Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
4
,
No
. 2,
J
une
2
0
1
4
,
pp
. 15
6~
16
4
I
S
SN
: 208
8-8
6
9
4
1
56
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Single Stage Single Phase Ac
tive Power Fact
or Corrected
Ĉ
uk
Topology Based AC-
DC Converter
Md. Ismail Ho
ssain, M
o
h
a
m
m
a
d
J
a
h
a
n
g
i
r
A
l
a
m
Department o
f
Electrical
and Electronic
Eng
i
neer
ing
Banglad
es
h Uni
v
ers
i
t
y
of
Eng
i
n
eering
and
Te
ch
nolog
y, B
a
nglad
es
h
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Ja
n
3, 2014
Rev
i
sed
Feb
23
, 20
14
Accepted
Mar 14, 2014
This
paper foc
u
s
e
s
on the anal
y
s
is
of a power factor corr
ect
ion (P
F
C
)
converter
using
close loop
Ĉ
uk
topolog
y
.
R
e
gard
less of th
e in
put
line voltage
and output load
variations, inpu
t current dr
awn b
y
th
e buck or buck-boost
converter is alway
s
discon
tinuo
us. Th
e Boost converter suffers from high
voltag
e
stresses across the power
electr
onic devices. The
input cur
r
ent in
Ĉ
uk
converter is
co
mparable
to bo
ost conve
r
t
er’s
input
current. I
n
this p
a
per
output voltag
e
is controlled b
y
inner
curr
ent and
outer
voltage control loo
p
along with pow
er factor
corr
ection (PFC
). It shows less i
nput current THD,
nearly
unity
po
wer factor and
better
output vo
ltag
e
regulation
of AC-DC
converter under
variab
le
input
voltag
e
and output load
. In th
is paper th
e
relative performance between no
rm
al diode r
e
ctif
ier, open
loop
Ĉ
uk rectifier
and close
loop
Ĉ
uk recti
f
ier
is presented
.
An a
l
gorithm
for im
plem
entin
g
close loop
Ĉ
uk
r
ectifier
in
digital domain
is
developed and
simulated.
Keyword:
PW
M
Ĉ
uk t
opol
ogy
PI cont
rol
Di
gi
tal
al
gorit
hm
In
ner
cu
rre
nt l
o
o
p
Ou
ter v
o
ltag
e
lo
op
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Md. Ism
a
il Hossain
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
c E
n
gi
nee
r
i
n
g,
Ban
g
l
ad
esh Univ
ersity of En
g
i
neeri
n
g a
n
d T
echn
o
l
o
gy
,
66
G
r
ee
n R
o
a
d
, D
h
a
k
a-
1
2
1
5
,
B
a
ngl
a
d
esh
.
Em
a
il: j
e
wel04eee@yahoo.com
1.
INTRODUCTION
Uses o
f
C
o
m
put
e
r
an
d t
e
l
ecom
m
uni
cat
i
ons eq
ui
pm
ent
have bec
o
m
e
im
port
a
nt
i
n
our s
o
ci
et
y
.
El
ect
ri
c vehi
cl
e i
s
rapi
dl
y
i
n
creasi
n
g i
n
use
due t
o
i
t
s
en
vi
ro
nm
ent
fri
end
l
y
t
echnol
o
g
y
.
DC
p
o
we
r su
p
p
l
y
i
s
the heart of these de
vices and m
o
st of the case it
com
e
s from
AC-DC co
n
v
erter
.
The efficiency, total
harm
oni
c di
st
o
r
t
i
on
of i
n
p
u
t
c
u
r
r
ent
,
i
n
p
u
t
p
o
we
r fact
or a
n
d re
gul
at
e
d
o
u
t
put
vol
t
a
ge et
c
are t
h
e m
a
i
n
conce
r
n
of t
h
e
s
e AC
-
D
C
con
v
ert
e
r
s
.
Unc
o
nt
r
o
l
l
e
d d
i
ode rect
i
f
i
e
r as sho
w
n i
n
Fi
g
u
re
1 f
o
l
l
o
we
d
by
L-C
sm
oot
hi
n
g
filters is wi
d
e
ly u
s
ed as a cheap
p
o
wer su
pp
ly. Un
-con
tr
olled
ch
arg
i
n
g
of DC
filter
capacito
r resu
lts i
n
5
0
Hz
p
u
l
sed
ac cu
rren
t wav
e
fo
rm
at
th
e in
pu
t of the rectifier
as sho
w
n
in
Figu
re
2
.
Sev
e
ral p
o
wer qu
ality p
r
oble
m
s
arise at the source side,
which include
s poor
powe
r f
actor hig
h
inpu
t cu
rren
t to
tal h
a
rm
o
n
i
c d
i
stortio
n
(THD)
as sho
w
n i
n
Fi
gu
re 3 fai
l
u
re
of t
r
a
n
sf
o
r
m
e
r
s
due t
o
o
v
e
r
h
eat
i
ng an
d ha
r
m
oni
c pol
l
u
t
i
o
n o
n
gri
d
[
1
]
-
[
2
]
et
c.
