Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
5, N
o
. 4
,
A
p
r
il
201
5, p
p
.
48
6
~
50
1
I
S
SN
: 208
8-8
6
9
4
4
86
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
A Comparati
v
e Analysis
of
Integrated B
o
ost Flyb
ack C
o
n
v
e
r
t
e
r
using PID and Fuzzy Controller
R.
S
a
m
u
e
l
R
a
j
e
s
h
B
a
b
u
Departement of
Electronics and
I
n
st
rumentation
Engineering,
Sath
y
a
b
a
ma
Univ
er
sity
, Ch
ennai-60
0 119, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 5, 2014
Rev
i
sed
Jan 27, 201
5
Accepted
Feb 13, 2015
This
paper pr
es
ents
a com
p
ar
a
tive
anal
ys
is
of
Integra
t
ed boo
s
t
fl
y
b
ack
c
onv
e
r
t
e
r for Renewable en
erg
y
S
y
stem
. IBFC is the combination of boost
converter and
fly
b
ack
conver
t
er. Th
e
proposed
converter
is simulated in
open and
closed
loop using PID and
FUZZY controller.
The F
u
zzy
Log
i
c
Cont
rol
l
e
r
(FL
C
) i
s
use
d
re
duc
e
t
h
e
ri
se
time
,
se
t
t
l
i
ng t
ime
t
o
a
l
most
negligib
le
and tr
y
to
remove the de
lay
time
and inver
t
ed r
e
sponse. The
performance of
IBFC with fuzzy
logic
con
t
roller is found b
e
tter
instead of
P
I
D controller
.
The s
i
m
u
lat
i
on
res
u
lts
are v
e
rif
i
ed exp
e
rim
e
nt
a
l
l
y
and th
e
output of
conv
er
ter
is free from r
i
pples
and h
a
s regulated outpu
t v
o
ltag
e
.
Keyword:
Fuzzy c
ont
roll
er
High
v
o
ltag
e
gain
I
n
teg
r
ated boost f
l
yb
ack
co
n
v
ert
e
r
PI
D con
t
ro
ller
R
e
newa
bl
e e
n
e
r
gy
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
R
.
S
a
m
u
e
l
Ra
j
e
s
h
Ba
b
u
Depa
rt
em
ent
of El
ect
r
oni
cs
a
n
d
I
n
st
r
u
m
e
nt
at
i
on E
n
gi
nee
r
i
n
g
,
Sat
h
y
a
bam
a
Uni
v
e
r
si
t
y
, C
h
e
n
nai
-
60
0
1
1
9
,
I
n
di
a.
Em
a
il: d
r
.
s
a
m
u
e
l
r
a
j
e
s
h
b
a
b
u
@
g
m
a
i
l
.
c
o
m
1.
INTRODUCTION
R
e
newa
bl
e en
ergy
i
s
gen
e
ral
l
y
defi
ne
d as
ener
gy
that c
o
mes from
resources
which are naturally
repl
e
n
i
s
he
d o
n
a hum
an t
i
m
e
scal
e such as
s
unl
i
g
ht
,
wi
n
d
,
rai
n
,
t
i
d
es,
wa
v
e
s
an
d
ge
ot
her
m
al
heat
. R
e
newabl
e
energy
replace
s conventional
fuels in
four distinct a
r
eas
suc
h
as elect
ricity g
e
n
e
ratio
n,
h
o
t
water/
sp
ace
h
eatin
g,
m
o
to
r f
u
els,
and
ru
ral (
o
ff
-g
r
i
d
)
ener
g
y
serv
ices
[
1
-
3
].
M
o
der
n
rene
wabl
es s
u
ch as
hy
dr
o,
wi
nd
,
so
lar and
b
i
o
f
u
e
ls, as
well as trad
ition
a
l b
i
o
m
ass are contrib
u
t
ed
in
abou
t equ
a
l
p
a
rts
to
th
e
g
l
ob
al en
erg
y
su
pp
ly. Rap
i
d d
e
v
e
lop
m
en
t o
f
ren
e
wab
l
e en
erg
y
and
en
erg
y
efficiency
is resu
ltin
g in
sig
n
i
fican
t
en
ergy
secu
rity, clim
a
t
e ch
ang
e
m
iti
g
a
tio
n and
econ
o
m
ic b
e
n
e
fits [4
-7
].
