Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l. 5,
N
o
.
1
,
Ju
ly 20
14
, pp
. 10
1
~
11
1
I
S
SN
: 208
8-8
6
9
4
1
01
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Improvement of Power Quality us
ing Fuzzy L
ogi
c Cont
roll
er
in
Grid Connected Photovoltaic Cell using UPQC
K.R
a
m
a
l
i
n
ges
w
ara
R
a
o
,
K
.
S. Sri
k
an
th
Departem
ent
of
Ele
c
tri
cal
and
E
l
ectron
i
cs
Engin
e
ering,
K L
Univ
ers
i
t
y
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 15, 2014
Rev
i
sed
May 23
, 20
14
Accepte
d
J
u
n 2, 2014
In this paper, the design of combi
n
ed operation of UPQC and PV-
A
RRAY is
designed.
The p
r
oposed s
y
stem is com
posed of
series and shunt inverters
connected b
ack
to back b
y
a d
c
-link to
which
p
v
-array
is conn
ected
.
Th
is
s
y
stem
is able t
o
com
p
ensate v
o
ltag
e
and curr
e
n
t rela
ted probl
em
s both in
inter-
connected
mode and islanding mode
by
in
jecting active po
wer to grid.
The fundamental aspect is th
at th
e power electronic d
e
vices (PE) and
sensitive equ
i
p
m
ents (SE) are norm
a
ll
y
d
e
sign
ed to work in non-polluted
power s
y
stem, so they
would
suffer fro
m malfu
n
ctions when
supply
voltag
e
is not pure sinu
soidal. Thus th
is propos
ed oper
a
ting str
a
teg
y
w
ith flexible
operation mode improves the power qualit
y of
the grid s
y
ste
m
com
b
ining
photovoltaic
arr
a
y
with a
contro
l of unifi
ed pow
er quality
cond
itioner. Pulse
Width Modulation (PWM) is used in bot
h three phase four leg inverters. A
Proportional In
tegral (PI)
and F
u
zzy
Lo
g
i
c Con
t
rollers are us
ed
for power
quality
improvement b
y
redu
cing the d
i
stortio
ns in the output power.
Th
e
simulated results were compared
among th
e two
controller’s strategies With
pi
con
t
roll
er and
fuzz
y log
i
c cont
roller
Keyword:
Fuzzy logic c
o
ntroller
Harm
onics rea
c
tive
p
o
we
r
Active po
we
r
PI con
t
ro
ller
Tot
a
l
ha
rm
oni
cs di
st
o
r
t
i
o
n
Un
i
f
ied
po
wer q
u
a
lity
cont
roller
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
K
.
S.
Sr
ik
an
th,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
KL Uni
v
er
sity
,
Gree
nfi
e
l
d
s,
V
a
dde
swa
r
am
, Gu
nt
u
r
Di
t
r
i
c
t
,
A
n
d
h
r
a
P
r
ade
s
h,
I
ndi
a.
Em
a
il: srik
an
th.d
sd
@g
m
a
il.co
m
1.
INTRODUCTION
On
e of t
h
e im
p
o
r
tan
t
asp
ects i
s
th
at,
po
wer electr
o
n
i
c
d
e
v
i
ces and
sen
s
itive equ
i
p
m
en
ts are
d
e
sign
ed
to
wo
rk
in
n
on-po
llu
ted
po
wer syste
m
s. So
,
th
ey wou
l
d
suff
er
fro
m
malf
u
n
c
tio
ns wh
en
th
e supp
ly v
o
l
t
a
g
e
is
not
p
u
re
si
n
u
s
o
i
d
al
.
As
t
h
ese
de
vi
ces a
r
e t
h
e m
o
st
im
port
a
nt
cau
se
of
h
a
rm
oni
cs, i
n
t
e
r
ha
rm
oni
cs,
no
t
c
he
s
an
d
n
e
u
t
ral curren
ts, t
h
e power qu
ality sh
ould
b
e
im
p
r
o
v
e
d
.