Gri
d
di
st
u
r
ba
nces m
a
y
resul
t
i
n
m
a
l
f
u
n
ct
i
on
or
da
m
a
ge of el
e
c
t
r
i
cal
devi
ce
s. M
a
ny
m
e
t
h
ods
f
o
r
el
im
i
n
at
i
on
of
harm
oni
c
pol
l
u
t
i
o
n
i
n
t
h
e
p
o
w
er
sy
st
em
ar
e i
n
use a
n
d
n
e
w m
e
t
hods
ar
e bei
n
g i
n
vest
i
g
at
ed.
Restrictions on curre
nt and voltage
harm
onics are
m
a
intained in m
a
ny
countries thr
o
ugh
IEEE 519-
1
992 and
I
E
C
6
100
0-
3-2/I
E
C 610
00
-3-4
[3
] stand
a
r
d
s. The r
e
st
r
i
c
tions a
r
e ass
o
ciated
with
the
ide
a
of “clean power”
.
The
p
o
we
r
fac
t
or c
o
r
r
ect
i
o
n
(PFC
)
co
n
v
ert
e
r t
o
p
o
l
o
gy
us
i
ng act
i
v
e
wa
v
e
sha
p
i
n
g t
e
c
h
ni
q
u
es ca
n
o
v
e
r
com
e
th
e pr
ob
lem
in
lin
e cur
r
e
n
t
.
Th
e PFC conver
t
er
for
ces the lin
e to
d
r
aw
n
ear
sinu
so
i
d
al A
C
cur
r
e
n
t
in p
h
ase
wi
t
h
i
t
s
vol
t
a
g
e
. M
o
st
of t
h
e
si
ngl
e p
h
ase A
C
t
o
DC
conve
rsi
o
n PFC
w
o
r
k
s are d
o
n
e wi
t
h
B
u
ck, B
oost
,
an
d
buc
k
-
b
o
o
st
or
fl
y
-
bac
k
t
o
pol
ogy
bet
w
ee
n t
h
e so
u
r
ce an
d t
h
e l
o
a
d
. B
u
ck
and
b
u
ck
-
b
o
o
s
t
t
opol
ogy
s
u
f
f
e
r fr
om
i
n
p
u
t
di
sc
ont
i
n
uo
us c
u
r
r
e
n
t
[
4
]
-
[
7
]
an
d B
o
ost
t
o
pol
ogy
n
eeds l
a
r
g
e
val
u
e ca
paci
t
a
nce
[8]
t
o
m
i
nim
i
ze t
h
e
o
u
t
p
u
t
vo
ltag
e
ripp
le therefore in
itia
l in
ru
sh
cu
rren
t
is
h
i
g
h
e
r t
h
an
Ĉ
uk con
v
e
r
t
er [9
[-[
10
].
Ĉ
u
k
conv
er
ter
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Si
n
g
l
e
St
ag
e Si
ngl
e Ph
ase Ac
tive Power F
a
ct
or C
o
rrected
Ĉ
uk T
o
pol
ogy
B
a
se
d…
(
M
d
.
I
s
m
a
i
l
H
o
s
s
a
i
n
)
15
7
requ
ires l
o
w valu
e in
term
ed
iate cap
acita
n
c
e to
tr
an
s
f
er
en
er
g
y
to ou
tpu
t
ca
p
a
c
ita
n
c
e
an
d lo
a
d
[9
]-
[1
0
]
.
O
p
en
lo
op
Ĉ
u
k
co
nv
ert
e
r as sh
ow
n
i
n
Fi
gu
re 4 su
ffe
rs fr
om
l
e
ss out
p
u
t
v
o
l
t
a
ge
reg
u
l
a
t
i
on, l
o
w p
o
we
r fact
o
r
, l
o
w
effi
ci
ency
an
d
hi
g
h
i
n
p
u
t
cu
rr
ent
TH
D u
nde
r i
n
p
u
t
v
o
l
t
a
ge
and l
o
a
d
va
ri
a
t
i
on. I
n
t
h
i
s
p
a
per
out
put
v
o
l
t
a
ge
and i
n
p
u
t
cu
rre
nt
co
nt
ro
l
v
a
ri
ab
le du
ty cycle
Ĉ
uk c
o
n
v
ert
e
r
has bee
n
p
r
op
ose
d
f
o
r m
i
nim
i
zi
ng out
put
vol
t
a
g
e
vari
at
i
o
n d
u
e t
o
l
i
n
e v
o
l
t
a
ge
and l
o
ad
va
ri
at
i
on a
nd
o
b
t
a
i
n
i
ng si
n
u
soi
d
al
AC
m
a
i
n
s curr
ent
.