Fossil fuels such as coal, oil, and natural ga
s are
no
n-
rene
wabl
e, t
h
ey
d
r
aw
on
fin
ite reso
urces th
at
will ev
en
tu
ally d
w
i
n
d
l
e,
b
e
co
m
i
n
g
too
exp
e
nsiv
e
o
r
too env
i
ro
n
m
en
tally d
a
m
a
g
i
n
g
to
retriev
e
[8
-12
]
. In
co
n
t
rast, ren
e
wab
l
e en
erg
y
reso
urces-su
c
h
as wind
an
d
so
lar en
erg
y
are con
s
tan
tly rep
l
enish
e
d
and
will n
e
v
e
r
ru
n
out
.
F
o
r
r
e
newa
bl
e e
n
er
gy
sy
st
em
s, powe
r
el
ect
r
oni
cs play a
vital role. Som
e
times they are t
h
e m
o
st
ex
p
e
n
s
i
v
e
p
a
rt
of th
e system
. Red
u
c
in
g
co
st, i
n
creasi
n
g
efficien
cy an
d im
p
r
o
v
i
n
g
reliab
ility o
f
po
wer
electronics a
n
d electric m
a
c
h
ines a
r
e the t
echnical
c
h
al
l
e
nge
s
faci
n
g
wi
de
r
i
m
pl
ement
a
t
i
on of re
newa
bl
e
ener
gy
p
o
we
r
gene
rat
i
on
[1
3-
1
7
]
.
R
e
newa
bl
e ener
gy
so
urces
deri
ve t
h
ei
r ene
r
gy
fr
om
exi
s
t
i
ng fl
ow
o
f
ener
gy
,
fo
rm
on-
g
o
i
n
g n
a
t
u
ra
l
pr
ocesses
su
ch as
su
n,
wi
n
d
,
fl
o
w
i
n
g
wat
e
r a
nd
ge
ot
he
r
m
al
heat
fl
o
w
s
.
Th
e
m
o
st feasib
le altern
ativ
e en
erg
y
sour
ces i
n
clude
s
o
lar,
fuel
cell and
wind.
Fossi
l
f
u
el
s ar
e depl
et
i
n
g da
y
by
day
,
t
h
er
efo
r
e i
t
i
s
im
p
e
rat
i
v
e t
o
fi
nd
out
al
t
e
r
n
at
i
v
e
m
e
t
hods
i
n
o
r
d
e
r to
fu
l
f
ill th
e en
erg
y
d
e
man
d
of th
e wo
rl
d
.
Ren
e
wable en
erg
y
is b
e
co
m
i
n
g
m
o
re im
p
o
r
tan
t
n
o
wad
a
ys.
There e
x
i
s
t
ap
pl
i
cat
i
ons
of re
newa
bl
e ene
r
g
y
whi
c
h em
pl
o
y
hu
nd
red
of
M
W
(
h
i
g
h p
o
w
er
) an
d t
h
e
r
e
are al
so
th
o
s
e wh
ich
uses h
und
r
e
d
of
W
(
l
ow
pow
er)
.
App
licati
ons can als
o
be classified
dep
e
nd
ing
if they are
connected to t
h
e
grid or not,
as we
l
l
k
n
o
w
n
as co
gene
rat
i
o
n a
nd st
a
n
d al
o
n
e sy
st
em
s [18
-
2
2
]
.
T
h
i
s
l
a
st
one
i
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A C
o
mp
ar
at
i
ve An
al
ysi
s
of
I
n
t
e
gr
at
ed B
o
ost
Fl
yback
C
o
n
v
e
r
t
e
r…
(
R
.
S
a
m
u
e
l
Ra
j
e
s
h
Ba
b
u
)
48
7
a low
powe
r a
pplication, es
pecially
e
m
ployed in
rem
o
te places, where e
l
ect
ricity
is not available. Us
ually
photovoltaic and wi
nd system
s are the sour
ce of e
n
ergy in stand alone sy
ste
m
s.
The co
n
v
ent
i
o
nal
bo
ost
co
nv
ert
e
rs are n
o
t
pre
f
er
red
,
beca
use at
hi
gh
vo
l
t
a
ge dut
y
rat
i
o
i
t
cause
s
severe
l
o
sses
i
n
p
o
w
er
de
vi
c
e
s an
d
hi
g
h
v
o
l
t
a
ge st
res
s
a
c
ross
t
h
e s
w
i
t
c
hi
n
g
devi
ces.
The
diode
r
e
v
e
rs
e
reco
v
e
r
y
p
r
o
b
l
e
m
i
n
cre
a
s
e
s
t
h
e
c
ondu
c
ti
on
l
o
s
s
e
s
, degra
d
e the efficie
n
cy
an
d
limit
th
e p
o
w
er lev
e
l o
f
c
onv
e
n
t
i
o
n
a
l
bo
ost
c
o
n
v
e
r
t
e
r
[2
3-
2
5
]
.
