
d
i
when
d
v
(
4
)
Th
e clo
c
k
pu
lse g
e
n
e
rator is set th
e switch
i
n
g
freq
u
e
n
c
y
o
f
th
e co
nv
erter and
th
e in
teg
r
ation
ti
m
e
constant is als
o
equal to the switc
hing fre
quency. T
h
e clock pulse sets
the SR flip-fl
op at starting of each
switching cycle. The t
h
ree
phase inductor
current i
La
, i
Lb
, i
Lc
p
a
ss th
roug
h
t
h
e fu
ll wav
e
rectifier ci
rcu
it to
co
nv
ert ab
so
l
u
te v
a
lu
e o
f
the Rs*
i
La
, Rs*i
Lb
, Rs* i
Lc
an
d
fed to
th
e in
pu
t o
f
th
e
three com
p
arat
or. T
h
e voltage
lo
op
co
m
p
en
sato
r
g
e
n
e
rates th
e V
m
si
g
n
al
by
com
p
ari
n
g
t
h
e o
u
t
p
ut
dc
vol
t
a
ge
an
d r
e
fere
nce
vol
t
a
g
e
. Th
e
V
m
signal is i
n
tegrated a
nd
subt
racted
from the V
m
whi
c
h i
s
fe
d t
o
a
n
ot
he
r i
n
put
of
t
h
e com
p
arat
o
r
. T
h
e
slope
of ram
p
signal c
h
anges
according t
o
the error
volta
ge [11]. T
h
e SR
flip
-flop res
e
ts, by the
output of the
com
p
arator
for the
res
p
ective
phas
e
s a
n
d it turns
of
f
th
e sem
i
co
n
ducto
r switch
e
s. Th
e co
m
p
arato
r
is
com
p
aring t
h
e current re
fe
rence signal and i
n
tegrated e
r
r
o
r
vol
t
a
ge si
gnal
,
t
h
eref
ore
base
d o
n
t
h
e cl
oc
k
pul
s
e
and
com
p
arator out
put decide
s
the
duty cycle of the
corres
p
onding s
w
itches for the eac
h
switching cycl
e
3
.
2
.
A
d
va
ntages
The
Vi
en
na
re
ct
i
f
i
e
r has
co
nt
i
n
u
o
u
s
si
n
u
s
o
i
d
al
i
n
put
c
u
rre
nt
.
Num
b
er
of IGBTs is less a
n
d m
a
nufacturi
ng cost is als
o
les
s
.
Th
e
b
l
o
c
k
i
ng
vo
ltag
e
str
e
ss
on
p
o
w
e
r
sem
i
c
o
ndu
ctor
is
r
e
du
ced to
h
a
lf of
th
e D
C
lin
k voltag
e
.
Th
e con
t
ro
l
syste
m
is si
m
p
le an
d reliab
l
e and
it do
esn
’
t
requ
ire an
y m
u
ltip
liers, vo
ltag
e
sen
s
o
r
s.
Th
e
bo
o
s
t i
n
ductan
ce will
b
e
red
u
c
ed
du
e to
u
n
i
fied
con
s
tant switch
i
ng
freq
u
e
n
c
y.
Th
e con
t
ro
l
syste
m
is si
m
p
le an
d m
o
re reliab
l
e.
Thi
s
c
ont
rol
m
e
t
h
o
d
ca
n
be a
c
hi
eve
d
by
se
n
s
i
n
g
ei
t
h
er t
h
e
inductor c
u
rrents or the
switching c
u
rre
nts.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
7
–
16
12
4.
DESIG
N
C
A
L
CUL
ATIO
N
Th
e Vien
na rectifier is su
pp
lyin
g
p
o
wer
to
th
e
inv
e
rter to
d
r
i
v
e th
e
BLDC m
o
to
r. Th
e lo
sses
considere
d
for both
Vienna
rectifie
r an
d i
nve
rt
er are a
p
pr
o
x
i
m
at
el
y 500
W.
In
th
e si
m
u
la
tio
n
an
alysis, th
e
cri
t
i
cal
com
ponent
s
val
u
es a
r
e cal
cul
a
t
e
d a
n
d sem
i
cond
uct
o
rs
are
co
nsi
d
e
r
ed
i
n
t
h
e
gene
ral
si
m
u
l
i
nk bl
ock
s
.