Th
e so
lu
tion to
PQ
p
r
ob
lem can
b
e
ach
iev
e
d
b
y
ad
d
i
n
g
au
x
iliary in
d
i
v
i
du
al dev
i
ce with
en
erg
y
storag
e
at its d
c
-lin
k
b
y
PV-array. Th
is au
x
iliary eq
u
i
p
m
en
t
has the gene
ra
l nam
e
of power conditioners
and is m
a
in
ly characterize
d
by the am
ount of stored e
n
ergy or
stan
d
alon
e sup
p
l
y ti
m
e
. Th
at au
x
iliary eq
uip
m
en
t h
a
v
i
n
g
b
o
t
h
“shun
t” an
d
“series” in
verter con
n
ected
b
a
ck
t
o
bac
k
by
a
dc-l
i
n
k i
s
c
a
l
l
e
d t
h
e
“u
ni
fi
e
d
po
we
r
qual
i
t
y
con
d
i
t
i
one
r
”
(
U
PQC
)
[1]
.
R
e
ne
wa
bl
e e
n
er
gy
resource th
at is Ph
o
t
o
vo
ltaic with
UPQC is g
r
eatly stu
d
i
e
d
by several res
earche
r
s as a basic device to
cont
rol
th
e po
wer qu
al
ity. Th
e work
o
f
UPQC is red
u
c
i
n
g
p
e
rt
u
r
batio
n
s
wh
ich
affect on
th
e operatio
n
o
f
sen
s
itiv
e
lo
ad
s [2
].
UP
QC
i
s
abl
e
t
o
re
duce
v
o
l
t
a
ge sa
g, s
w
el
l
,
vol
t
a
ge an
d c
u
r
r
ent
harm
oni
cs usi
n
g s
h
unt
and
seri
es
in
v
e
rters. In
spite o
f
t
h
is issue, UPQC
is able to
co
m
p
en
sate vo
ltag
e
in
terrup
tion
an
d act
iv
e
p
o
wer inj
e
ctio
n
to
grid
b
ecau
s
e in
its dc-link
th
er
e i
s
e
n
e
r
gy
st
ora
g
e
k
n
o
w
n
as
di
st
ri
b
u
t
e
d
ge
nerat
i
n
g (
D
G)
so
u
r
ce
. Th
e
at
t
e
nt
i
on t
o
di
st
ri
but
e
d
gene
ra
t
i
ng
(D
G)
s
o
u
r
ces i
s
i
n
c
r
easi
n
g
day
by
day
.
T
h
e i
m
port
a
n
t
reaso
n
i
s
t
h
at
r
o
l
l
they will likely play in the
fut
u
re
of power
syste
m
s .Recently, several
st
udies are acc
om
plished in the
field of
connecting DGs
to
grid us
ing powe
r ele
c
tronic converters.
Here, gr
id'
s
interface
shunt inve
rters are
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
101
–
1
11
10
2
co
nsid
ered
mo
re wh
ere th
e reason
is lo
w sen
s
itiv
en
ess o
f
DGs to
g
r
i
d
's p
a
ram
e
t
e
rs and
DG p
o
wer
tran
sferring
facilit
y u
s
in
g
t
h
is ap
pro
ach. Al
th
ou
gh
Di
stribu
ted
Gen
e
rating
n
e
ed
s m
o
re
co
n
t
ro
ls to
redu
ce th
e
p
r
ob
lem
s
lik
e
g
r
i
d
po
wer qu
ality an
d
reliab
ility, PV en
erg
y
is o
n
e
o
f
th
e
d
i
strib
u
t
ed
g
e
n
e
ratio
n
sources
wh
i
c
h
p
r
ov
id
es a p
a
rt o
f
hu
m
a
n
req
u
i
red en
erg
y
n
o
wad
a
ys a
nd will p
r
ov
id
e i
n
th
e fu
ture sco
p
e
[3
]. Th
e
greatest
sh
are
o
f
app
l
yin
g
t
h
is k
i
nd
o
f
en
erg
y
in
th
e
fu
ture will b
e
its u
s
ag
e in
in
terco
n
n
ected
syste
m
s. Now a d
a
ys, so
man
y
co
un
tries lik
e Eu
rop
e
an
h
a
s cau
s
ed
i
n
terco
n
n
ected
syste
m
s d
e
v
e
lop
m
en
t in
th
eir
co
un
tries
b
y
ch
oo
si
n
g
sup
p
o
rt
i
n
g
pol
i
c
i
e
s. In t
h
i
s
pa
per
,
UP
QC
an
d P
V
com
b
i
n
e
d
sy
st
em
has been p
r
ese
n
t
e
d.