O
w
i
n
g
t
o
t
h
i
s
s
c
e
n
a
r
i
o
Int
e
g
r
at
ed b
oost
fl
y
b
ac
k c
o
n
v
e
r
t
e
r i
s
desi
gne
d t
o
reduce t
h
ese
problem
s and to i
n
terface
wi
t
h
r
e
newa
bl
e e
n
er
gy
sy
st
em
.
2.
INTEGRATE
D BOOST FL
YBACK
C
O
NV
E
R
T
E
R (IBFC)
I
n
teg
r
ated
bo
ost f
l
yb
ack
c
onv
e
r
t
e
r
is
suitable for
rene
wa
ble energy syst
e
m
. Boost converter a
n
d
flyback converter are connect
ed
seri
al
l
y
t
o
achi
eve hi
gh
ou
t
put
v
o
l
t
a
ge ga
i
n
usi
n
g co
upl
e
d
i
n
d
u
ct
o
r
t
ech
ni
q
u
e
sho
w
n i
n
Fi
gu
r
e
1.
T
h
e i
n
p
u
t
i
n
d
u
ct
o
r
i
s
i
n
t
r
od
uce
d
i
n
t
h
e
pr
o
pose
d
ci
rc
ui
t
t
o
av
oi
d
t
h
e su
d
d
en
dam
a
ges i
n
po
we
r devi
ces
and di
ode
rev
e
rse rec
ove
ry
pr
o
b
l
e
m
.
The
adva
ntage
of the switche
d capacitor re
duc
e
s the
voltage st
ress i
n
power
device
s, but the di
ode
s create a
larg
e cu
rren
t
p
a
th
wh
ich
ca
uses the
conduction l
o
s
s
es.
To
rectify this, active s
w
itch
m
e
thod is
adopted to i
n
crea
se
the voltage
gai
n
a
n
d efficienc
y
[2
6-
3
0
]
.
Fi
gu
re 1.
C
i
rcu
i
t
di
agram
of
I
n
t
e
g
r
at
ed
b
oost
fl
y
b
ac
k c
o
n
v
e
r
t
e
r
In a
c
t
i
v
e s
w
i
t
c
h m
e
t
hod t
h
e
l
eakage e
n
e
r
g
y
i
s
recy
cl
ed
vi
a co
u
p
l
e
d i
n
duct
o
r
wi
t
h
o
u
t
wast
i
n
g t
h
e
en
erg
y
.
Wh
en switch
is tu
rn
ed
o
f
f,
the leakage e
n
ergy is recycled a
nd i
t
im
proves t
h
e effi
ci
ency
of t
h
e
con
v
e
r
t
e
r. T
h
e
pr
op
ose
d
co
n
v
ert
e
r
elim
in
at
es th
e switch
i
n
g
losses and
recycles the leakage e
n
ergy
. The
trans
f
orm
e
r pri
m
ary ter
m
inal and sec
o
ndary
terminal are connecte
d
in seri
es
f
o
r fast
s
w
i
t
c
hi
n
g
ope
rat
i
o
n. I
n
th
is p
r
op
osed
co
nv
er
ter
h
i
gh step
-u
p vo
ltag
e
is ob
tain
ed b
y
sing
le pow
er
sw
itch
i
n
g
tech
n
i
qu
e
op
eratin
g
at
l
o
w
d
u
t
y
cy
cl
e wi
t
h
t
r
ans
f
o
r
m
e
r i
nduct
o
rs
, swi
t
c
hed
cap
aci
t
o
rs a
n
d
p
o
w
er
di
odes
.
In
p
a
rticu
l
ar, t
h
e two
stages a
r
e
driven
by a si
ngle
switch
S
1
.
The features of
the
pr
o
pose
d
co
nv
erter are as
fo
llows:
a)
Th
e in
teg
r
ated
b
o
o
s
t flyb
ack
co
nv
erter is effectiv
ely extended to a
volta
ge
conve
r
sion rat
i
o and
th
e first boo
st stag
e is
b
e
n
e
fited
b
y
inpu
t curren
t
ripp
le redu
ctio
n.
b)
In the sec
o
nd s
t
age the leakage induct
o
r ene
r
gy
of the coupled inductor
can be recycled,
whic
h
reduces t
h
e
vol
tage stress
on t
h
e active
switc
h.
3.
