I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
w
er
E
lect
ro
nics
a
nd
Driv
e
Sy
s
t
e
m
(
I
J
P
E
DS
)
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
,
p
p
.
1
8
4
1
~
1
8
5
1
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
p
ed
s
.
v8
i
4
.
pp
1
8
4
1
-
1851
1841
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JP
E
DS
Neura
l Adap
tive
K
a
l
m
a
n
F
il
ter fo
r
Senso
rless
Ve
cto
r Control
of
Indu
ction M
o
tor
G
hli
b I
m
a
ne
1
,
M
ess
le
m
Yo
u
ce
f
2
,
G
o
uichi
che
A
bd
el
m
a
dji
d
3
,
Chedj
a
ra
Z
a
k
a
ria
4
1,
2,
3
L
a
b
o
ra
to
ire
d
e
G
é
n
ie E
lec
tri
q
u
e
e
t
d
e
P
las
m
a
s (L
G
EP
),
Ib
n
Kh
a
ld
o
u
n
Un
iv
e
rsit
y
T
iar
e
t,
A
lg
e
ria
4
I
n
telli
g
e
n
t
Co
n
tr
o
l
&
El
e
c
tri
c
a
l
P
o
w
e
r
S
y
ste
m
s
L
a
b
o
ra
to
ry
(ICEP
S
),
Djil
lali
L
iab
e
s Un
iv
e
rsit
y
,
S
id
i
Be
l
A
b
b
e
s,
A
l
g
e
ria
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
y
7
,
2
0
1
7
R
ev
i
s
ed
A
u
g
3
0
,
2
0
1
7
A
cc
ep
ted
Sep
14
,
2
0
1
7
T
h
is
p
a
p
e
r
p
re
se
n
ts
a
n
o
v
e
l
n
e
u
ra
l
a
d
a
p
ti
v
e
Ka
l
m
a
n
f
il
ter
f
o
r
sp
e
e
d
se
n
so
rles
s
f
ield
o
rien
ted
v
e
c
to
r
c
o
n
tro
l
o
f
in
d
u
c
ti
o
n
m
o
to
r.
T
h
e
a
d
a
p
ti
v
e
o
b
se
rv
e
r
p
ro
p
o
se
d
h
e
re
is
b
a
se
d
o
n
M
RA
S
(m
o
d
e
l
re
f
e
re
n
c
e
a
d
a
p
ti
v
e
s
y
ste
m
)
te
c
h
n
iq
u
e
,
w
h
e
re
th
e
li
n
e
a
r
Ka
l
m
a
n
f
il
ter
c
a
lcu
late
th
e
sta
ti
o
n
a
ry
c
o
m
p
o
n
e
n
ts
o
f
sta
to
r
c
u
rre
n
t
a
n
d
t
h
e
ro
to
r
f
lu
x
a
n
d
t
h
e
ro
t
o
r
sp
e
e
d
is
c
a
lcu
late
d
w
it
h
a
n
a
d
a
p
ti
v
e
m
e
c
h
a
n
is
m
.
M
o
re
o
v
e
r,
to
im
p
ro
v
e
th
e
p
e
rf
o
r
m
a
n
c
e
o
f
th
e
P
I
c
las
sic
a
l
c
o
n
tr
o
ll
e
r
u
n
d
e
r
d
if
f
e
re
n
t
c
o
n
d
it
io
n
s,
a
n
o
v
e
l
a
d
a
p
tatio
n
sc
h
e
m
e
b
a
se
d
o
n
A
D
AL
INE
(
A
D
A
p
ti
v
e
L
In
e
a
r
NEu
ro
n
)
n
e
u
ra
l
n
e
tw
o
rk
is
u
se
d
.
It
o
ff
e
rs
a
s
o
lu
ti
o
n
t
o
th
e
P
I
p
a
ra
m
e
ters
t
o
sta
b
il
ize
a
u
to
m
a
ti
c
a
ll
y
a
b
o
u
t
th
e
ir
o
p
t
im
u
m
v
a
lu
e
s
a
n
d
sp
e
e
d
e
stim
a
ti
o
n
t
o
c
o
n
v
e
rg
e
q
u
ick
e
r
to
th
e
re
a
l.
T
h
e
p
ro
p
o
se
d
a
d
a
p
ti
v
e
Ka
lma
n
f
il
ter
r
e
p
re
se
n
ts
a
g
o
o
d
c
o
m
p
rise
b
e
t
w
e
e
n
e
sti
m
a
ti
o
n
a
c
c
u
ra
c
y
a
n
d
c
o
m
p
u
tatio
n
a
ll
y
in
ten
siv
e
.
T
h
e
sim
u
latio
n
re
su
lt
s
s
h
o
w
e
d
th
e
r
o
b
u
stn
e
ss
,
e
f
f
icie
n
c
y
,
a
n
d
su
p
e
ri
o
rit
y
o
f
th
e
p
ro
p
o
se
d
sc
h
e
m
e
c
o
m
p
a
re
d
to
t
h
e
c
las
sic
a
l
m
e
th
o
d
e
v
e
n
in
l
o
w
sp
e
e
d
re
g
io
n
.
K
ey
w
o
r
d
:
A
D
AL
I
NE
A
d
ap
tiv
e
s
p
ee
d
esti
m
a
tio
n
A
r
ti
f
icial
n
e
u
r
al
n
et
w
o
r
k
Field
o
r
ien
ted
v
ec
to
r
co
n
tr
o
l
I
n
d
u
ctio
n
m
o
to
r
Kal
m
a
n
f
ilter
Sen
s
o
r
les
s
co
n
tr
o
l
Co
p
y
rig
h
t
©
201
7
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Gh
lib
I
m
a
n
e,
L
ab
o
r
ato
ir
e
d
e
Gén
ie
E
lectr
iq
u
e
E
t d
e
P
las
m
as (
L
GE
P
)
,
Facu
lté
d
es Sc
ien
ce
s
A
p
p
liq
u
é
s
,
I
b
n
Kh
ald
o
u
n
Un
i
v
er
s
i
té,
B
P
7
0
Z
ar
o
u
r
a
1
4
0
0
0
T
iar
et,
A
l
g
er
ia.
E
m
ail:
i
m
a
n
e.
g
h
lib
@
u
n
i
v
-
tiar
et.
d
z
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
Field
o
r
ien
ted
co
n
tr
o
l
o
f
i
n
d
u
ctio
n
m
o
to
r
(
I
M)
r
eq
u
ir
es
th
e
k
n
o
w
led
g
e
o
f
r
o
to
r
s
p
ee
d
an
d
s
tato
r
cu
r
r
en
t
m
ea
s
u
r
e
m
en
t
[
1
]
.