Fi
xe
d
fre
q
u
ency
is chosen due t
o
easier pa
rameter desi
gn
com
p
arable to
hysteresis control
.
2.
PROP
OSE
D
CLOSE
L
O
O
P
Ĉ
UK
RE
G
U
LATO
R B
A
SED
AC
-
D
C
CO
NVE
RTER
P
r
o
p
o
s
ed cl
os
e l
oop
Ĉ
u
k
re
gul
at
o
r
base
d
AC
-
D
C
con
v
e
r
t
e
r i
s
sho
w
n i
n
Fi
g
u
re 5
.
The t
echni
qu
e
use
d
here i
s
t
h
e A
v
era
g
e C
u
r
r
ent
M
o
de c
ont
rol
.
I
n
A
v
e
r
age C
u
rre
nt
M
ode c
ont
r
o
l
,
t
h
e out
p
u
t
v
o
l
t
a
ge i
s
cont
rolled
by varying t
h
e ave
r
age val
u
e of the current
si
g
n
a
l. Th
e Vo
ltag
e
feed
fo
rward c
o
m
p
ensator c
o
ntrols
t
h
e i
n
p
u
t
vol
t
a
ge vari
at
i
o
n i
n
such way
t
h
a
t
i
f
t
h
e i
nput
vol
t
a
ge
red
u
ce
s t
h
en t
h
e o
u
t
put
o
f
V
o
l
t
a
ge
feed
forwa
r
d c
o
m
p
ensator increase
s
and
vice
vers
a. T
h
e actual
ou
tpu
t
DC
vo
ltag
e
is
sen
s
ed
and
co
m
p
ared
wi
th
a
refe
rence
v
o
l
t
a
ge t
h
e
n
t
h
e
vol
t
a
ge er
ro
r i
s
pr
ocesse
d t
h
ro
ugh
th
e propo
rtion
a
l in
tegr
al con
t
ro
ller. Th
e
ou
tpu
t
o
f
t
h
e
p
r
o
portio
n
a
l i
n
tegral co
n
t
ro
ller is m
u
ltip
lied
with
the rectified
i
n
put v
o
ltag
e
an
d
ou
tpu
t
of v
o
ltage
feed
fo
rwa
r
d com
p
ensato
r to m
a
ke a refe
rence c
u
r
r
ent in
p
h
ase with
rectified
inp
u
t
v
o
ltage. Th
e
real curren
t is
forced t
o
trac
k the refe
re
nce
curren
t through curre
nt error
com
p
ensator.
The error
between
the actual
current
an
d r
e
f
e
r
e
n
ce cu
rr
en
t is
pr
o
c
essed
t
h
ro
ugh
the p
r
opo
r
tion
a
l
in
teg
r
al con
t
roller and
th
en
it
s ou
tpu
t
is co
mp
ared
with
th
e Saw-t
o
o
t
h
wav
e
to
gen
e
rate t
h
e
requ
ired
PWM si
gn
al.
Fi
gu
re
1.
N
o
r
m
al
di
ode
rect
i
f
i
e
r
Fi
gu
re
2.
I
n
p
u
t
v
o
l
t
a
ge a
n
d
i
n
put
c
u
rre
nt
f
o
r
40
0
Ω
load resistance
Fi
gu
re
3.
I
n
p
u
t
cu
rre
nt
T
H
D
f
o
r
4
0
0
Ω
lo
ad
resistance
Fi
gu
re
4.
O
p
e
n
l
o
o
p
Ĉ
uk recti
f
ier
-
500
0
500
I
nput
v
o
l
t
age(V
)
0.
6
6
0.6
8
0.7
0.72
0.
74
0.76
-2
0
-1
0
0
10
20
Ti
m
e
(
s
)
I
n
put
c
u
rr
ent
(
A
)
0
50
0
100
0
15
00
20
00
25
00
30
00
350
0
40
00
45
00
5
000
0
0.
5
1
1.
5
2
F
r
eq
ue
nc
y
(
H
z
)
F
u
n
d
a
m
e
n
t
a
l
(
5
0H
z
)
=
1.
98
7 ,
T
H
D
=
15
8.
45
%
Ma
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
15
6
–
16
4
15
8
Ac
t
u
a
l
Vo
l
t
a
g
e
PI
co
nt
ro
l
PI
co
n
t
ro
l
Vo
l
t
a
g
e
f
eed
Fo
rwa
r
d
co
m
p
en
s
a
t
o
r
E
rror
E
rro
r
Re
f
e
r
e
n
c
e
Vo
l
t
a
g
e
Re
f
e
r
e
n
c
e
Cu
rr
ent
S
a
w
t
ooth
wa
v
e
ge
n
e
r
a
t
o
r
C
o
m
p
ar
ato
r
PWM
Pu
l
s
e
Ac
t
u
a
l
curren
t
I
npu
t
r
e
c
t
ified
Vo
l
t
a
g
e
Fi
gu
re
5.