SIMULATION RESULTS
T
h
e
Integrated Boost Flyback c
o
nv
e
r
t
e
r
c
o
n
s
i
s
t
s
of
b
o
o
s
t c
onv
e
r
t
e
r
an
d f
l
y
b
ack c
onv
e
r
t
e
r
dr
iv
en
b
y
a si
n
g
l
e
swi
t
c
h.
IB
FC
i
s
si
m
u
l
a
t
e
d i
n
bot
h
o
p
en
an
d cl
ose
d
l
o
o
p
,
w
i
t
h an
d
wi
t
h
ou
t
di
st
ur
ba
nce
usi
n
g
MATLAB
simulink and t
h
e
resu
lts are presen
ted
.
Scope i
s
conn
ected t
o
d
i
sp
lay
t
h
e ou
t
p
ut
vo
ltage.
The following values
are found
to be
a
near optim
u
m
for the
desi
gn speci
fications:
Tabl
e 1. Si
m
u
lat
i
on
Pa
ram
e
t
e
rs
Pa
ra
m
e
ter
Ra
ting
Input voltage
48 V
Input ind
u
ctor L
in
29 µH
Magnet
iz
ing
induct
or L
m
94µH
Co1= Co2
220µF
C1
1000 µF
Lk
1=L
k
2
500 µH
S
w
itching Frequ
e
ncy
50kHz
Diode
I
N
4007
MO
SF
ET
I
R
F840
Transf
orm
e
r t
u
rn rat
i
o
1:4
R
200
Ω
DC Motor
5HP,
240,
175
0 RPM
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 4
,
Ap
r
il 2
015
:
48
6
–
50
1
48
8
3.
1.
Open L
o
op IB
FC w
i
th
ou
t
Di
sturb
a
nce
Fi
gu
re
2 s
h
ow
s t
h
e si
m
u
l
a
t
e
d di
ag
ram
of
op
en l
o
o
p
Int
e
gr
at
ed b
o
o
st
fl
y
b
ack c
o
n
v
e
r
t
e
r
wi
t
h
R
-
l
o
a
d
and its output i
s
m
easured.
Fi
gu
re 2.
Sim
u
lated
d
i
ag
ram
o
f
IBFC
with
R-lo
ad
Fi
gu
re
3 s
h
o
w
s t
h
e
O
u
t
p
ut
v
o
l
t
a
ge
of
op
en l
o
o
p
Int
e
gra
t
ed b
o
o
st
fl
y
b
a
c
k c
o
n
v
e
r
t
e
r wi
t
h
R
-
l
o
a
d
.
Fi
gu
re
4 s
h
ows
t
h
e
O
u
t
p
ut
c
u
r
r
ent
o
f
o
p
en
l
o
o
p
I
n
t
e
grat
e
d
bo
ost
fl
y
b
ac
k c
o
n
v
e
r
t
e
r wi
t
h
R
-
l
o
ad
.
Fi
gu
re
3.
O
u
t
p
ut
v
o
l
t
a
ge
Fi
gu
re
4
Output current
3.
2.
Open L
o
op IB
FC w
i
th
Dis
t
u
r
bance
Ope
n
l
o
op I
n
t
e
grat
e
d
B
o
o
s
t
Fl
y
b
ack c
o
n
v
e
r
te
r wi
t
h
di
st
ur
b
a
nce
i
s
sim
u
l
a
ted usi
ng R
,
R
L
, R
LE l
o
ad.
I
n
op
en
l
o
op
syste
m
out
put
can
be va
ri
ed
by
va
ry
i
ng t
h
e i
n
p
u
t
an
d t
h
e co
rre
sp
o
ndi
ng
o
u
t
p
ut
v
o
l
t
a
ge i
s
measured.
Fi
gu
re
5.
Si
m
u
l
a
t
e
d di
a
g
ram
of
IB
FC
wi
t
h
R
-
l
o
ad
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A C
o
mp
ar
at
i
ve An
al
ysi
s
of
I
n
t
e
gr
at
ed B
o
ost
Fl
yback
C
o
n
v
e
r
t
e
r…
(
R
.
S
a
m
u
e
l
Ra
j
e
s
h
Ba
b
u
)
48
9
Fi
gu
re
5 s
h
o
w
s t
h
e i
n
p
u
t
di
s
t
ur
bance
i
s
ap
pl
i
e
d t
o
t
h
e
In
t
e
grat
ed
B
o
ost
Fl
y
b
ack
c
o
n
v
e
r
t
e
r wi
t
h
R
-
Lo
ad
an
d its ou
tpu
t
is m
easu
r
ed
.
Fi
gu
re 6.