Ho
w
e
v
er
,
th
e
s
p
ee
d
s
en
s
o
r
ca
n
n
o
t
b
e
m
o
u
n
ted
in
s
o
m
e
ca
s
e
d
u
e
to
ex
i
t
d
if
f
ic
u
ltie
s
in
m
a
in
ta
in
i
n
g
th
is
s
p
ee
d
s
e
n
s
o
r
,
m
a
k
e
th
e
s
y
s
te
m
ea
s
y
b
e
d
i
s
tu
r
b
ed
an
d
th
eir
h
ig
h
co
s
t.
Sen
s
o
r
les
s
s
p
ee
d
co
n
tr
o
l
o
f
i
n
d
u
ctio
n
m
o
to
r
ca
n
av
o
id
f
r
a
g
i
lit
y
o
f
th
e
m
ec
h
an
ica
l
s
e
n
s
o
r
,
eli
m
i
n
ate
th
e
d
if
f
ic
u
lt
y
o
f
m
o
u
n
ti
n
g
t
h
e
s
en
s
o
r
a
n
d
r
ed
u
ce
co
s
t
in
m
a
n
y
ap
p
licatio
n
s
[
1
]
.
T
h
er
e
ar
e
p
len
t
y
o
f
liter
at
u
r
e
w
o
r
k
s
co
n
ce
r
n
i
n
g
s
p
ee
d
s
e
n
s
o
r
alg
o
r
ith
m
s
a
m
o
n
g
t
h
e
m
,
t
h
e
s
tate
o
b
s
er
v
er
s
.
His
p
r
in
cip
l
e
b
ased
o
n
th
e
I
M
d
y
n
a
m
ic
eq
u
at
io
n
s
[
2
]
.
I
n
g
en
er
al,
o
b
s
er
v
er
s
ca
n
b
e
class
i
f
ied
i
n
to
t
w
o
d
o
m
a
i
n
s
,
s
to
ch
ast
ic
an
d
d
eter
m
in
i
s
tic.
[
3
]
T
h
e
o
p
ti
m
al
esti
m
ate
o
f
s
to
ch
a
s
tic
o
b
s
er
v
er
s
is
b
ased
o
n
n
o
is
e
eli
m
i
n
atio
n
(
f
o
r
ex
a
m
p
le
Kal
m
a
n
f
il
ter
KF)
.
A
s
lo
n
g
as
th
e
d
eter
m
i
n
i
s
tic
n
e
g
lect
t
h
e
m
(
L
u
en
b
er
g
er
,
MR
AS
(
m
o
d
el
r
ef
er
en
ce
ad
ap
tiv
e
s
y
s
te
m
)
.
T
h
e
MR
AS
m
eth
o
d
i
s
b
ased
o
n
th
e
co
m
p
ar
i
s
o
n
b
et
w
ee
n
t
h
e
o
u
tp
u
ts
o
f
t
w
o
e
s
ti
m
ates
[
4
]
.
T
h
e
o
u
tp
u
t
er
r
o
r
s
ar
e
th
en
u
s
ed
to
d
r
iv
e
a
s
u
itab
le
ad
ap
tatio
n
m
ec
h
a
n
i
s
m
t
h
at
g
e
n
er
ates
t
h
e
esti
m
at
ed
s
p
ee
d
[5
-
8]
.
T
h
e
MR
A
S
r
o
to
r
f
lu
x
is
t
h
e
m
o
s
t
p
o
p
u
lar
MRA
S
s
tr
ate
g
y
,
th
e
m
ain
p
r
o
b
le
m
o
f
m
o
d
el
-
b
as
ed
s
en
s
o
r
d
r
iv
e
ar
e
r
elate
d
lo
w
-
s
p
ee
d
r
an
g
e.
W
h
ile
t
h
e
in
d
u
ctio
n
m
o
to
r
m
o
d
el
is
a
s
to
ch
a
s
tic
s
y
s
te
m
,
th
e
o
p
ti
m
al
r
o
to
r
s
p
ee
d
esti
m
at
i
o
n
is
w
el
l
illu
s
tr
ated
b
y
Kal
m
a
n
A
lg
o
r
it
h
m
.
T
h
e
s
p
ee
d
is
co
n
s
id
er
ed
as
a
s
tate.
T
h
e
ex
ten
d
ed
v
er
s
i
o
n
o
f
K
al
m
a
n
f
i
lter
(
E
KF)
d
esig
n
ed
f
o
r
n
o
n
-
li
n
ea
r
s
y
s
te
m
s
h
o
w
s
a
g
o
o
d
p
er
f
o
r
m
an
ce
e
v
e
n
in
lo
w
s
p
ee
d
[
9
]
,
[
1
0
]
.
N
o
t
o
n
l
y
,
to
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
18
41
–
1
8
5
1
1842
esti
m
ate
r
o
to
r
f
l
u
x
a
n
d
s
p
ee
d
b
u
t
al
s
o
E
KF
is
u
s
ed
to
co
r
r
ec
t
an
d
d
ia
g
n
o
s
e
b
y
est
i
m
a
tin
g
p
ar
am
eter
s
(
R
r
,
R
s
,
…)
[
9
]
.
B
esid
es,
o
th
er
w
o
r
k
s
ex
te
n
d
ed
I
M
m
o
d
el
i
n
o
r
d
er
to
esti
m
ate
to
r
q
u
e
lo
ad
f
o
r
co
m
p
e
n
s
at
in
g
a
n
d
eli
m
i
n
ate
th
e
s
ta
tic
er
r
o
r
.
W
h
en
ev
er
th
e
s
y
s
te
m
is
m
o
r
e
ex
t
en
d
ed
,
th
e
all
e
s
ti
m
atio
n
i
s
m
o
r
e
p
r
ec
is
e
an
d
t
h
e
co
m
p
u
tatio
n
all
y
co
s
t
b
ec
o
m
e
s
m
o
r
e
in
te
n
s
iv
e.
T
h
is
f
ilter
m
y
n
o
t
b
e
ap
p
r
o
p
r
iate
in
s
it
u
atio
n
.
So
,
in
s
tead
o
f
u
s
i
n
g
5
o
r
d
er
m
o
d
el
o
r
m
o
r
e
,
4
o
r
d
er
lin
ea
r
KF
is
e
n
o
u
g
h
to
e
s
ti
m
ate
r
o
to
r
f
lu
x
.
An
d
th
e
r
o
to
r
s
p
ee
d
is
ca
lcu
lated
w
ith
t
h
e
ad
ap
tio
n
m
ec
h
a
n
i
s
m
[
1
1
]
.
Mo
r
a
an
d
al
[
1
1
]
,
co
m
p
ar
ed
b
etw
ee
n
ad
ap
tiv
e
s
p
ee
d
esti
m
at
io
n
b
ased
o
n
li
n
ea
r
K
F,
s
tr
aig
h
t
f
o
r
w
ar
d
E
KF
[
1
2
]
,
an
d
s
p
ee
d
ad
ap
tiv
e
f
lu
x
o
b
s
er
v
er
[
6
]
.