Pr
o
p
o
se
d cl
ose
l
o
o
p
Ĉ
u
k
rectifier
3.
PROP
OSE
D
CLOSE
L
O
O
P
Ĉ
UK
REG
U
LATO
R I
N
DIGIT
A
L
DO
MAI
N
R
eal
t
i
m
e
hard
ware ci
rc
ui
t
as
sh
ow
n i
n
Fi
g.
6 i
s
use
d
t
o
i
m
pl
em
ent
t
h
e pr
o
pose
d
cl
o
s
e
d
l
o
op
Ĉ
uk
b
a
sed
AC-DC
co
nv
erter. Th
e in
pu
t rec
t
i
f
i
e
d
AC
v
o
l
t
a
ge a
nd i
n
p
u
t
rect
i
f
i
e
d cu
rre
nt
are
sense
d
usi
ng s
i
m
p
l
e
v
o
ltag
e
d
i
v
i
d
i
n
g
n
e
two
r
k
and
h
a
ll typ
e
sen
s
or
r
e
sp
ectively. N
e
g
a
tiv
e
o
u
t
p
u
t
D
C
v
o
l
tag
e
is sen
s
ed
th
rough
vol
t
a
ge
di
vi
di
n
g
net
w
or
k a
n
d
i
nve
rt
i
n
g
net
w
or
k.
3.
1.
Aver
a
g
e Vol
t
a
g
e Co
mpu
t
a
t
i
o
n
in
Di
git
a
l Dom
a
in
In th
e an
alog
do
m
a
in
, th
e co
ntin
u
o
u
s
fo
rm
of th
e av
erage Vo
ltag
e
is:
V
V
.d
t
(
1
)
Whe
r
e,
V
ac
= t
h
e in
stan
tan
e
o
u
s
AC in
pu
t
v
o
ltage
T= ti
m
e
p
e
r
i
od d
e
p
e
nd
ing
on
th
e fr
equ
e
n
c
y
o
f
th
e
A
C
input v
o
ltag
e
.
In th
e
d
i
g
ital do
m
a
in
th
e d
i
screte fo
rm
o
f
t
h
i
s
equ
a
tion
is:
i = n
+
There
f
ore,
V
∑
V
i
.T
(
2
)
or
V
∑
V
i
.
(
3
)
or
V
∑
(
4
)
Whe
r
e,
V
AC
= I
n
put
v
o
l
t
a
ge at
t
h
e i
th
s
a
m
p
le.
N
=
N
u
mb
e
r
o
f
s
a
mp
l
e
s
t
a
k
e
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Si
n
g
l
e
St
ag
e Si
ngl
e Ph
ase Ac
tive Power F
a
ct
or C
o
rrected
Ĉ
uk T
o
pol
ogy
B
a
se
d…
(
M
d
.
I
s
m
a
i
l
H
o
s
s
a
i
n
)
15
9
Figu
re
6
.
Circ
uit diag
ram
for
close l
o
o
p
Ĉ
uk
rectifier
Figure 7
.
Calculation of
a
v
erage AC voltage
Monitoring of
zero c
r
ossing
point is com
p
lecated in a
n
alog circu
itry. Inst
ead, the m
e
thod used is t
o
fix
a
m
i
n
i
m
u
m referen
ce po
int fo
r th
e inp
u
t
v
o
ltag
e
, as shown
in
Fi
g
u
re 7. A co
un
ter starts wh
en
th
e sam
p
led
val
u
e o
f
i
n
put
AC
vol
t
a
ge fr
o
m
ADC
ri
ses abo
v
e V
MINREF
, and st
ops
whe
n
t
h
e v
o
l
t
a
ge f
a
l
l
s
bel
o
w V
MI
NREF
in
t
h
e ne
xt
cy
cl
e.
Fi
gu
re
8 s
h
ows
t
h
e
pr
o
g
ram
fl
ow
cha
r
t
of a
v
erage
v
o
l
t
a
ge c
o
m
put
at
i
on i
n
di
gi
t
a
l
d
o
m
a
i
n
.
Fi
gu
re
8.
Pr
o
g
r
a
m
Fl
ow c
h
a
r
t
of
ave
r
age
v
o
l
t
age
com
put
at
i
on i
n
di
gi
t
a
l
d
o
m
a
i
n
Fi
gu
re
9.
Pr
o
g
r
a
m
Fl
ow c
h
a
r
t
of
PI
co
nt
r
o
l
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
15
6
–
16
4
16
0
3.
2.