I
n
p
u
t
an
d out
put
v
o
l
t
a
ge
o
f
IB
FC
wi
t
h
R
-
l
o
a
d
Fig
u
r
e
6
sh
ows th
e inpu
t d
i
st
u
r
b
a
n
ce in
i
n
creasin
g
t
h
e input v
o
ltag
e
fr
o
m
4
8
V
t
o
58V
at
0
.
1
5
s
ec.
A
t
0.
15s
ec t
h
e
o
u
t
put
vol
t
a
ge
i
n
creases
fr
om
200
t
o
21
0
V
du
e t
o
t
h
e a
d
di
t
i
onal
v
o
l
t
a
ge s
o
u
r
ce a
ppl
i
e
d
at
t
h
e
in
pu
t.
Fi
gu
re
7.
Si
m
u
l
a
t
e
d di
a
g
ram
of
IB
FC
wi
t
h
R
L
-l
oa
d
Fig
u
re 7
sho
w
s th
e in
pu
t d
i
stu
r
b
a
n
ce is app
lied
to
th
e
Integ
r
ated
bo
o
s
t
flyb
ack
c
onv
e
r
t
e
r with
RL-
Lo
ad
an
d its ou
tpu
t
is m
easu
r
ed
.
Fi
gu
re 8.
I
n
p
u
t
an
d out
put
v
o
l
t
a
ge
o
f
IB
FC
wi
t
h
R
L
-l
oa
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 4
,
Ap
r
il 2
015
:
48
6
–
50
1
49
0
Fig
u
r
e
8
sh
ows th
e inpu
t d
i
st
u
r
b
a
n
ce in
i
n
creasin
g
t
h
e input v
o
ltag
e
fr
o
m
4
8
V
t
o
58V
at
0
.
1
5
s
ec.
A
t
0.
15s
ec t
h
e
o
u
t
put
vol
t
a
ge
i
n
creases
fr
om
200
t
o
21
0
V
du
e t
o
t
h
e a
d
di
t
i
onal
v
o
l
t
a
ge s
o
u
r
ce a
ppl
i
e
d
at
t
h
e
in
pu
t.
Fi
gu
re
9.
Si
m
u
l
a
t
e
d di
a
g
ram
of
IB
FC
wi
t
h
R
LE-l
o
a
d
Fi
gu
re
9
sh
o
w
s t
h
e i
n
p
u
t
di
st
ur
ba
nce i
s
a
p
pl
i
e
d t
o
t
h
e
I
n
t
e
grat
e
d
bo
ost
fl
y
b
ack
c
o
n
v
e
r
t
e
r
wi
t
h
R
L
E
-
l
o
ad a
n
d i
t
s
out
put
i
s
m
easured.
Figure 10.
Inpu
t and
ou
tpu
t
vo
ltag
e
o
f
IBFC
with
RLE- l
o
ad
Fi
gu
re
10
sh
o
w
s t
h
e
i
n
put
di
st
ur
bance
i
n
i
n
creasi
n
g t
h
e
i
n
put
v
o
l
t
a
ge f
r
o
m
48V t
o
5
8
V
at
1.
25
sec.
At 1.25
sec the
output voltage
increase
s
from
250 to
2
80V due to the
additional vo
ltage source
a
p
plied at
the
in
pu
t.
In
o
p
e
n
loop
IBFC th
ere is a su
dd
en
rise in th
e ou
tpu
t
vo
ltag
e
.
Gain
can
n
o
t
b
e
easily co
n
t
ro
lled
because the
r
e
is no fee
dbac
k
in
open loop system
.C
losed loop system
is necessary for re
gulated
out
put
vol
t
a
ge
.
3.
3.
Cl
os
ed L
o
op I
n
te
gr
ate
d
B
oos
t Fl
yb
ack
C
o
n
v
erter
The closed loop Integrat
ed boo
st flyb
ack
con
v
e
rter is sim
u
lated
with
R,R
L
,RLE lo
ad
u
s
in
g
PID an
d
fuzzy c
o
ntrolle
r a
n
d he
nce t
h
e res
u
lts are
presented.
In
closed
l
o
op
system
th
e o
u
t
pu
t
v
o
ltag
e
is sen
s
ed
an
d
it is
co
m
p
ared
with
a referen
c
e v
o
ltag
e
. Then
th
e erro
r is g
i
v
e
n
to
th
e con
t
ro
ller. Th
e
ou
tpu
t
o
f
th
e con
t
ro
ller
gene
rat
e
s pul
s
e
s
wi
t
h
re
duce
d
wi
dt
h
.