T
h
e
r
es
u
lt
s
s
h
o
w
i
n
a
r
ea
l
ap
p
licatio
n
t
h
at
th
e
s
a
m
p
l
e
ti
m
e
o
f
E
KF
is
g
r
ea
ter
5
ti
m
es
t
h
an
t
h
e
ad
ap
tiv
e
o
n
e
an
d
a
g
o
o
d
p
er
f
o
r
m
a
n
ce
in
lo
w
s
p
ee
d
co
m
p
ar
ed
w
i
th
ad
ap
tiv
e
f
l
u
x
o
b
s
er
v
er
.
So
t
h
e
li
n
ea
r
KF
i
s
s
u
itab
le
f
o
r
u
s
e
w
it
h
co
m
p
lex
s
tr
u
ct
u
r
es
t
h
at
d
e
m
an
d
h
ig
h
co
m
p
u
tatio
n
al
r
eq
u
ir
e
m
en
t
s
.
B
ased
o
n
h
is
ad
v
an
tag
e
s
li
n
e
ar
Kal
m
a
n
f
ilter
is
s
elec
ted
i
n
t
h
is
w
o
r
k
to
est
i
m
ate
r
o
to
r
f
l
u
x
.
Ho
w
e
v
er
,
r
o
to
r
s
p
ee
d
is
ca
lc
u
lated
w
it
h
ad
ap
tio
n
m
ec
h
a
n
i
s
m
.
P
I
r
eg
u
lato
r
s
ar
e
th
e
m
o
s
t
u
s
e
f
u
l
ad
ap
tatio
n
s
ch
e
m
es
f
o
r
ad
ap
tiv
e
o
b
s
er
v
er
s
to
g
en
er
ate
t
h
e
esti
m
ated
r
o
to
r
s
p
ee
d
.
Ho
w
e
v
er
,
P
I
g
ain
s
ar
e
f
i
x
ed
f
o
r
t
h
e
e
n
tire
o
p
er
ati
n
g
ti
m
e
o
f
th
e
o
b
s
er
v
er
.
T
h
e
y
c
h
ar
ac
ter
ize
th
e
r
esp
o
n
s
e
o
f
t
h
e
es
ti
m
ato
r
.
T
h
e
y
ar
e
ch
o
s
e
n
w
it
h
"
tr
y
an
d
e
r
r
o
r
"
test
s
.
i.e
.
,
s
till
g
r
o
p
in
g
u
n
t
il
t
h
e
r
es
u
lt
s
ar
e
s
atis
f
y
in
g
.
I
n
o
t
h
er
w
a
y
s
,
th
e
s
y
s
te
m
a
ttit
u
d
e
ch
a
n
g
e
s
with
ti
m
e
t
h
at
m
ak
e
s
t
h
ese
g
ain
s
i
n
v
alid
f
o
r
all
o
p
er
atin
g
co
n
d
itio
n
s
.
Fo
r
t
h
is
,
m
a
n
y
s
o
lu
tio
n
s
ar
e
p
r
o
p
o
s
ed
s
u
c
h
as
ad
v
an
ce
d
ad
ap
tatio
n
m
ec
h
a
n
i
s
m
s
,
f
u
zz
y
lo
g
ic
co
n
tr
o
ller
[
1
3
]
,
[
1
4
]
s
lid
in
g
m
o
d
e
ad
ap
tio
n
[
1
5
]
,
[
1
6
]
,
a
n
d
ANN
alg
o
r
it
h
m
s
(
B
P
N
lear
n
in
g
lo
w
[
1
7
]
)
.
I
n
th
i
s
s
tu
d
y
,
w
e
ex
p
lo
r
e
th
e
p
o
s
s
ib
ilit
y
to
a
m
el
io
r
ate
ad
ap
tiv
e
Kal
m
an
f
ilter
w
it
h
n
e
w
a
d
ap
tatio
n
s
ch
e
m
e
.
I
t
co
n
s
is
t
s
to
s
ep
ar
at
e
th
e
esti
m
a
tio
n
o
f
r
o
to
r
f
lu
x
an
d
r
o
to
r
s
p
ee
d
in
tw
o
s
eq
u
e
n
tial
s
ta
g
es.
W
h
er
e
th
e
s
ta
to
r
cu
r
r
en
ts
a
n
d
th
e
r
o
to
r
f
lu
x
ar
e
ca
lcu
lated
b
y
li
n
ea
r
Kal
m
a
n
f
ilter
an
d
s
p
ee
d
is
co
n
s
id
er
as
th
e
o
u
tp
u
t
o
f
P
I
co
r
r
ec
to
r
.
A
n
d
t
h
e
m
et
h
o
d
th
at
w
e
p
r
o
p
o
s
e
to
a
m
e
lio
r
ate
th
e
s
p
ee
d
ad
ap
tatio
n
m
ec
h
an
i
s
m
g
u
ar
a
n
tees
p
r
ec
is
io
n
an
d
o
p
ti
m
iza
tio
n
o
f
th
e
est
i
m
a
tio
n
.
I
t
is
a
n
“
i
n
tell
i
g
en
t”
tech
n
iq
u
e
b
a
s
ed
o
n
th
e
alg
o
r
ith
m
s
o
f
A
N
N.
W
e
p
r
o
p
o
s
e
to
d
eter
m
in
e
P
I
p
a
r
am
eter
s
b
y
u
s
i
n
g
AD
AL
I
NE
(
A
D
A
p
ti
v
e
L
I
n
ea
r
NE
u
r
o
n
)
,
th
is
m
et
h
o
d
is
m
o
tiv
a
ted
b
y
t
h
e
n
ee
d
o
f
th
e
s
i
m
p
lic
it
y
a
n
d
f
lex
ib
il
it
y
i
n
ANN
(
it
s
h
o
u
ld
ad
ap
t
o
n
ly
o
n
e
w
ei
g
h
t)
;
t
h
e
m
ai
n
ad
v
an
ta
g
e
o
f
t
h
is
tech
n
iq
u
e
ac
co
r
d
in
g
to
i
ts
Si
m
p
l
ic
it
y
al
g
o
r
ith
m
ic
co
m
p
ar
in
g
w
it
h
o
t
h
er
s
i
m
ilar
m
et
h
o
d
s
[
1
8
]
.
2.
VE
C
T
O
R
CO
NT
RO
L
O
F
I
NDUC
T
I
O
N
M
O
T
O
R
2
.
1
.
M
o
delin
g
o
f
I
nd
uct
io
n
M
o
t
o
r
Usi
n
g
s
i
m
p
li
f
y
i
n
g
a
s
s
u
m
p
tio
n
s
,
th
e
s
tate
eq
u
atio
n
s
o
f
an
i
n
d
u
ct
io
n
m
o
to
r
in
r
o
to
r
s
p
ee
d
r
ef
er
en
ce
f
r
a
m
e
ca
n
b
e
ex
p
r
ess
ed
as
f
o
ll
o
w
s
:
(
)
(
)
d
x
A
x
B
u
dt
y
C
x
(
1
)
W
h
er
e:
T
s
d
s
q
r
d
r
q
x
i
i
,
s
d
s
q
u
v
v
,
T
s
d
s
q
y
i
i
(
)
T
h
e
s
tate
v
ec
to
r
(
)
T
h
e
co
n
tr
o
l in
p
u
t
(
)
T
h
e
o
u
tp
u
t.