Digital
Im
plementati
on of Prop
orti
onal
I
n
te
gral Contr
o
l
The e
x
p
r
essi
o
n
o
f
pr
op
o
r
t
i
o
nal
i
n
t
e
g
r
al
c
ont
rol
i
n
c
o
nt
i
n
u
o
u
s
t
i
m
e
dom
ai
n i
s
defi
ned
by
t
h
e
fo
llowing
equ
a
tio
n
:
(
5
)
Whe
r
e:
C(t) corr
esponds to
the output sig
n
al of
th
e PI
con
t
roller
E(t)
=Ref
erence
– Actual(t)
corr
esponds to the inp
u
t error
signal of
the PI con
t
roller
K
P
corr
esponds to the proportion
al f
acto
r
K
I
corresponds to the integral
co
nstant
An
d t
h
e
di
scret
e
f
o
rm
of
PI e
x
pressi
o
n
:
∑
(
6
)
∑
(
7
)
∑
(
8
)
Whe
r
e,
K
P
= K a
n
d
K
I
=
T
S
is th
e sam
p
le ti
m
e
T
I
is th
e in
teg
r
al ti
m
e
co
n
s
tant
E(n
)
= Re
fere
n
ce-Act
u
al(n
) i
n
put e
r
r
o
r at
n
th
sam
p
le
The pr
o
g
ram
fl
ow
cha
r
t
of PI
cont
rol
i
s
sh
o
w
n
i
n
Fi
g
u
r
e 9.
4.
PRO
G
RAM F
L
OWCHART
OF THE
PROPOSE
D
S
Y
STEM
Fi
gu
re
1
0
.
Pr
o
g
ram
Fl
ow
cha
r
t
o
f
t
h
e
p
r
op
os
ed c
ont
rol
sy
st
em
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Si
n
g
l
e
St
ag
e Si
ngl
e Ph
ase Ac
tive Power F
a
ct
or C
o
rrected
Ĉ
uk T
o
pol
ogy
B
a
se
d…
(
M
d
.
I
s
m
a
i
l
H
o
s
s
a
i
n
)
16
1
The m
a
i
n
pr
o
g
r
am
fl
ow c
h
art
i
s
sh
o
w
n i
n
F
i
gu
re
10
. A
f
t
e
r
a R
e
set
,
whe
n
t
h
e
pr
og
ram
is exec
ut
ed
,
all th
e v
a
riab
les are in
itializ
ed
and
p
e
riph
erals are con
f
i
g
u
r
ed
. Th
e PI
param
e
ter v
a
lu
es are d
e
fi
n
e
d
fo
r th
e
co
n
t
ro
l loo
p
com
p
en
sato
rs. Th
e PW
M m
o
d
u
le is switch
e
d
ON to
o
p
e
rate at a frequ
en
cy
o
f
8
0kHz, and
all th
e
i
n
t
e
rr
upt
s are e
n
abl
e
d. T
h
e A
D
C
m
odul
e w
a
i
t
s
for a P
W
M
m
odul
e spe
c
i
a
l
event
i
n
t
e
rru
pt
. O
n
eve
r
y
peri
o
d
match
,
th
e PWM g
e
n
e
rates a trig
g
e
r to
t
h
e ADC to
start sa
m
p
lin
g
the sig
n
a
ls and
co
nv
ertin
g
th
em
.
On
a
ti
m
e
r trig
g
e
r, t
h
e
ADC
sam
p
les and
con
v
e
rt
s th
e
vo
ltag
e
s
an
d cu
rren
ts an
d later
g
e
n
e
rates an
ADC in
t
e
rru
p
t
.
The powe
r fact
or
correction
routine
s
run
i
n
sid
e
th
e ADC
In
terrup
t Serv
ic
e
Ro
utine (I
SR). A p
o
we
r-
o
n
delay
is allo
wed
for t
h
e cap
acito
rs t
o
ch
arg
e
t
o
th
e DC
b
u
s
v
o
ltage.
Aft
e
r t
h
e
po
w
e
r-
on
del
a
y
t
i
m
e (app
r
oxi
m
a
t
e
l
y
100 m
s
) com
p
l
e
t
i
on, t
h
e co
nt
r
o
l
l
o
o
p
s
begi
n t
o
execute.
Duri
ng the process
of
po
wer-on
delay, the vol
t
age sam
p
les
are accum
u
lated and freque
ncy is
calcu
lated
.