Whe
n
t
h
ese pul
ses
are ap
p
lied to
t
h
e MOSFET in
th
e ou
tpu
t
rectifier,
the output
reduces the set
val
u
e. T
hus
the cl
osed l
o
op syste
m
is capable
of
re
ducing the
s
t
eady state error.
3.
3.
1.
Cl
o
s
ed
L
oop
IB
F
C
us
i
n
g PI
D
C
o
ntr
o
l
l
er w
i
tho
u
t
Di
stur
ba
nce
Th
e Clo
s
ed
l
o
op
IB
FC u
s
i
n
g
PID con
t
ro
ller
with
ou
t
d
i
stu
r
ban
ce is sim
u
lated
is show
n in Figu
r
e
11
.
Fig
u
r
e
12
and 1
3
de
pi
ct
s t
h
e out
p
u
t
v
o
l
t
a
ge an
d cu
rre
nt
. The t
u
ni
n
g
of c
ont
r
o
l
l
e
r i
s
do
ne by
Zei
g
l
e
r &
Ni
ch
ol
s
m
e
t
hod. He
re K
p
= 0.1
K
i
= 0.
2 K
d
= 0.
2.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A C
o
mp
ar
at
i
ve An
al
ysi
s
of
I
n
t
e
gr
at
ed B
o
ost
Fl
yback
C
o
n
v
e
r
t
e
r…
(
R
.
S
a
m
u
e
l
Ra
j
e
s
h
Ba
b
u
)
49
1
PID= K
p
e(t)
+K
i
+K
d
Whe
r
e:
K
p
-Propo
rtion
a
l g
a
in
K
i
-
I
nt
e
g
ral
gai
n
K
d
-Deri
v
ative gain
t-Instan
tan
e
ou
s ti
m
e
x
-
Variab
le of i
n
tegratio
n
;
takes on
v
a
lu
es fro
m
ti
me 0
to
presen
t t
Fig
u
re
11
.
Simu
lated
d
i
agram of clo
s
ed
l
o
op IBFC
with
R
-
lo
ad using
PID-Co
n
t
ro
ller
Fi
gu
re 1
1
sh
o
w
s t
h
e sim
u
l
a
t
e
d di
agram
of
cl
osed
lo
op
In
tegr
ated
bo
ost f
l
yb
ack
co
nver
t
er
w
ith
R-
lo
ad
u
s
i
n
g PID-Con
t
ro
ller an
d its ou
tpu
t
is measu
r
ed
.
Fi
gu
re 1
2
. O
u
t
put
v
o
l
t
a
ge
Fi
gu
re 1
2
sh
o
w
s t
h
e Out
put
vol
t
a
ge o
f
cl
o
s
ed l
o
op Integrated boost flyback
con
v
e
rter
with
R-lo
ad
u
s
ing
PID-C
o
ntro
ller.
Fi
gu
re 1
3
. O
u
t
put
c
u
rre
nt
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 4
,
Ap
r
il 2
015
:
48
6
–
50
1
49
2
Fig
u
r
e
13
sh
ow
s t
h
e
Ou
tpu
t
cur
r
e
n
t
of
cl
osed
l
o
op
Inte
grated boost fly
b
ack
co
nv
er
te
r
w
ith
R-
lo
ad
u
s
ing
PID-C
o
ntro
ller.
3.
3.
2.
Cl
o
s
ed
L
oop
IB
F
C
us
i
n
g
PID
C
o
n
t
rol
l
er w
i
th
Di
sturb
a
nce
In cl
ose
d
l
o
o
p
IB
FC
usi
n
g P
I
D c
ont
r
o
l
l
e
r,
a
di
st
ur
ba
nce i
s
i
n
ject
e
d
at
t
h
e
i
n
p
u
t
a
nd i
t
s
o
u
t
put
vol
t
a
ge
is m
easured.
Fig
u
re
14
.
Simu
lated
d
i
agram of clo
s
ed
l
o
op IBFC
with
R
-
lo
ad using
PID-Co
n
t
ro
ller
Fi
gu
re
14
sh
o
w
s t
h
e
i
n
put
di
st
ur
ba
nce i
s
ap
pl
i
e
d t
o
t
h
e cl
ose
d
l
o
o
p
I
n
t
e
g
r
at
ed
b
oost
fl
y
b
ac
k
co
nv
erter with
R-lo
ad
using
PID con
t
ro
lle
r an
d its ou
tpu
t
vo
ltag
e
is m
easu
r
ed
.