,
Stato
r
v
o
ltag
e
s
in
f
i
x
ed
r
ef
er
en
ce
f
r
a
m
e
[
V]
.
,
Stato
r
cu
r
r
en
ts
i
n
f
ix
ed
r
ef
er
e
n
ce
f
r
a
m
e
[
A
]
.
,
R
o
to
r
f
lu
x
i
n
f
i
x
ed
r
ef
er
en
ce
f
r
a
m
e
[
W
b
]
.
L
r,
L
s
/M
sr
R
o
to
r
,
s
tato
r
/
m
u
t
u
al
in
d
u
cta
n
ce
s
[
H]
R
r
, R
s
R
o
to
r
,
s
tato
r
r
esis
tan
ce
s
[
Ω
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
N
eu
r
a
l A
d
a
p
tive
K
a
lma
n
F
ilter
fo
r
S
en
s
o
r
less
V
ec
to
r
C
o
n
tr
o
l o
f I
n
d
u
ctio
n
Mo
to
r
(
Gh
lib
I
ma
n
e)
1843
11
11
1
00
1
00
s
m
m
rr
s
r
s
r
r
s
r
s
m
m
rr
s
r
s
r
s
r
r
m
rr
m
rr
R
L
L
L
L
L
L
L
R
L
L
L
L
L
L
L
A
L
L
10
1
0
00
00
s
s
L
L
B
,
1
0
0
0
0
1
0
0
C
2
.
2
.
P
rincipa
l o
f
Dire
ct
F
ield
-
O
rient
ed
Vec
t
o
r
Co
ntr
o
l
T
h
e
P
r
in
cip
e
o
f
v
ec
to
r
co
n
t
r
o
l
o
f
i
n
d
u
ctio
n
m
o
to
r
co
n
s
i
s
ts
to
r
eg
u
lates
t
h
e
f
l
u
x
b
y
a
cu
r
r
e
n
t
co
m
p
o
n
e
n
t
id
s
a
n
d
th
e
to
r
q
u
e
b
y
th
e
o
th
er
co
m
p
o
n
e
n
t
iq
s
.
S
o
,
it’
s
n
ec
es
s
ar
y
to
ap
p
l
y
a
d
e
co
u
p
lin
g
tec
h
n
iq
u
e
b
et
w
ee
n
to
r
q
u
e
an
d
f
l
u
x
.
T
o
c
o
m
p
l
y
w
it
h
t
h
is
co
n
d
it
io
n
:
0
r
d
r
rq
(
2
)
W
ith
f
ield
o
r
ie
n
tatio
n
,
th
e
d
y
n
a
m
i
c
eq
u
atio
n
s
o
f
s
tato
r
cu
r
r
en
t
co
m
p
o
n
e
n
t
s
,
r
o
to
r
f
l
u
x
,
an
d
elec
tr
o
m
ag
n
etic
to
r
q
u
e
ar
e
g
i
v
en
b
y
:
2
2
2
2
1
()
1
()
s
d
s
r
s
r
r
s
r
s
d
s
s
s
q
r
s
d
s
r
r
sq
s
r
s
r
r
s
r
s
q
s
s
s
d
r
r
s
q
s
r
r
r
d
s
r
r
s
d
r
rr
sr
e
s
q
r
r
d
i
M
M
R
R
R
i
L
i
V
d
t
L
L
L
di
M
M
R
R
R
i
L
i
V
d
t
L
L
L
d
p
M
R
i
d
t
L
L
pM
Ti
L
(
3
)
Fig
u
r
e
1
s
h
o
w
s
d
ir
ec
t
f
ield
-
o
r
ien
ted
co
n
tr
o
l
(
DFOC
)
s
tr
u
c
t
u
r
e.
T
h
e
s
tato
r
cu
r
r
en
ts
ar
e
r
e
g
u
la
ted
b
y
P
I
co
n
tr
o
ller
s
,
w
h
ile
s
p
e
ed
b
y
an
I
P
.
T
h
e
r
ef
er
en
ce
v
o
ltag
e
s
∗
an
d
∗
r
eq
u
ir
e
th
e
f
lu
x
a
n
d
to
r
q
u
e
d
esire
d
v
ia
P
W
M
d
r
iv
e
s
y
s
te
m
.
Fig
u
r
e
1
.
I
n
d
u
ctio
n
Mo
to
r
Vec
to
r
C
o
n
tr
o
l Str
u
ct
u
r
e
3.
NE
URA
L
K
AL
M
AN
F
I
L
T
E
R
NK
F
P
r
in
cip
al
o
f
th
is
ad
ap
tiv
e
o
b
s
er
v
er
co
n
s
id
er
s
p
u
tti
n
g
lin
ea
r
K
al
m
a
n
f
ilter
a
n
d
n
e
u
r
al
ad
ap
tiv
e
s
c
h
e
m
e
o
f
s
p
ee
d
esti
m
atio
n
i
n
ca
s
ca
d
e.
T
h
at
m
ea
n
s
,
r
o
to
r
f
l
u
x
a
n
d
s
t
ato
r
cu
r
r
en
ts
e
s
ti
m
ated
b
y
KF
ar
e
u
s
ed
as
in
p
u
ts
in
ca
lcu
late
r
o
to
r
s
p
ee
d
an
d
th
e
latter
is
u
s
ed
as a
p
ar
a
m
eter
(
n
o
t a
s
a
s
tate
li
k
e
in
E
K
F)
in
KF
m
o
d
el.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
18
41
–
1
8
5
1
1844
3
.
1
.
K
a
l
m
a
n
F
ilte
r
A
lg
o
rit
h
m
I
n
m
a
n
y
s
to
ch
a
s
tics
p
r
o
ce
s
s
e
s
,
it is
n
ec
es
s
ar
y
to
ta
k
e
in
to
ac
c
o
u
n
t t
h
e
n
o
i
s
es i
n
o
r
d
er
to
r
ea
l
ize
th
e
o
p
tim
u
m
est
i
m
a
tio
n
.
T
h
e
Kalm
an
f
il
ter
alg
o
r
ith
m
i
s
th
e
m
o
s
t
u
ti
lis
ed
to
illu
s
tr
ate
t
h
at
esti
m
atio
n
t
h
at
’
s
w
h
y
w
e
u
s
e
t
h
e
ter
m
“f
ilter
”.
De
f
i
n
e
th
e
d
is
cr
ete
th
e
s
y
s
te
m
m
o
d
e
l a
s
f
o
llo
w
s
:
(
1
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
x
k
A
k
x
k
B
k
u
k
w
k
y
k
C
k
x
k
v
k
(
4
)
W
h
er
e
(
)
: r
an
d
o
m
n
o
is
e
m
atr
i
x
o
f
s
ta
te
m
o
d
el.