UP
QC
i
n
t
r
od
u
ced i
n
has t
h
e a
b
ility t
o
c
o
m
p
ensate
voltage
swell and sa
g,
harm
onics and reacti
v
e powe
r.
Th
e
UPQC is a co
m
b
in
atio
n
o
f
series an
d
sh
un
t activ
e
filters conn
ected
in
cascad
e v
i
a
a co
mm
o
n
DC lin
k
cap
a
cito
r. Th
e m
a
in
p
u
rp
o
s
e
of a
UPQC is to
com
p
en
sate fo
r
su
pp
ly vo
ltag
e
p
o
wer qu
ality issu
es
su
ch
as, sag
s
,
swells, un
b
a
lan
ce, h
a
rm
o
n
i
cs, an
d
fo
r lo
ad
cu
rren
t power
q
u
a
lity p
r
ob
lem
s
su
ch
as u
n
b
a
lan
ce,
harm
oni
cs,
v
o
l
t
a
ge di
ps
, rea
c
t
i
v
e cu
rre
nt
a
n
d
neut
ral
cu
rre
nt
2.
S
Y
STEM
DES
C
R
I
PTI
O
N
OF
UPQ
C
UP
QC
ha
s t
w
o i
n
vert
e
r
s s
h
u
n
t
(
o
r
)
D-St
at
c
o
m
a
nd
se
ries (or) DVR
volt
age
s
o
urce
i
n
verters whic
h
are as
3
-
p
h
ase
4-l
e
g.
Seri
es
i
nve
rt
er st
a
nds
bet
w
ee
n
so
ur
ce an
d c
o
u
p
l
i
n
g
p
o
i
n
t
by
se
ri
es t
r
a
n
sf
orm
e
r a
n
d
Sh
unt
i
nve
rt
er
i
s
co
n
n
ect
ed
t
o
poi
nt
o
f
c
o
m
m
on cou
p
l
i
n
g
(PC
C
)
by
shu
n
t
t
r
a
n
s
f
o
r
m
e
r. S
h
u
n
t
i
n
vert
e
r
ope
rates as
current s
o
urce
and series i
nve
rter
ope
rates as
vol
t
age s
o
urce.
UPQC is ab
le
to
red
u
ce cu
rren
t's h
a
rm
o
n
i
cs, to
co
m
p
en
sate reactiv
e power, vo
ltag
e
d
i
stortio
n
s
and
can com
p
ensat
e
vol
t
a
ge i
n
t
e
r
r
u
p
t
i
o
n beca
us
e of
ha
vi
n
g
PV-a
rray as a s
o
urce. C
o
mm
o
n
interc
onnect
ed PV
sy
st
em
s st
ruct
ure i
s
as s
h
o
w
n i
n
Fi
g
u
re
1
[
4
]
.
I
n
t
h
i
s
pa
pe
r a
new
st
r
u
ct
u
r
e i
s
p
r
op
ose
d
fo
r
UPQC
,
wh
ere P
V
is con
n
ected
to DC link
i
n
UPQC as e
n
e
r
gy s
o
urce
[5].