Fi
gu
re 1
5
. In
p
u
t
an
d o
u
t
p
ut
v
o
l
t
a
ge of
cl
ose
d
l
o
o
p
IB
FC
w
i
t
h
R
-
l
o
a
d
usi
n
g
P
I
D
-
C
o
nt
r
o
l
l
e
r
Fig
u
re
15
shows t
h
e inpu
t
d
i
stu
r
b
a
n
c
e in increasing
t
h
e inp
u
t
vo
ltag
e
from
4
8
V
t
o
5
3
V resu
ltin
g in
i
n
crease
of t
h
e
out
put
v
o
l
t
a
ge
.At
0.
1
5
sec t
h
e
out
put
v
o
l
t
a
ge
i
n
creases f
r
o
m
199 t
o
22
0
V
. At
0.
2sec t
h
e
out
put
voltage
reac
he
s to t
h
e
peak value and t
h
e
n
it dec
r
eas
es
to a
steady state
va
lu
e
of 199V at 0.25sec.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A C
o
mp
ar
at
i
ve An
al
ysi
s
of
I
n
t
e
gr
at
ed B
o
ost
Fl
yback
C
o
n
v
e
r
t
e
r…
(
R
.
S
a
m
u
e
l
Ra
j
e
s
h
Ba
b
u
)
49
3
Fi
gu
re
1
6
.
Si
m
u
l
a
t
e
d
di
ag
ram
o
f
cl
ose
d
l
o
o
p
IB
FC
wi
t
h
R
L
-l
oa
d
usi
n
g P
I
D c
ont
rol
l
e
r
Fi
gu
re 1
6
sh
o
w
s t
h
e i
n
put
di
st
ur
bance i
s
ap
pl
i
e
d t
o
t
h
e I
n
t
e
grat
e
d
b
oost
f
l
y
b
ack co
nv
ert
e
r wi
t
h
R
L
-
lo
ad
u
s
i
n
g PID-Con
t
ro
ller an
d its ou
tpu
t
vo
ltag
e
is m
easu
r
ed
.
Fig
u
r
e
17
.
I
npu
t and
ou
tpu
t
vo
ltag
e
of
closed
loop
I
B
FC
with
RL lo
ad
u
s
i
n
g PID-
con
t
ro
l
l
er
Fig
u
re
17
shows t
h
e inpu
t
d
i
stu
r
b
a
n
c
e in increasing
t
h
e inp
u
t
vo
ltag
e
from
4
8
V
t
o
5
3
V resu
ltin
g in
i
n
crease o
f
t
h
e
out
p
u
t
v
o
l
t
a
g
e
. At
0.
15s
ec t
h
e out
put
v
o
l
t
a
ge i
n
crease
s
fr
om
199 t
o
2
2
0
V
.
At
0.
2se
c
t
h
e
out
put
v
o
l
t
a
ge
reac
hes t
o
t
h
e
peak
val
u
e a
n
d
t
h
en
i
t
dec
r
eas
es to a steady
state value
of
199V at
0.25se
c.
Fi
gu
re
1
8
.
Si
m
u
l
a
t
e
d
di
ag
ram
o
f
cl
ose
d
l
o
o
p
IB
FC
wi
t
h
R
L
E -l
oa
d
usi
n
g
P
I
D
-
C
o
nt
r
o
l
l
e
r
Fig
u
re 18
shows th
e in
pu
t d
i
stu
r
b
a
n
ce is ap
p
lied
to
th
e clo
s
ed
lo
op In
tegrated
boo
st flyb
ack
co
nv
erter with
RLE-lo
ad
u
s
ing
PID
con
t
ro
lle
r and
its ou
tpu
t
vo
ltag
e
is measu
r
ed
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 4
,
Ap
r
il 2
015
:
48
6
–
50
1
49
4
Fi
gu
re 1
9
. In
p
u
t
an
d o
u
t
p
ut
v
o
l
t
a
ge of
cl
ose
d
l
o
o
p
IB
FC
us
i
ng PI
D-C
o
nt
r
o
l
l
e
r
Fig
u
re
1
9
shows th
e i
n
pu
t
d
i
stu
r
b
a
n
c
e in
increasing
th
e i
n
p
u
t
v
o
ltag
e
from 4
8
V
to
5
8
V resu
lting
i
n
increase
of the output volta
ge.
At
0.
5sec
t
h
e o
u
t
p
ut
vol
t
a
ge i
n
c
r
eases
fr
om
24
0V
t
o
25
0
V
.
A
t
1
.
5
s
ec t
h
e
o
u
t
p
u
t
vo
ltag
e
d
ecr
eases fro
m 25
0 to
22
0V
an
d th
en
it r
eac
hes t
o
a stea
dy
state value
of
240V at
2 sec.