(
)
: r
an
d
o
m
n
o
is
e
m
atr
i
x
o
f
o
u
tp
u
t
m
o
d
el.
B
ased
o
n
th
e
ab
o
v
e
d
y
n
a
m
ic
m
o
d
el,
w
e
ap
p
l
y
t
h
e
f
o
llo
w
i
n
g
Kal
m
a
n
f
i
lter
alg
o
r
ith
m
:
a.
P
r
e
d
ictio
n
o
f
s
tate:
ˆˆ
(
1
/
)
(
)
(
/
)
(
)
x
k
k
A
k
x
k
k
B
u
k
(
5
)
b
.
E
s
ti
m
atio
n
o
f
er
r
o
r
co
v
ar
ian
ce
m
atr
i
x
:
(
1
/
)
(
)
(
/
)
(
)
T
P
k
k
A
k
P
k
k
A
Q
k
(
6
)
c.
co
m
p
u
tatio
n
o
f
Kal
m
an
f
ilt
er
g
ain
:
1
(
1
)
(
1
/
)
(
1
)
[
(
1
)
(
1
/
)
(
1
)
(
1
)
]
TT
K
k
P
k
k
C
k
C
k
P
k
k
C
k
R
k
(
7
)
d
.
Up
d
ate
o
f
th
e
er
r
o
r
co
v
ar
ian
ce
m
atr
i
x
:
(
1
/
1
)
[
(
1
)
(
1
)
]
(
1
/
)
P
k
k
I
K
k
C
k
P
k
k
(
8
)
e.
s
tate
esti
m
atio
n
:
ˆ
ˆ
ˆ
(
1
/
1
)
(
1
/
)
(
1
)
(
)
(
1
/
)
x
k
k
x
k
k
K
k
y
k
C
x
k
k
(
9
)
3
.
2
.
Dis
cr
et
e
S
t
a
t
e
M
o
del o
f
I
M
I
t
is
i
m
p
o
r
tan
t
to
h
av
e
a
d
y
n
a
m
ic
r
ep
r
esen
tat
io
n
b
ased
o
n
th
e
s
tat
io
n
ar
y
r
e
f
er
en
ce
f
r
a
m
e
.
So
as
to
ac
q
u
ir
e
a
b
etter
esti
m
ate
.
A
n
d
to
ap
p
ly
Kal
m
an
f
i
lter
al
g
o
r
ith
m
,
it
i
s
al
s
o
n
ec
e
s
s
ar
y
to
d
is
cr
etize
in
d
u
ctio
n
m
o
to
r
m
o
d
el
b
y
u
s
in
g
a
f
ir
s
t
-
o
r
d
er
ex
p
an
s
io
n
.
T
h
e
s
tate
v
ar
iab
les
d
y
n
a
m
ic
m
o
d
el
in
t
h
e
s
tatio
n
ar
y
r
e
f
er
en
ce
f
r
a
m
e
co
n
s
is
tin
g
o
n
l
y
li
n
e
ar
e
q
u
atio
n
s
ca
n
b
e
w
r
it
ten
a
s
:
(
1
)
(
)
(
)
(
)
(
)
dd
x
k
A
x
k
B
u
k
y
k
C
x
k
(
1
0
)
W
h
er
e:
1
()
A
T
e
d
A
T
e
d
A
e
I
A
T
e
B
A
e
I
B
B
T
e
(
1
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
N
eu
r
a
l A
d
a
p
tive
K
a
lma
n
F
ilter
fo
r
S
en
s
o
r
less
V
ec
to
r
C
o
n
tr
o
l o
f I
n
d
u
ctio
n
Mo
to
r
(
Gh
lib
I
ma
n
e)
1845
11
1
11
1
1
0
1
0
1
0
0
1
s
m
m
rr
s
r
s
r
r
s
r
s
m
m
rr
s
r
s
r
s
r
r
d
m
rr
m
rr
R
L
L
T
e
T
e
T
e
T
e
L
L
L
L
L
R
L
L
T
e
T
e
T
e
T
e
L
L
L
L
L
A
L
T
e
T
e
L
T
e
T
e
,
10
1
0
00
00
s
s
d
Te
L
Te
L
B
3
.
3
.
Sp
ee
d
E
s
t
i
m
a
t
io
n
T
h
e
ad
v
an
ta
g
e
o
f
NKF
co
n
s
is
ts
o
f
m
in
i
m
iz
in
g
c
u
m
b
er
s
o
m
e
o
f
ca
lc
u
lati
n
g
.
I
t
i
s
b
ec
au
s
e
t
h
e
u
s
ed
o
f
th
e
s
y
s
te
m
m
o
d
el
o
f
t
h
e
in
d
u
ctio
n
m
o
to
r
is
f
o
u
r
t
h
-
o
r
d
er
an
d
n
o
t
m
o
r
e.
An
d
Sp
ee
d
f
ee
d
b
ac
k
is
i
m
p
le
m
en
ted
in
f
lu
x
o
b
s
er
v
er
.
T
h
e
esti
m
atio
n
er
r
o
r
o
f
s
tato
r
cu
r
r
en
ts
a
n
d
r
o
to
r
f
lu
x
i
s
g
iv
e
n
b
y
:
ˆ
1
/
1
e
x
x
k
k
(
1
2
)
Der
iv
ate
o
f
t
h
e
er
r
o
r
:
ˆ
()
d
e
A
K
C
e
A
x
dt
(
1
3
)
ˆ
r
r
r
,
/
s
r
m
c
L
L
L
T
e
,
01
10
J
We
u
s
e
th
e
s
a
m
e
L
y
ap
u
n
o
v
f
u
n
ctio
n
t
h
at
K
u
b
o
ta
u
s
ed
i
n
[
6
]
:
2
ˆ
(
)
/
T
rr
V
e
e
(
1
4
)
λ
:
a
p
o
s
itiv
e
co
n
s
ta
n
t.
43
ˆ
(
)
(
)
2
1
/
1
/
/
2
/
TT
r
d
q
r
r
dd
V
e
A
K
C
A
K
C
e
x
k
k
x
k
k
c
d
t
d
t
(
1
5
)
W
h
er
e:
1
1/
d
s
d
i
x
k
k
an
d
2
1/
q
s
q
i
x
k
k
Her
e,
1/
n
x
k
k
r
ep
r
esen
ts
th
e
esti
m
ed
s
tates th
a
t a
r
e
ca
lcu
lated
w
it
h
KF.