Fi
gu
re
1.
C
o
n
f
i
g
u
r
at
i
o
n
o
f
pr
op
ose
d
UP
QC
3.
SYSTE
M
DESIGN
Th
e
con
t
ro
lling
d
e
sign
o
f
prop
o
s
ed
system
i
s
co
m
p
o
s
ed
o
f
two
fo
llo
wi
n
g
p
a
rts:
a) Se
ries invert
er c
ontrol
b)
Sh
u
n
t
i
n
vert
er c
ont
r
o
l
Co
n
t
ro
llin
g strateg
y
is d
e
signed
an
d
app
lied for tw
o
i
n
terco
n
n
ected and
i
s
lan
d
i
n
g
m
o
d
e
s. In
in
ter-
connected m
o
de, source and
PV
prov
id
e th
e lo
ad
po
wer tog
e
th
er wh
ile
in
islan
d
i
ng
m
o
d
e
; o
n
l
y PV tran
sfers
th
e power to
t
h
e lo
ad. By rem
o
v
i
n
g
vo
ltag
e
in
terrup
tion, sy
ste
m
com
e
s back
to in
tercon
nected
m
o
d
e
.
3
.
1
.
Series Inv
erter Co
ntrolling
Th
e du
ty o
f
t
h
e series inv
e
rter is to
co
m
p
en
sate th
e vo
ltag
e
d
i
sturb
a
n
c
e in
th
e sou
r
ce sid
e
, gri
d
wh
ich
is d
u
e
to th
e fau
lt in
th
e d
i
strib
u
tion
lin
e. Series
inve
rter control calculates the volt
a
ge refe
re
nce values
wh
ich
are inj
e
cted
to grid
b
y
series con
t
ro
ller.
In ord
e
r to
co
n
t
ro
l series
co
n
t
ro
ller of
UPQC, lo
ad
sinu
so
i
d
al
vol
t
a
ge
co
nt
r
o
l
desi
gn
an
d i
m
pl
em
ent
a
t
i
on st
rat
e
gy
i
s
pr
o
p
o
s
ed as
sh
o
w
n
i
n
fi
g
u
re
bel
o
w:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Imp
r
o
vemen
t
of Po
wer
Qu
a
lity u
s
i
n
g Fuzzy
Log
i
c Con
t
ro
ll
er in
Grid Conn
ected
… (K.Rama
ling
e
sw
a
r
a
Rao
)
10
3
Fi
gu
re
2.
B
l
oc
k
di
ag
ram
of o
v
eral
l
c
ont
rol
s
t
ruct
u
r
e
wi
t
h
S
e
ri
es co
n
v
ert
e
r
Th
e series co
nv
erter is app
licab
le fo
r ach
ievin
g
m
u
ltile
v
e
l co
n
t
ro
l
ob
j
ecti
v
es
[6
].
Hen
ce, th
e
b
l
o
c
k
“fun
ction
selectio
n
and com
b
in
atio
n
”
is
sh
own
i
n
Fi
gu
re 2
i
s
t
h
at
di
ffe
rent
t
y
pe
s o
f
ob
ject
i
v
es
ca
n be
in
teg
r
ated
in
to th
e syste
m
b
y
ch
oo
si
ng
appropriate refere
nce signals i*s
α
,i*s
β
,i
*s
γ
. Details ab
ou
t th
e
un
bal
a
nce c
o
r
r
ect
i
on schem
e
, whi
c
h i
s
used t
o
gen
e
rate cur
r
ent re
fere
n
ce for n
e
gativ
e-seq
u
e
n
ce v
o
ltage
com
p
ensation. For the
powe
r control st
rateg
y
, wh
ich
are
u
s
ed
to
ob
tain d
e
sired
cu
rren
ts for activ
e/reactiv
e
powe
r tra
n
sfe
r
[7]. Due to the sp
ace lim
i
t
a
tion, t
h
ey are
not duplicated
here. The ac
tive filter func
tion is
represen
ted
b
y
th
e
b
l
o
c
k
“l
o
w
-ord
er h
a
rm
o
n
i
cs filter”. Referen
ces is d
e
n
o
t
ed
b
y
i
*
s
α
h,
s
β
h,s
γ
h c
a
n
be
obt
ai
ne
d
[8]
.