The i
n
p
u
t
po
w
e
r t
a
ke
n
fr
om
the s
u
ppl
y
i
s
7.
5k
W,
t
h
e
p
h
as
e pea
k
vol
t
a
ge
i
s
1
0
0
V
,
Dc
l
i
n
k
v
o
l
t
a
ge
i
s
60
0
V
, i
n
p
u
t
c
u
rre
nt
ri
ppl
e i
s
1
5
% a
n
d ass
u
m
e
d
po
we
r fact
o
r
i
s
0.
98
,
I
npu
t pow
er
P
in
=3*V
ph
*I
ph
*c
osø
cosø
*
*
3
ph
in
ph
V
P
I
=
98
.
0
*
7
.
70
*
3
7500
A
I
ph
36
A
I
I
I
peak
rms
peak
51
2
Th
e i
n
pu
t inducto
r
r
i
pp
le cu
rren
t
is as
[1
2
]
A
I
ripple
65
.
7
51
*
15
.
0
max
Th
e i
n
pu
t
b
o
o
s
t in
du
ctor L is
as [1
2
]
sw
ripple
pk
ph
pk
ph
F
I
E
V
E
V
L
*
)
2
/
*
866
.
0
(
*
2
/
*
866
.
0
max
,
,
u
H
L
L
805
10000
*
65
.
7
)
300
100
*
866
.
0
(
*
300
100
*
866
.
0
Wh
ere E is
DC lin
k
vo
ltag
e
The DC link c
a
pacitor C
1
and C2 are e
q
ual value ca
pacitance and the ca
pacito
r
v
a
lu
e i
s
d
e
term
in
ed
usi
n
g
si
m
u
l
a
t
i
on
m
odel
by
t
r
i
a
l
an
d e
r
r
o
r
m
e
t
hod
w
h
i
c
h i
s
l
e
ss
t
h
a
n
4
7
0
0
u
f
.
The
ri
p
p
l
e
vol
t
a
ge
acr
oss
cap
acito
r is less th
an
2
%
.
Th
e BLDC m
o
to
r torqu
e
T
e
is calcu
lated
b
y
m
u
l
tip
lyin
g
the to
rq
u
e
con
s
tan
t
T
k
and stator curre
nt I
a
.
Th
e stato
r
curren
t is
m
easu
r
ed
at n
o
l
o
ad
and
th
e refe
ren
c
e sp
eed
con
d
itio
n.
Th
e m
easured
torq
u
e
and stato
r
cu
rren
t at
no
l
o
ad
co
nd
ition
is
sh
own
in Fi
g
u
re 5
and
Fi
g
u
re
6
resp
ectiv
ely
.
a
k
e
I
T
T
*
Nm
T
e
26
.
1
2
.
1
*
05
.
1
5.
SIMULATION RESULTS
Th
e
sim
u
lat
i
o
n
is carried
o
u
t
for BLDC m
o
to
r driv
e
wit
h
V
i
enn
a
rectifier
.
Th
e
V
i
enn
a
rectifier DC
l
i
nk re
fere
nce
vol
t
a
ge i
s
6
0
0
V
an
d re
fer
e
nc
e spee
d o
f
BLDC m
o
to
r is 15
00
rp
m
.
The measured spee
d
of
the
m
o
to
r in
th
e si
m
u
la
tio
n
m
o
d
e
l is as sh
own
i
n
Fi
g
u
re
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Po
wer
Qu
a
lity
Ana
l
ysis o
f
Vien
na
Rectifier fo
r BLDC
Mo
t
o
r Drive
App
lica
tio
n
(
K
. Sri
n
i
v
asa
n
)
13
Fig
u
re
5
.
Torqu
e
ch
aracteristics of BLDC mo
tor
Fi
gu
re
6.
St
at
o
r
i
n
p
u
t
cu
rre
nt
of
B
L
DC
m
o
t
o
r
Figure
7. Spee
d c
h
aracte
r
istics of BL
DC m
o
tor
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
7
–
16
14
Fi
gu
re
8.