43
ˆ
1
/
1
/
/
r
d
q
d
x
k
k
x
k
k
c
dt
(
1
6
)
T
h
e
s
p
ee
d
ca
n
b
e
w
r
itte
n
i
n
th
e
f
o
llo
w
in
g
i
n
teg
r
al
ad
ap
tiv
e
s
ch
e
m
e
[
6
]
:
4
3
4
3
ˆ
(
1
/
1
/
)
(
1
/
1
/
)
r
p
d
q
i
d
q
K
x
k
k
x
k
k
K
x
k
k
x
k
k
d
t
(
1
7
)
T
h
is
ex
p
r
ess
io
n
i
s
u
s
u
al
l
y
u
s
ed
in
s
p
ee
d
ad
ap
tiv
e
f
l
u
x
o
b
s
er
v
er
s
f
o
r
in
d
u
ctio
n
m
o
to
r
u
s
i
n
g
t
h
e
d
if
f
er
e
n
ce
b
et
w
ee
n
c
u
r
r
en
ts
(
m
ea
s
u
r
ed
an
d
e
s
t
i
m
ated
)
an
d
o
b
s
er
v
ed
f
l
u
x
,
AD
AL
I
NE
ad
j
u
s
t
s
p
r
o
p
o
r
tio
n
al
K
p
an
d
in
te
g
r
al
K
i
ad
ap
tio
n
g
ai
n
s
.
3
.
4
.
ADAL
I
NE
f
o
r
Ada
ptiv
e
Sch
e
m
e
Sp
ee
d
E
s
t
i
m
a
t
io
n
I
n
o
u
r
w
o
r
k
,
t
h
e
id
ea
co
n
s
i
s
ts
to
r
ep
lace
P
I
p
ar
am
eter
b
y
an
A
NN
s
tr
u
ctu
r
e,
to
in
cr
ea
s
e
th
e
r
o
b
u
s
tn
es
s
o
f
t
h
e
ad
ap
tiv
e
s
c
h
e
m
e.
W
h
ic
h
m
ak
e
s
t
h
e
o
b
s
e
r
v
er
r
eliab
le
u
n
d
er
v
ar
io
u
s
co
n
d
itio
n
s
.
Fo
r
a
h
ig
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
18
41
–
1
8
5
1
1846
lear
n
in
g
,
AD
AL
I
NE
i
s
s
elec
te
d
a
m
o
n
g
o
t
h
er
A
NN
s
tr
u
ct
u
r
es.
T
h
is
c
h
o
ice
i
s
b
ec
au
s
e
it
is
f
ast
an
d
s
i
m
p
lest
to
i
m
p
l
y
.
Fig
u
r
e
2
.
A
D
AL
I
NE
L
ea
r
n
i
n
g
R
u
le
1
()
n
T
k
k
k
i
k
i
y
x
i
w
x
w
(
1
8
)
Gr
ap
h
icall
y
,
a
n
AD
AL
I
NE
is
r
ep
r
es
en
ted
b
y
t
h
e
to
p
o
lo
g
y
s
h
o
w
n
in
F
ig
u
r
e
2
w
h
er
e
y(
k)
i
s
th
e
A
D
AL
I
NE
o
u
tp
u
t,
w
(
k
)
is
t
h
e
w
eig
h
t
v
ec
to
r
o
f
d
i
m
e
n
s
io
n
(
1
×n
)
,
an
d
x
(
k
)
i
s
t
h
e
A
D
AL
I
NE
in
p
u
t
v
ec
to
r
o
f
d
i
m
en
s
io
n
(
n
×1
)
[
1
8
]
.
1
kk
w
w
w
(
1
9
)
A
b
lo
ck
d
iag
r
a
m
o
f
t
h
e
p
r
o
p
o
s
ed
n
eu
r
al
ad
a
p
tiv
e
s
c
h
e
m
e
is
i
llu
s
tr
ated
in
F
i
g
u
r
e
3
.
Fig
u
r
e
3
.
B
lo
ck
Diag
r
a
m
o
f
N
eu
r
al
Sp
ee
d
Ob
s
er
v
er
T
h
e
m
ai
n
d
if
f
er
en
ce
b
et
w
ee
n
n
eu
r
al
Kal
m
a
n
an
d
th
e
class
ic
al
o
n
e
is
th
at
A
D
AL
I
NE
o
p
er
ates
o
n
P
I
p
ar
am
eter
s
i
n
ea
ch
n
e
w
iter
at
io
n
w
it
h
t
h
e
r
esp
ec
t
to
g
i
v
e
s
o
p
h
is
ticated
v
alu
e
s
.
Mo
r
e
p
r
ec
is
el
y
,
th
e
lear
n
i
n
g
r
u
le
u
p
d
ates
th
is
g
ai
n
s
ac
co
r
d
in
g
to
v
ar
iatio
n
i
n
o
p
er
atin
g
co
n
d
it
io
n
to
v
al
u
es
n
ec
e
s
s
ar
y
f
o
r
o
b
tain
in
g
ac
cu
r
ate
esti
m
atio
n
.
4.
SI
M
UL
AT
I
O
N
R
E
S
UL
T
S
T
o
ev
alu
ate
th
e
p
er
f
o
r
m
a
n
ce
o
f
Neu
r
al
ad
ap
tiv
e
Kal
m
an
f
i
lter
in
s
en
s
o
r
less
co
n
tr
o
l
o
f
t
h
r
ee
-
p
h
a
s
e
in
d
u
ctio
n
m
o
to
r
a
co
m
p
ar
is
o
n
b
et
w
ee
n
t
h
e
p
r
o
p
o
s
ed
m
eth
o
d
an
d
t
h
e
clas
s
ical
ad
ap
ti
v
e
Kal
m
an
f
ilter
is
m
ad
e.
C
las
s
ical
Kal
m
a
n
h
as
b
ee
n
a
d
ap
ted
w
it
h
K
u
b
o
ta’
s
m
e
th
o
d
.
I
t
w
a
s
d
i
f
f
icu
l
t
to
f
in
d
t
h
e
g
ain
s
KP
a
n
d
Ki
to
h
av
e
a
g
o
o
d
esti
m
atio
n
o
f
s
p
e
ed
w
it
h
"
tr
y
a
n
d
er
r
o
r
"
m
et
h
o
d
.
NKF
is
ea
s
ier
to
s
y
n
t
h
esize
b
ec
au
s
e
w
e
d
o
n
o
t
h
av
e
to
g
r
o
p
e
th
e
g
ai
n
s
(
it
is
d
o
n
e
au
to
m
atica
l
l
y
)
.
I
t
is
en
o
u
g
h
to
ap
p
ly
t
h
e
al
g
o
r
ith
m
o
f
A
D
AL
I
NE
an
d
t
h
e
s
o
p
h
is
ticated
P
I
p
ar
am
eter
s
h
a
v
e
b
ee
n
g
o
t.
T
h
e
o
b
s
er
v
er
s
ar
e
s
i
m
u
lated
u
s
i
n
g
M
A
T
L
A
B
/Si
m
u
li
n
k
s
o
f
t
w
ar
e.
T
h
e
b
lo
ck
d
iag
r
a
m
o
f
t
h
e
co
n
tr
o
l
s
y
s
te
m
is
ill
u
s
tr
ated
in
Fi
g
u
r
e
4
th
e
m
o
to
r
p
ar
a
m
e
ter
s
ar
e
g
i
v
e
n
i
n
T
ab
le
1
.