I
n
o
r
de
r t
o
t
r
a
c
k
t
h
e
desi
re
d r
e
fere
nce si
g
n
al
s, t
h
e rest
of t
h
i
s
sect
i
on
p
r
e
s
ent
s
t
h
e m
a
i
n
desi
g
n
aspects
of the s
e
ries and
pa
rallel conve
r
ter c
o
ntrol
Fi
gu
re
3.
C
o
nt
rol
bl
oc
k
di
ag
r
a
m
of se
ri
es c
o
nve
rt
er
3
.
2
.
Shunt Inv
erter Co
ntrolling
Sh
unt
i
n
vert
e
r
un
dert
a
k
es t
w
o m
a
i
n
ope
r
a
t
i
ons. Fi
rst
i
s
com
p
ensat
i
n
g b
o
t
h
c
u
r
r
en
t
harm
oni
cs
gene
rat
e
d
by
n
onl
i
n
ea
r l
o
ad
a
n
d
react
i
v
e
p
o
w
er
, an
ot
her i
s
i
n
ject
i
n
g act
i
v
e p
o
we
r
gene
r
a
t
e
d by
Ph
ot
o
vol
t
a
i
c
(PV) system
. Th
e shu
n
t
i
n
verter co
n
t
ro
lling
system
sh
ould
b
e
d
e
sign
ed in
a
way th
at
it wou
l
d pro
v
id
e the
ability of unde
rtaking two a
b
ove
ope
ra
tions
. Shunt inverte
r
cont
rol calcu
lates the co
m
p
ensation curre
n
t for
current
ha
rm
onics and reacti
v
e Powe
r wh
e
n
PV
is out of
t
h
e grid
[7].
The p
o
w
e
r l
o
s
s
caused
by
i
nvert
er
ope
rat
i
o
n sh
oul
d be c
onsi
d
ere
d
i
n
t
h
i
s
cal
cul
a
t
i
o
n
.
It
has t
h
e
ab
ility o
f
stab
ilizin
g
DC
-lin
k vo
ltag
e
d
u
ring
sh
un
t i
n
v
e
rt
er op
eratio
n to
co
m
p
en
sate voltag
e
d
i
stortions [6
]
.
Th
e stab
ilizati
o
n is m
a
in
tain
ed
b
y
DC
-lin
k
cap
acito
r vo
ltag
e
co
n
t
ro
lling
lo
op
in wh
ich
fu
zzy l
o
g
i
c con
t
ro
ller
is app
lied
.
Shun
t inv
e
rter co
n
t
ro
l con
s
ists of
t
h
e c
ont
rol ci
rc
uit as s
h
o
w
n in
fig
u
re
bel
o
w
.
Fi
gu
re
4.
B
l
oc
k
di
ag
ram
of o
v
eral
l
c
ont
rol
s
t
ruct
u
r
e
wi
t
h
P
a
ral
l
e
l
con
v
e
r
t
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
101
–
1
11
10
4
As sho
w
n
i
n
Fig
u
re
4
, b
a
sed
o
n
th
e
fu
nd
am
en
tal p
o
s
itiv
e seq
u
e
n
ce
g
r
i
d
v
o
ltag
e
s (V+
α
1,
V+
β
1)
d
e
ri
v
e
d
i
n
th
e
statio
n
a
ry
frame, th
e am
p
litu
de con
v
e
rsion
blo
c
k
first sh
apes th
e si
g
n
a
ls t
o
p
e
r-un
it qu
an
tities
and t
h
e
n
ge
ne
rat
e
s a set
of refere
nce si
g
n
al
s (V
*
p
α
,V*p
β
) with a s
p
ecified am
plitude for the
parallel
co
nv
erter then
g
i
v
e
t
o
PWM
[4
].