Th
is en
ab
les t
h
e av
er
ag
e vo
ltag
e
calcu
latio
n
to b
e
do
ne in
the f
i
r
s
t iter
a
tio
n o
f
th
e con
t
r
o
l
loop
itself
,
as th
e av
er
ag
e
v
o
ltage is alr
ead
y av
ailab
l
e f
o
r
a
p
e
r
i
od
cor
r
e
spond
ing
to
on
e line vo
ltag
e
cycle. Th
e
voltage
error com
p
ensators execute
t
h
e
v
o
l
t
a
ge P
I
c
ont
rol
l
e
rs
ha
vi
n
g
t
h
e m
easured
val
u
e
o
f
o
u
t
put
DC
vol
t
a
ge
. T
h
e a
v
era
g
e
val
u
e
o
f
i
n
put
vol
t
a
ge
, sq
uari
ng
an
d
di
vi
di
n
g
r
out
i
n
es, e
x
ec
ut
e i
n
se
que
nce
fr
o
m
t
h
e
m
easured
val
u
e of i
n
p
u
t
AC
vol
t
a
ge t
h
ere
b
y
gi
vi
n
g
t
h
e
vo
l
t
a
ge feed
-f
or
w
a
rd c
o
m
p
ensat
o
r
out
put
.
Thi
s
out
pu
t
is u
s
ed
in
co
nju
n
c
tion
wit
h
the v
o
ltag
e
erro
r co
m
p
en
sato
r
o
u
t
p
u
t
to
calculate th
e reference v
a
lu
e of I_
ac_
r
ef.
Havi
ng I_ac_ref
and
the
m
easure
d
value of the
induct
or
cur
r
e
n
t
,
th
e
cu
rr
en
t e
r
ror
c
o
mp
e
n
s
a
tor
e
x
ec
u
t
es
th
e
current
PI cont
rollers
to
produce th
e
ne
w
duty cycle for t
h
e
PW
M
pulse.
5.
SIMULATION RESULT
Fig
u
r
e
11
.
32
5V
(p
eak
)
inp
u
t
r
ectif
ied
vo
ltage
Fig
u
r
e
12
. i
n
put r
ectif
ied
cu
rren
t
fo
r 400
Ω
lo
a
d
Fi
gu
re 1
3
. O
u
t
put
v
o
l
t
a
ge fo
r 40
0
Ω
l
o
a
d
Fi
gu
re 1
4
. FFT
com
pone
nt
of
i
n
p
u
t
rect
i
f
i
e
d cur
r
ent
fo
r 40
0
Ω
lo
ad
Tim
e
(
s
)
F
r
equ
e
nc
y
(
Hz
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
15
6
–
16
4
16
2
L_F= 8µ
H, L
1
= 10m
H, L2=
1
m
H
, C
1
=0.
2
µF, C
2
=3
3
0
µF
and swi
t
c
hi
n
g
freq
u
e
n
cy
= 800
0
0
Hz a
r
e
use
d
of
pr
op
o
s
ed cl
ose l
o
op
Ĉ
u
k
to
po
logy b
a
sed
A
C
-D
C co
nv
er
ter
f
o
r
si
m
u
latio
n in
p
r
o
t
eu
s sof
t
w
a
re.
No
rm
al
di
ode
rect
i
f
i
e
r a
nd
o
p
en
l
o
op
Ĉ
uk
rectifier sim
u
l
a
tio
n
are p
e
rform
e
d
in
Matla
b
Sim
u
lin
k
.
Fi
g
u
re
11
t
o
Fi
gu
re 1
4
sh
ow t
h
e i
n
put
re
ct
i
f
i
e
d vol
t
a
ge
,
i
nput
rect
i
f
i
e
d
curre
nt
, o
u
t
p
u
t
vol
t
a
ge, FFT
com
pone
nt
of i
n
p
u
t
current respect
ively.
Figure
1
5
t
o
Fi
gu
re
19
sho
w
t
h
e rel
a
t
i
v
e per
f
o
r
m
a
nce of
n
o
rm
al
di
ode
rect
i
f
i
e
r,
ope
n
lo
op
Ĉ
u
k
rectifier an
d clo
s
e
lo
op
Ĉ
u
k
rectifier in term
s o
f
ou
t
p
u
t
vo
ltage reg
u
l
ation
,
i
n
pu
t PF, effici
en
cy,
i
n
p
u
t
cu
rre
nt
THD
u
n
d
er l
o
ad va
ri
at
i
on a
n
d o
u
t
p
ut
v
o
l
t
a
ge re
g
u
l
a
t
i
on
un
de
r i
n
put
vo
l
t
a
ge vari
at
i
o
n.
Fi
nal
l
y
Fi
gu
re 2
0
s
h
o
w
s
t
h
e out
put
v
o
l
t
a
ge reg
u
l
a
t
i
o
n
at
di
ffe
rent
fre
que
ncy
.
Figure 15
.
O
u
t
put
v
o
l
t
a
ge
at
di
ffe
re
nt
l
o
a
d
s and
32
5
V
(
p
ea
k)
i
n
put
v
o
l
t
a
ge
Figure 16
.
In
p
u
t
PF
at
di
ffe
re
nt
l
o
a
d
s a
n
d
32
5V
(pea
k)
i
n
put
v
o
l
t
a
ge
Figure 17.