I
n
p
u
t
v
o
l
t
a
ge a
n
d
I
n
put
c
u
rre
nt
si
g
n
al
Fig
u
re
9. DC
lin
k
vo
ltag
e
fed
to
inv
e
rter
Fi
gu
re 1
0
. In
p
u
t
cu
rre
nt
har
m
oni
c
di
st
ort
i
o
n bar
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Po
wer
Qu
a
lity
Ana
l
ysis o
f
Vien
na
Rectifier fo
r BLDC
Mo
t
o
r Drive
App
lica
tio
n
(
K
. Sri
n
i
v
asa
n
)
15
Th
e
Vienn
a
rectifier inp
u
t
voltag
e
and
cu
rren
t wav
e
fo
rm
as shown in Figu
re 8 at fu
ll load
co
nd
ition
;
m
easured
DC
l
i
nk
vol
t
a
ge i
s
60
0
V
as sh
o
w
n i
n
Fi
g
u
r
e 9.
The
m
easured input
curre
n
t harm
o
n
i
cs is les
s
th
an
4.
59
%
an
d p
o
w
er fact
o
r
i
s
p
h
ase A
0
.
9
9
,
p
h
ase
B
0.
99 a
nd p
h
ase
C
0.
99 are
s
h
ow
n i
n
Fi
g
u
re
1
0
a
nd 1
1
resp
ectiv
ely at
fu
ll lo
ad
con
d
i
t
i
o
n
.
Figure
11.
Measure
d
powe
r factor
6.
CO
NCL
USI
O
N
Th
e sim
u
latio
n
an
alysis is carried
ou
t for th
e
BLDC d
r
i
v
er with
V
i
en
n
a
rectifier as
fro
n
t
end
con
v
e
r
t
e
r
usi
n
g M
a
t
l
a
b
si
m
u
l
i
nk.
T
h
e
desi
g
n
i
s
i
m
pl
em
ent
e
d a
n
d
per
f
o
r
m
ance o
f
B
L
D
C
m
o
t
o
r a
n
d
V
i
en
na
rectifier is v
e
ri
fied
with th
e si
m
u
latio
n
m
o
d
e
l. Con
s
t
a
nt
s
w
i
t
c
hi
n
g
fre
q
u
e
ncy
c
ont
rol
s
y
st
em
i
s
im
pl
em
ent
e
d
for th
e
V
i
en
n
a
rectifier t
o
dri
v
e th
e bridg
e
i
n
v
e
rter
dr
iv
er
o
f
BLDC m
o
to
r
.
Th
e
V
i
enn
a
rectifier sup
p
l
ies th
e
stead
y DC link
vo
ltag
e
from th
e u
tility
su
pp
ly to
th
e b
r
i
d
g
e
i
n
v
e
rt
er to
d
r
iv
e the BLDC m
o
t
o
r
.
Th
e
perform
a
nce characteristics
of BLDC
m
o
tor like spee
d, t
o
rque a
n
d stator
curre
n
t are
observe
d
.
The
V
i
enna
rect
i
f
i
e
r i
n
p
u
t
l
i
ne c
u
r
r
ent
ha
r
m
oni
cs di
st
o
r
t
i
o
n
a
n
d
po
we
r
facto
r
is
v
e
rified
i
n
t
h
e Matlab sim
u
latio
n
an
alysis.
Th
e cu
m
u
lativ
e b
e
n
e
fits of th
e
V
i
en
n
a
rect
ifier and
th
e co
n
t
ro
l techn
i
qu
es are
u
tilized
b
y
th
e BLDC
m
o
to
r
d
r
i
v
er
wh
ich
i
n
tu
rn
resu
lts in
ex
orb
itan
t
im
p
r
ov
em
en
t o
f
t
h
e po
wer
qu
ality.
REFERE
NC
ES
[1]
N.
Hemati and
M.
C.
Le
u.
“
A
co
m
p
lete m
odel
ch
arac
teri
zation of
brushless dc motors”,
IEEE Trans. I
nd. Applicat.,
Jan. /Feb
. 1992
;
vol. 28
: pp
. 172–
180.
[2]
Malliset
ti R
a
j
e
sh Kum
a
r, Durai
s
am
y L
e
nine
, C
h
Sai Babu
. “
A
Variabl
e
Switch
i
ng Frequen
c
y
with Boost Power
Factor Corr
ectio
n Converter”,
T
E
LKOMNIKA
,
April 2011; Vol.9, No.1
: pp
. 47~
54.