Vec
to
r
co
n
tr
o
l
u
s
e
a
P
MW
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
N
eu
r
a
l A
d
a
p
tive
K
a
lma
n
F
ilter
fo
r
S
en
s
o
r
less
V
ec
to
r
C
o
n
tr
o
l o
f I
n
d
u
ctio
n
Mo
to
r
(
Gh
lib
I
ma
n
e)
1847
sw
itc
h
in
g
a
n
d
p
o
w
er
co
n
v
er
te
r
.
I
t is
w
el
l n
o
ted
t
h
at
i
n
th
e
co
m
p
ar
i
s
o
n
,
t
h
e
s
a
m
e
m
ac
h
in
e,
t
h
e
s
a
m
e
t
h
e
v
ec
to
r
co
n
tr
o
l,
th
e
s
a
m
e
Kal
m
a
n
f
ilt
er
alg
o
r
ith
m
w
it
h
t
h
e
s
a
m
e
c
o
v
ar
ian
ce
m
atr
ices
a
n
d
t
h
e
s
a
m
e
s
a
m
p
li
n
g
p
er
io
d
ar
e
u
s
ed
.
T
h
e
o
n
l
y
d
if
f
er
e
n
ce
is
in
th
e
ad
a
p
tiv
e
m
ec
h
a
n
is
m
.
T
h
e
esti
m
ated
r
o
to
r
s
p
ee
d
an
d
f
lu
x
ar
e
u
s
ed
f
o
r
clo
s
ed
co
n
tr
o
l lo
o
p
s
.
Fig
u
r
e
4
.
B
lo
ck
Diag
r
a
m
o
f
t
h
e
S
en
s
o
r
les
s
C
o
n
tr
o
l o
f
I
n
d
u
ct
io
n
Mo
to
r
T
ab
le
1
.
P
ar
am
eter
s
o
f
t
h
e
I
M
p
a
r
a
me
t
e
r
s
v
a
l
u
e
s
u
n
i
t
s
R
s
1
.
2
Ω
R
r
1
.
8
Ω
L
s
0
.
1
5
5
4
H
L
r
0
.
1
5
6
6
H
M
s
r
L
m
0
.
1
5
H
P
2
-
R
a
t
e
d
s
p
e
e
d
1
4
4
0
R
p
m
R
a
t
e
d
p
o
w
e
r
5
.
3
6
HP
4
.
1
.
Sp
ee
d Re
v
er
s
a
l
Fig
u
r
es
5
to
Fig
u
r
e
1
2
s
h
o
w
th
e
R
o
to
r
r
esp
o
n
s
e
to
a
s
te
p
s
p
ee
d
co
m
m
a
n
d
o
f
±
1
0
0
0
r
p
m
w
it
h
ap
p
licatio
n
o
f
s
tep
lo
ad
to
r
q
u
e
1
5
N.
m
d
u
r
in
g
s
ec
o
n
d
s
i
n
ea
ch
tr
ap
ez
o
id
al.
No
te
th
at
wr
estim
1
i
s
t
h
e
s
p
ee
d
esti
m
ated
b
y
Ne
u
r
al
K
F
a
n
d
w
r
esti
m
2
b
y
t
h
e
c
lass
ical.
Sp
ee
d
r
esp
o
n
s
es
w
r
real1
an
d
w
r
real
2
o
f
t
h
e
s
y
s
te
m
w
it
h
f
ee
d
b
ac
k
f
r
o
m
th
e
f
ilter
s
f
o
llo
w
p
er
f
ec
tl
y
t
h
e
r
ef
er
e
n
ce
.
I
t
is
r
e
m
ar
k
ab
le
t
h
at
p
ea
k
v
a
lu
es
o
f
s
p
ee
d
in
tr
an
s
ien
t
s
tate
s
o
f
th
e
p
r
o
p
o
s
ed
ad
ap
tatio
n
ar
e
less
th
a
n
th
e
class
ical
m
et
h
o
d
(
Fig
u
r
e
8
)
an
d
its
s
tatic
esti
m
atio
n
er
r
o
r
is
n
u
ll.
I
t
ad
ap
ts
f
aster
b
ec
au
s
e
o
f
th
e
b
est
g
ai
n
s
ca
lcu
lated
a
n
d
co
r
r
ec
ted
w
it
h
A
D
AL
I
NE
th
a
t
allo
w
s
n
e
u
r
al
KF
to
en
s
u
r
e
th
e
b
etter
esti
m
atio
n
e
v
en
in
r
ap
id
s
p
ee
d
r
ev
er
s
al.
(
a)
(
b
)
(
c)
Fig
u
r
e
5
.
R
o
to
r
Sp
ee
d
E
s
tim
a
t
io
n
u
s
in
g
(
a)
NKF
(
b
)
C
lass
ic
al
KF (
c)
Sp
ee
d
E
s
ti
m
atio
n
E
r
r
o
r
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
18
41
–
1
8
5
1
1848
Fig
u
r
e
6
.
R
o
to
r
Flu
x
C
o
m
p
o
n
en
ts
E
s
ti
m
ated
b
y
N
eu
r
al
KF
Fig
u
r
e
7
.
R
o
to
r
Flu
x
C
om
p
o
n
en
ts
E
s
ti
m
ated
b
y
class
ical
KF
F
ig
u
r
e
8
.
Stato
r
C
u
r
r
en
t
s
C
o
m
p
o
n
en
ts
E
s
ti
m
atio
n
E
r
r
o
r
s
Fig
u
r
e
9
an
d
Fig
u
r
e
1
0
p
r
esen
t
r
o
to
r
f
lu
x
r
esp
o
n
s
e
s
o
f
b
o
th
o
b
s
er
v
er
s
.
W
h
en
r
e
f
er
en
c
e
s
p
ee
d
is
r
ev
er
s
ed
,
th
e
r
o
to
r
f
l
u
x
es
ti
m
atio
n
er
r
o
r
s
u
s
i
n
g
clas
s
ical
K
F
i
n
cr
ea
s
e.
W
h
ile
NK
F
el
i
m
i
n
ates
t
h
is
er
r
o
r
s
.
I
t
b
ec
au
s
e
a
g
o
o
d
r
o
to
r
s
p
ee
d
o
b
s
er
v
atio
n
g
u
ar
an
tee
s
a
g
o
o
d
r
o
to
r
f
lu
x
est
i
m
a
tio
n
b
y
w
h
at
t
h
e
s
p
ee
d
is
u
s
ed
as
a
f
ee
d
b
ac
k
in
th
e
est
i
m
a
tio
n
o
f
f
l
u
x
.