E
ffi
ciency at different loa
d
s a
n
d
325V
(pea
k)
i
n
put
v
o
l
t
a
ge
Figu
re
1
8
.
In
p
u
t cu
rre
nt T
H
D at
diffe
re
nt load
s a
n
d
32
5
V
(
p
ea
k)
i
n
put
v
o
l
t
a
ge
100
150
200
250
300
350
400
450
500
400
267
200
Output
DC
Voltage
in
Volt
Lo
ad
resistance
(
Ω
)
normal
diode
r
e
c
t
ifier
open
loop
Cuk
r
e
c
t
ifier
cl
ose
loop
Cuk
r
e
c
t
ifier
0
10
20
30
40
50
60
70
80
90
100
400
267
200
Input
po
wer
factor
in
%
Lo
ad
resistance
(
Ω
)
normal
diode
r
e
c
t
ifier
open
loop
Cuk
r
e
c
t
ifier
cl
ose
loop
Cuk
r
e
c
t
ifier
0
10
20
30
40
50
60
70
80
90
100
400
267
200
Efficien
cy
in
%
Lo
ad
resistance
(
Ω
)
normal
diode
r
e
c
t
ifier
open
loop
Cuk
r
e
c
t
ifier
cl
ose
loop
Cuk
r
e
c
t
ifier
7.
4
6.
12
4.
4
0
20
40
60
80
100
120
140
160
180
200
400
267
200
Input
current
THD
in
%
Lo
ad
resistance
(
Ω
)
normal
diode
r
e
c
t
ifier
open
loop
Cuk
r
e
c
t
ifier
cl
ose
loop
Cuk
r
e
c
t
ifier
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Si
n
g
l
e
St
ag
e Si
ngl
e Ph
ase Ac
tive Power F
a
ct
or C
o
rrected
Ĉ
uk T
o
pol
ogy
B
a
se
d…
(
M
d
.
I
s
m
a
i
l
H
o
s
s
a
i
n
)
16
3
Fi
gu
re 1
9
. O
u
t
put
v
o
l
t
a
ge
at
di
ffe
re
nt
i
n
put
vol
t
a
ge
s
with
4
0
0
Ω
loa
d
resistance
Figure 20
.
O
u
t
put
v
o
l
t
a
ge
at
di
ffe
re
nt
i
n
put
fre
que
ncy
a
n
d
40
0
Ω
l
o
ad resi
stance
6.
CO
NCL
USI
O
N
In
t
h
i
s
pape
r t
h
e
pr
o
pose
d
cl
ose
l
o
o
p
Ĉ
uk
to
po
log
y
b
a
sed
A
C
-
D
C co
nv
er
ter
h
a
s an
alyzed
and
i
m
p
l
e
m
en
ted
in
d
i
g
ital d
o
m
ain
with
in
telligen
t prog
ram
alg
o
rith
m
s
. Th
e
resu
lts
o
f
p
r
opo
sed
con
t
ro
ller sho
w
t
h
e i
m
provem
e
nt
o
f
i
n
put
c
u
r
r
ent
T
H
D, i
n
p
u
t
p
o
w
e
r
fact
o
r
an
d
out
put
v
o
l
t
a
ge re
g
u
l
a
t
i
on
u
n
d
e
r t
h
e v
a
ri
abl
e
l
o
ad a
n
d i
n
pu
t
vol
t
a
ge
di
st
u
r
ba
nce.
The c
o
m
p
arat
i
v
e pe
rf
orm
a
nces o
f
di
ffe
re
nt
AC
-
D
C
co
n
v
ert
e
rs
ha
v
e
prese
n
ted a
nd hence the e
f
fec
tiveness
of t
h
e propose
d close
Ĉ
u
k
t
o
p
o
l
ogy
base
d
A
C
-DC
co
n
v
ert
e
r has
verifie
d
.
REFERE
NC
ES
[1]
Zixin
Li, Yaohu
a Li, Ping Wan
g
, Hai bi
n
Zhu
,
Cong wei Liu
and Wei Xu. C
ontrol of
Thr
ee-
Phase Boost-Type
P
W
M
Recti
fi
er
in Stationar
y
Fr
ame under Unb
a
lan
ced Inpu
t Voltag
e
. I
EEE
T
r
ans. On Power
Ele
c
tronics.
201
0;
25(10): 2521-25
30.
[2]
Thomas Nussbaumer, Johann W Kola
r. Comparison of 3-Phase
Wide
Output Voltag
e
Range PWM Recti
fi
ers
.
IE
EE
Transaction on
Power electronics
. 2007; 54(6):
3422-3425.
[3]
H Azizi,
A Vahedi.
Performance Analy
s
is of Direct Power Controlled PWM
Rectifier und
er Disturbed AC Lin
e
Voltage
.