[3]
M Tam
ilvani
,
K Nith
ya, M Srin
ivasan, SU Prabha. “
H
ar
monic Reduction
in Variab
le Frequen
c
y
Driv
es Using
Active Power Fi
lter
”
,
Bule
tin Te
knik
Ele
k
tro dan
Informatika (
B
u
llet
i
n of
El
ectri
c
a
l Engin
eering a
nd Informatics)
,
June 2014; Vol.
3, No. 2: pp. 119
~126.
[4]
A. Jey
a
Selvan
Renius, K.Vino
th
Kumar. “Analy
sis of Var
i
ab
le Speed
PFC Ch
opper FED BLDC Motor Drive”,
International Jo
urnal of Power Elect
ronics and Drive System (
I
JPEDS)
,
Februar
y
2015; Vo
l. 5, No. 3: pp.
326~335.
[5]
Johann W.
Kolar,
Uwe Drofenik,
and Franz
C.
Zach
.
“VIENNA Rectifier
II—A Novel Single- Stage High-
F
r
equenc
y Is
ol
a
t
ed
Three-P
h
as
e
P
W
M
Rectifi
e
r
S
y
s
t
em
”
,
IEEE Transactions on I
ndustrial Electronics,
August
1999; VOL. 46,
No. 4.
[6]
K. Srinivasan
,
K. Sundaram
oorthi, S. Vij
a
y
a
n
IEE
E
Mem
b
er, S. Param
a
siv
a
m
IEEE Mem
b
er. “
C
om
parat
i
v
e
Evalu
a
tion of Various Control Techniqu
es For Three
Phase Three Switch
Three Lev
e
l
Boost Converter”,
International Jo
urnal of
A
pplied Engineering
Research,
2015
; Volume 10, Number
8 (2015): pp. 21
151-21163.
[7]
P. Pillay
and R.
Krishnan. “Applicati
on ch
aracter
i
stics of perm
an
ent m
a
gnet
s
y
nchronous and brushless dc m
o
tors
for servo dr
ives”,
IEEE Trans. In
d. App
lica
t
.,
Sep
t
.
/Oct. 1991;
vol. 27: pp. 986–99
6.
[8]
P. Pilla
y and R
Krishnan.
“Modeling
,
Simulatio
n and Analysis of a Perm
anent M
agnet Brushless dc Motor Drive”,
Conference R
e
cord of I
EEE
/IAS Meeting, 1987;
p 8.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
7
–
16
16
[9]
Sundaramoorthi K, Srinivasan K and V
ijay
a
n S. “Artificial Intelligen
ce Ba
sed
Modeling and Analy
s
is of BLDC
Motor Drive”, I
n
terna
tiona
l
Jou
r
nal of Applied
Engineering Res
e
arch,
2015; Vo
lume 10, Numb
er 8 (2015): pp.
20019-20028.
[10]
Chongming Qiao and Key
u
e M
a
Smedle
y
.
“Thr
ee-Phase Unity
-
Power-Factor Star- Connected S
w
itch (VIENNA)
Recti
f
ier wi
th Unified Constan
t
-
F
requency
Integ
r
ation Contro
l”,
IEEE T
r
ansacti
ons on Power Elec
tronics,
July
2003; VOL. 18,
No. 4.
[11]
R. Brown, M. S
o
ldano. In
tern
ati
onal Re
ctif
ier
,
“One Cycle Control IC PFC
Con
verter Design w
ith IR1150”,
IR
application notes.
[12]
Jacobus Hendrik Visser
. “Acti
ve converter based on the Vienna r
ectifi
er to
pology int
e
rfaci
ng a three phase
generator to
a D
C
-bus”,
Thesis o
f
Master
of Eng
i
neering
,
Dep
t
. Elec
t. Eng., Univ
ersity
of Pretoria,
March 2007
.
BIOGRAP
HI
ES OF
AUTH
ORS
K. Srinivasan w
a
s born in Tamil Nadu, India,
o
n
November 05, 1981. He received the B
.