F
u
r
th
er
m
o
r
e,
NKF
ad
ap
tio
n
m
ec
h
a
n
i
s
m
u
s
e
s
s
o
p
h
is
tic
g
ain
s
f
o
r
ca
lcu
late
r
o
to
r
s
p
ee
d
co
n
s
eq
u
en
tl
y
,
it
s
r
o
to
r
f
lu
x
an
d
s
t
ato
r
cu
r
r
en
t
s
esti
m
ated
(
Fi
g
u
r
e
11
an
d
F
ig
u
r
e
1
2
)
ar
e
m
o
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
N
eu
r
a
l A
d
a
p
tive
K
a
lma
n
F
ilter
fo
r
S
en
s
o
r
less
V
ec
to
r
C
o
n
tr
o
l o
f I
n
d
u
ctio
n
Mo
to
r
(
Gh
lib
I
ma
n
e)
1849
ac
cu
r
ate.
A
co
m
p
ar
is
o
n
o
f
s
p
ee
d
r
esp
o
n
s
es
o
f
b
o
th
o
b
s
er
v
e
r
s
at
h
i
g
h
r
e
f
er
en
ce
s
h
o
w
s
th
a
t
is
n
e
u
r
al
Kal
m
a
n
w
o
r
k
s
w
ell
it i
s
b
ec
au
s
e
A
D
A
L
I
NE
g
u
ar
an
tee
s
t
h
e
ad
j
u
s
t
m
e
n
t o
f
g
ain
s
ev
e
n
i
n
th
e
tr
a
n
s
ie
n
t state.
(
a)
(
b
)
(
c)
Fig
u
r
e
9
.
R
o
to
r
Sp
ee
d
E
s
tim
a
t
io
n
u
s
in
g
(
a)
NKF
(
b
)
C
lass
ic
al
KF (
c)
Sp
ee
d
E
s
ti
m
atio
n
E
r
r
o
r
s
Fig
u
r
e
1
0
.
R
o
to
r
Flu
x
C
o
m
p
o
n
en
t
s
E
s
ti
m
ated
b
y
N
eu
r
al
KF
Fig
u
r
e
1
1
.
R
o
to
r
Flu
x
C
o
m
p
o
n
en
t
s
E
s
ti
m
ated
b
y
C
las
s
ical
KF
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
18
41
–
1
8
5
1
1850
Fig
u
r
e
1
2
.
Stato
r
C
u
r
r
en
ts
C
o
m
p
o
n
en
ts
E
s
t
i
m
a
tio
n
E
r
r
o
r
s
4
.
2
.
L
o
w
Sp
ee
d Ra
ng
e
I
n
Fig
u
r
e
1
3
an
d
Fig
u
r
e
1
4
,
th
e
s
i
m
u
la
tio
n
r
es
u
lts
o
f
t
h
e
r
o
to
r
s
p
ee
d
c
o
n
tr
o
l
p
er
f
o
r
m
ed
b
y
th
e
esti
m
ated
s
p
ee
d
s
an
d
f
l
u
x
u
n
d
er
lo
w
r
e
f
er
en
ce
s
p
ee
d
s
2
0
r
p
m
w
it
h
1
0
N.
m
s
tep
lo
ad
to
r
q
u
e
ap
p
lied
in
in
ter
v
al
[
3
6
]
s
.
I
n
th
is
d
if
f
icu
lt o
p
er
atin
g
co
n
d
itio
n
s
,
n
eu
r
al
f
ilter
w
o
r
k
s
b
etter
th
a
n
th
e
cla
s
s
ical.
(
a)
(
b
)
Fig
u
r
e
1
3
.
R
o
to
r
Sp
ee
d
E
s
tim
atio
n
u
s
in
g
(
a)
NKF
(
b
)
C
lass
i
ca
l K
F
I
n
Fig
u
r
e
1
6
an
d
Fig
u
r
e
1
7
,
it
ca
n
b
e
o
b
s
er
v
ed
th
at
s
en
s
o
r
less
DFO
C
d
r
iv
e
o
f
I
M
u
s
i
n
g
N
KF
w
o
r
k
s
w
ell,
it
g
ar
a
n
tee
a
g
o
o
d
d
ec
o
u
p
lin
g
b
et
w
ee
n
to
r
q
u
e
a
n
d
f
l
u
x
(φ
rq
=0
)
.
W
ith
s
tato
r
cu
r
r
en
t
s
er
r
o
r
s
ten
d
to
ze
r
o
ev
en
i
n
lo
w
s
p
ee
d
an
d
u
n
d
er
a
lo
ad
to
r
q
u
e.
Fro
m
th
e
s
e
r
esu
lt
s
,
th
e
s
en
s
o
r
less
co
n
tr
o
l
s
c
h
e
m
e
u
s
in
g
n
e
u
r
al
KF
h
as a
g
o
o
d
esti
m
atio
n
ac
c
u
r
ac
y
b
ec
au
s
e
o
f
AD
AL
I
NE
in
te
lli
g
en
ce
.
4
.
3
.
No
is
e
I
nje
ct
io
n
T
o
v
er
if
y
t
h
e
ef
f
ec
t
o
f
t
h
e
m
ea
s
u
r
e
m
en
t
n
o
is
e
w
e
in
j
ec
t
t
h
e
s
a
m
e
w
h
ite
n
o
is
e
s
i
g
n
al
i
n
cu
r
r
en
t
s
co
m
p
o
n
e
n
t
-
alp
h
a
&
b
eta
-
i
n
b
o
th
o
b
s
er
v
er
s
Fig
u
r
e
1
9
p
r
esen
ts
t
h
e
s
p
ee
d
r
esp
o
n
s
e
u
s
in
g
NK
F
a
n
d
F
ig
u
r
e
2
0
p
r
esen
ts
t
h
e
r
esp
o
n
s
e
u
s
i
n
g
class
ical
ad
ap
tiv
e
K
F.
T
h
e
ef
f
ec
ti
v
e
n
ess
o
f
th
e
lear
n
i
n
g
al
g
o
r
ith
m
i
s
s
o
clea
r
.
I
t
m
i
n
i
m
izes e
s
ti
m
atio
n
er
r
o
r
in
co
m
p
ar
i
s
o
n
w
it
h
t
h
e
clas
s
ical.
T
h
e
A
d
ali
n
e
m
ak
e
s
Kal
m
an
f
ilter
w
o
r
k
s
b
etter
.
Fin
al
y
,
o
n
e
ca
n
s
ee
th
at
cla
s
s
i
ca
l
KF
is
less
ef
f
icie
n
t
t
h
an
t
h
e
Neu
r
al
KF
in
all
d
if
f
ir
en
t
s
ca
s
es
(
sp
ee
d
r
ev
er
s
al,
lo
ad
to
r
q
u
e
ap
licatio
n
,
n
o
i
s
e
i
n
j
ec
ted
an
d
in
lo
w
s
p
ee
d
r
an
g
e)
it
b
ec
au
s
e
P
I
p
ar
a
m
eter
s
lear
n
ed
w
it
h
A
D
AL
I
NE
i
s
m
o
r
e
p
er
f
o
r
m
ed
.
Evaluation Warning : The document was created with Spire.PDF for Python.