IC
REP
Q’05
. Zaragoza-
Spain Ser
i
al. 20
05; 244: 1-6.
[4]
Ray
-
Lee Lin, R
u
i-Che Wang. Non-inverting B
u
ck-Boost
Power-Factor-Correction Converter
with Wide Input-
Voltage-R
ange Applications.
IECON.
2010: 599
-604.
[5]
Mahadev S Patil. Single phas
e
buc
k
ty
pe
power factor corrector with
lowe
r harmonic contents in
compliances with
IEC 61000-3-2
.
International Jo
urnal of
Engi
neering Science and
Technolog
y
. 20
10; 2(11): 6122-
6130.
[6]
Majid Jamil,
Zahra Mehdi. Pow
e
r factor im
provement of cascad
e
d buck boost co
nverter
.
Nationa
l
power
el
ectr
o
n
i
cs
confer
en
ce
(
N
PEC-10)
, Indian
I
n
stitute of
Tech
n
o
log
y
Roorkee.
2010: 1-6.
[7]
Wang Wei. A novel bridg
e
le
ss buck-boost PFC
converter.
P
o
we
r E
l
ec
t
r
oni
c
s
Spe
c
i
al
i
s
t
s
Conf
ere
n
c
e
PE
SC.
IEEE.
2008:
1304-130
8.
[8]
K P
e
ri
y
a
s
a
m
y
. P
o
wer F
actor Correct
ion Bas
e
d On F
u
zz
y
Logi
c Controlle
r with Average Curren
t
-
M
ode F
o
r DC-DC
Boost Converter
.
Int
e
rnational
J
ournal of
Engine
ering R
e
search
and Appl
icat
ions (
I
JERA)
. 2012
;
2(5): 771-777
.
[9]
Muhammad H
Rashid. Power
Electronics Han
dbook 3
rd
editio
n devices circui
ts and app
lication.
Els
evi
er
Inc
,
Burlington
USA
. 2011.
[10]
Bimal k Bose.
Modern Power electronics
and A
C
drives.
Pren
tice hall PTR,
Upp
e
r saddle river.
2002.
100
150
200
250
300
350
400
450
500
282
325
368
Output
DC
Voltage
in
Volt
Input
pea
k
voltage(V)
normal
diode
r
e
c
t
ifier
open
loop
Cuk
r
e
c
t
ifier
cl
ose
loop
Cuk
r
e
c
t
ifier
400
398
400
0
50
100
150
200
250
300
350
400
450
500
45
50
55
Output
voltage
in
volt
Input
frequenc
y(Hz)
Output
voltage
for
cl
ose
loop
Cuk
rect
i
f
er
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
15
6
–
16
4
16
4
BIOGRAP
HI
ES OF
AUTH
ORS
M
d
Is
m
a
il Hos
s
ain r
ece
ived
his
M
.
S
c
degr
ee
in
El
ectr
i
c
a
l
& E
l
ectron
i
c
Engin
e
ering from
Banglad
esh University
of
Engineering
and
t
echnolog
y
.
He is
working as
an assistant
professor in El
ectr
i
ca
l & E
l
e
c
troni
c Engin
e
e
r
ing Departm
e
n
t
at Int
e
rna
tion
a
l Islam
i
c
University
Ch
ittagong. His res
earch interests ar
e Power Electro
nics, Industrial motor driv
e
and au
tom
a
tion
,
H
y
brid
el
ect
ric
v
e
hic
l
e,
M
i
cro
c
on
trolle
r and
Em
be
dded S
y
s
t
em
s
,
E
l
ec
tric
al
M
achine
,
R
e
new
a
ble
en
erg
y
and
S
m
art Grid e
t
c
Dr. Mohammad Jahangir
Alam is working
as
a pro
f
essor in
Ele
c
tr
ica
l
& E
l
ec
troni
c
Engineering department at Ba
ngladesh University
of
Engineering and tech
nolog
y
.
H
e
rece
ived his
B.S
c
and M
.
S
c
degr
ee in E
l
ec
tri
cal
& Ele
c
troni
c En
gineer
ing from
Banglad
es
h
University
of Engineer
ing and technolog
y
.
He
did his PhD in
Electrical
Engin
eering from
Dublin Cit
y
Univers
i
t
y
, Ir
el
and. His
res
e
a
r
ch int
e
res
t
s
a
r
e El
ectr
i
c
a
l a
nd optic
al
chara
c
t
e
riz
a
tion
of thin film
s.
Structural
char
act
eriz
ation of
thin film
s (Infrared, X
-
r
a
y
diffraction and
X-ray
photo
e
lectron spectroscop
y
techniqu
es). Dielectr
i
c mater
i
als and power
e
l
ec
t
r
onic
s
et
c.
Evaluation Warning : The document was created with Spire.PDF for Python.