Fi
gu
re
5.
C
o
nt
rol
di
ag
ram
of
t
h
e pa
ral
l
e
l
co
nve
rt
er
4
.
MODELING OF
PV MODULE
The P
V
cel
l
i
s
t
h
e basi
c
uni
t
o
f
a p
hot
ov
ol
t
a
i
c
m
odul
e a
nd i
t
i
s
t
h
e el
em
ent i
n
char
ge
of t
r
ansf
o
r
m
i
ng
t
h
e s
u
n
ray
s
or
ph
ot
o
n
s
di
r
ectl
y
into electric
powe
r.
v
I
Rp
Rs
I
d
Ip
v
Fi
gu
re
6.
E
qui
val
e
nt
ci
rc
ui
t
o
f
a
PV C
e
l
l
The e
qui
valent
circuit of a practical PV cell is sh
o
w
n i
n
F
i
gu
re 6
.
T
h
e c
h
aract
eri
s
t
i
c
e
quat
i
o
n
of a
PV cell is t
h
e
ou
tpu
t
curren
t
produ
ced b
y
it an
d is ex
pressed as:
Rp
RsI
V
Vta
RsI
V
e
Io
Ipv
I
1
(
1
)
Whe
r
e,
IPV=C
u
r
r
e
n
t
g
e
nerat
e
d
by
t
h
e
i
n
ci
de
nt
s
o
l
a
r
radi
at
i
o
n
I0=Re
v
erse
sat
u
ration
or leak
age
c
u
rrent of
t
h
e diode
Vt
=T
herm
al
vol
t
a
ge
of
P
V
m
o
d
u
l
e
w
ith
Ns PV
cell
co
nn
ected
in
series
=
NsKT/Q
K
=
Bo
ltzm
a
n
n
co
nstan
t
=1.380
650
3 x 10-
23J/K
Q
=
Electr
o
n
C
h
ar
g
e
=1
.60
217
64
6 x 10-
19
C
T=Tem
p
erature
in Kelvin
a=Diod
e id
eality co
n
s
tan
t
(1
<a<1
.5
)
PV cells con
n
ected
in p
a
rallel in
creases the to
tal
output
current
of t
h
e
PV
m
o
dule
where
as cell
s
co
nn
ected in
series in
creases th
e to
tal
o
u
t
p
u
t
vo
ltag
e
o
f
th
e cell. Th
e op
en
ci
rcu
it
v
o
ltag
e
/tem
p
eratu
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Imp
r
o
vemen
t
of Po
wer
Qu
a
lity u
s
i
n
g Fuzzy
Log
i
c Con
t
ro
ll
er in
Grid Conn
ected
… (K.Rama
ling
e
sw
a
r
a
Rao
)
10
5
co
efficien
t (KV), th
e sh
ort ci
rcu
it cu
rren
t/tem
p
eratu
r
e
co
efficien
t (KI), and
th
e m
a
x
i
m
u
m
ex
p
e
rim
e
n
t
a
l
p
e
ak
out
put
p
o
we
r
(Pm
a
x, e).T
he
se i
n
f
o
rm
at
i
on are al
way
s
gi
ven
at
st
an
dar
d
t
e
st
co
n
d
i
t
i
on i
.
e. at
1
0
0
0
W
/
m
2
i
rradi
at
i
o
n an
d
25
0C
t
e
m
p
erat
ure. T
h
e ot
he
r i
n
f
o
rm
at
i
on li
ke t
h
e l
i
ght
g
e
nerat
e
d di
o
d
e
,
sat
u
rat
i
o
n cu
rre
nt
,
d
i
od
e id
eality
co
nstan
t
, p
a
ral
l
el an
d
series resistan
ce wh
i
c
h
are no
t no
ticed
in
m
a
n
u
f
actu
r
er
d
a
tasheet b
u
t
necessa
ry
f
o
r
t
h
e si
m
u
l
a
t
i
on
pu
r
pose
can
be
eval
uat
e
d as
f
o
l
l
o
w
s
[
7
]
.