The
per
f
o
r
m
a
nce of cl
osed l
o
o
p
I
n
t
e
grat
ed
bo
ost
fl
y
b
ac
k
con
v
e
r
t
e
r usi
ng
PI
D co
nt
r
o
l
l
e
r has l
o
w
steady state error and low peak over
shoo
t u
n
d
e
r ch
ange in
lo
ad
co
nd
itio
n
s
. IBFC
with
PID co
n
t
ro
ller
per
f
o
r
m
sl
ow
swi
t
c
hi
n
g
o
p
er
at
i
on, m
o
re
v
o
l
t
a
ge st
ress a
n
d
hi
g
h
c
o
nd
uct
i
on
l
o
sses
.
3.
3.
3.
Cl
o
s
ed
L
oop
IB
F
C
us
i
n
g F
u
z
z
y
Co
ntr
o
l
l
er w
i
tho
u
t
Di
stur
ba
nc
e
Fuzzy logic controller is a nonlinear c
ontrol
schem
e
with piecewise line
a
r pr
oportional and integral
g
a
in
to
con
t
ro
l th
e du
ty cycle
o
f
th
e
syste
m
. Co
n
t
ro
l of th
e d
u
t
y cycle, in
tu
rn
con
t
ro
ls th
e ou
tpu
t
vo
ltag
e
of
the
Integrated boost flyback
c
o
nve
r
ter.
Fig
u
re
20
.
Simu
lated
d
i
agram of clo
s
ed
l
o
op IBFC
with
R
-
lo
ad using
Fu
zzy co
n
t
ro
ller
Fi
gu
re 2
0
sh
o
w
s t
h
e si
m
u
l
a
ted di
ag
ram
of cl
osed
loop
Integ
r
ated
b
o
o
s
t flyb
ack
co
nv
erter with
R-
lo
ad
u
s
i
n
g Fu
zzy co
n
t
ro
ller an
d its ou
tpu
t
vo
ltag
e
is m
easu
r
ed
.
Fi
gu
re 2
1
. O
u
t
put
v
o
l
t
a
ge
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A C
o
mp
ar
at
i
ve An
al
ysi
s
of
I
n
t
e
gr
at
ed B
o
ost
Fl
yback
C
o
n
v
e
r
t
e
r…
(
R
.
S
a
m
u
e
l
Ra
j
e
s
h
Ba
b
u
)
49
5
Fi
gu
re 2
1
s
h
o
w
s t
h
e
Out
put
vol
t
a
ge
o
f
cl
os
ed l
o
op
Int
e
gr
at
ed b
oost
fl
y
b
ack co
n
v
ert
e
r
wi
t
h
R
-
l
o
a
d
usi
n
g F
u
zzy
c
o
nt
r
o
l
l
e
r.
Fi
gu
re 2
2
. O
u
t
put
c
u
rre
nt
Figure 22 shows the Output curren
t of clos
ed loop Integrated boos
t flyback conve
rter
with R-loa
d
usi
n
g F
u
zzy
c
o
nt
r
o
l
l
e
r.
3.
3.
4.
Cl
o
s
ed
L
oop
IB
F
C
us
i
n
g F
u
z
z
y
Co
ntr
o
l
l
er w
i
th
Di
stur
ba
nce
In cl
ose
d
l
o
op
IB
FC
wi
t
h
F
u
zzy
cont
rol
l
e
r, a di
st
ur
ba
n
ce i
s
i
n
ject
ed at
t
h
e i
nput
an
d i
t
s
out
p
u
t
vol
t
a
ge
i
s
m
e
asure
d
.
Fi
gu
re
2
3
.
Si
m
u
l
a
t
e
d
di
ag
ram
o
f
cl
ose
d
l
o
o
p
IB
FC
wi
t
h
R
-
Loa
d
usi
n
g F
u
zzy
-C
ont
rol
l
e
r
Fig
u
r
e
23
sh
ow
s th
e inpu
t distu
r
b
a
n
ce is ap
p
lied
t
o
th
e In
tegr
ated
b
o
o
s
t f
l
yb
ack
conver
t
er
w
ith
R
-
lo
ad
u
s
i
n
g Fu
zzy co
n
t
ro
ller an
d its ou
tpu
t
vo
ltag
e
is m
easu
r
ed
.
Fig
u
re 24
. Inpu
t
and
ou
tpu
t
vo
ltag
e
IBFC with
R-lo
ad
u
s
ing
Fu
zzy
co
n
t
roller
Evaluation Warning : The document was created with Spire.PDF for Python.