E.
degree f
r
om Priy
ad
arshini
Engineering Co
lleg
e
,
Vaniy
a
mbadi, in 2003 and the
M.E. d
e
gree in
Power Elect
roni
cs and Industrial
Drives from
Sa
th
y
a
bam
a
Institu
te of Scien
ce an
d Technol
o
g
y
Deemed University
, Chenn
a
i, in
2005. He has pu
b
lished 2 papers in Internation
a
l
Journals and 1
paper in Intern
ational Conf
eren
ces. At present,
he is
Res
earch
S
c
holar in Anna Univers
i
t
y
,
Chennai
.
His
area of int
e
res
t
in
cludes
P
o
wer El
ectron
i
cs and Drives; Magnetics design, Power
factor
corr
ect
ion
and v
a
rious
con
t
rol
tech
n
i
ques. (
E
-mail: k_srisun@
y
a
hoo
.co
.
in)
.
S. Vijay
a
n was
born in Tamil N
a
du, India, on
J
a
nuar
y
17, 1968
. He receiv
ed th
e B.E. degr
ee
from Mepco Sc
hlenk Engineeri
ng College, Siv
a
kasi, in 1989 and the M.E. d
e
gree in Power
S
y
stem from Annamalai Univ
ers
i
ty
, Ch
idambaram,
in 1993. He
was awarded Ph
.D in Electrical
Engineering fro
m College of
Engineer
ing Guin
d
y
, Anna University
Chennai in
2008. He h
a
s
published 7
pap
e
rs in In
tern
atio
nal Journals and
10 pap
e
rs in
International Conferences. He h
a
s
20
years
of exp
e
rien
ce in
the
te
aching prof
es
s
i
on. At pres
en
t, h
e
is
working as
a P
r
incip
a
l a
t
S
u
r
y
a
Engine
eri
ng Colleg
e
,
Ero
d
e. His
ar
ea of
i
n
teres
t
includ
es
P
o
wer Elec
troni
cs
and Drives
,
DSP, FPGA, Speci
al Ma
chin
es a
nd Control
.
(
E
-
m
ail: svi
j
a
y
ansu
r
y
a@gm
ai
l.
com
)
.
S. Paramasivam
was born in Coimbatore, India in 1971. He
received the B.E. deg
r
ee from GCT,
Coimbatore,
in
1995, the M.E.
degree from P.S.G
College of
Technolog
y
,
Co
imbatore, in 1999
,
and the Ph.D. degree from College of Engineer
i
ng, Anna University
, Chenn
a
i, in 2004. His
inter
e
sts includ
e
power ele
c
troni
cs, AC m
o
tor
drives, DSP- and FPGA-based motor controls
,
power-factor cor
r
ection,
magnetic
design, fuzzy
logic, neur
al ne
tworks, and controller design for
wind energ
y
co
nversion s
y
stem
s. He has publis
hed over 32 pap
e
rs on various aspects of SR
M
and indu
ction
m
o
tor driv
es in
int
e
rnat
iona
l journ
a
ls and
confer
ences worldwide.
Presently
h
e
is working at Danfoss Industries, Ch
ennai. He is also a Reviewer
for many
IEEE
journals, Acta Press, Indersci
ence journals, Elsevier journ
a
ls
, Hindwai journals, and IEEE
conferen
ces. (E-
m
ail: p
a
ram
s
ath
y
a@
y
a
hoo.com
)
.
K. Sundaramoorthi obtain
e
d his
Bachelor’s deg
r
ee in Electrical
and Electronics Engineering
from Ma
dura
i
Ka
ma
ra
j
Uni
v
e
r
si
ty
,
Ma
durai
.
The
n
he obtained
his Master’s degree
in Power
Ele
c
troni
cs
and
Drives
from
coll
ege of
engin
eer
i
ng Guind
y
. He
i
s
pres
entl
y
a R
e
s
earch S
c
ho
lar
in Anna Univers
i
t
y
, Chenn
a
i
.
His
s
p
eciali
zat
ions
are power ele
c
t
r
onics
and drive
s
. His
current
research
int
e
re
sts are diff
ere
n
t contro
l te
c
hniques of B
L
DC m
o
tor drives. (E-m
a
il:
bstarss@
y
a
hoo
.com).
Evaluation Warning : The document was created with Spire.PDF for Python.