The cu
rre
nt
pr
od
uce by
t
h
e e
v
ent
s
o
l
a
r ra
di
at
i
on i
s
depe
n
d
s l
i
n
earl
y
on
t
h
e sol
a
r i
r
ra
di
at
i
on an
d i
s
al
so i
n
fl
ue
nce
d
by
t
h
e
t
e
m
p
erat
ure acc
o
r
di
n
g
t
o
t
h
e
f
o
l
l
o
wi
ng
E
quat
i
o
n
[6
]
.
Gn
G
T
K
n
Ipv
Ipv
1
,
(
2
)
Whe
r
e,
IPV,
n
is t
h
e lig
h
t
g
e
n
e
rated
cu
rren
t at t
h
e
nomin
al co
nd
ition
i.e. at 25o
C an
d 100
0W/m
2
T
∆
=
A
ctual te
m
p
erature-Nominal te
m
p
erature
in
Kelvi
n
G=Irra
diation on
the de
vice
s
u
rface
Gn
=Irrad
iatio
n at no
m
i
n
a
l irrad
i
atio
n
Th
e
d
i
od
e sat
u
ratio
n curren
t
I0
an
d its add
itio
n on
t
h
e tem
p
eratu
r
e m
a
y b
e
exp
r
essed as
[4
]:
T
Tn
aK
qE
g
T
Tn
n
Io
Io
1
1
exp
,
3
(
3
)
Whe
r
e E
g
i
s
t
h
e ba
nd
ga
p e
n
e
r
gy
of
t
h
e
sem
i
con
d
u
ct
o
r
an
d
Io,
n
is th
e nomin
al satu
ration
cu
rren
t and
i
s
expresse
d as
[3]:
1
,
,
exp
,
,
n
aVt
n
Voc
n
Isc
n
Io
(
4
)
Whe
r
e
V
o
c,
n
=
Nom
i
nal
ope
n ci
rc
ui
t
v
o
l
t
a
g
e
o
f
t
h
e
P
V
m
odul
e
Last
l
y
t
h
e seri
e
s
an
d
paral
l
e
l
r
e
si
st
ance o
f
t
h
e PV
cel
l
can
b
e
cal
cul
a
t
e
d
by
any
i
t
e
rat
i
o
n
m
e
t
hod.
Fi
gu
re
7.
C
o
m
p
l
e
t
e
bl
o
c
k
di
a
g
ram
of
PV
M
o
d
u
l
e
wi
t
h
M
P
PT C
o
nt
r
o
l
l
e
r
Fi
gu
re 7 s
h
ows
t
h
e com
p
l
e
t
e
bl
oc
k di
a
g
ram
of a P
V
m
odul
e wi
t
h
a M
P
PT
cont
r
o
l
l
e
r an
d
feed
po
we
r
to
th
e lo
ad
t
h
rou
gh a
d
c
/d
c con
v
e
rter. MPPT con
t
ro
ller tak
e
s th
e ou
tpu
t
curren
t
an
d
vo
ltag
e
o
f
th
e
PV
mo
du
le
as i
t
s
i
nput
and
based o
n
t
h
e c
ont
rol
al
g
o
ri
t
h
m
it
gi
ves app
r
op
ri
at
e com
m
a
nd t
o
t
h
e c
o
n
v
e
rt
er t
o
i
n
t
e
rfa
ce t
h
e
l
o
ad
wi
t
h
t
h
e P
V
m
odul
e.
5.
M
A
X
I
M
U
M
POWER POIN
T TRAC
KIN
G
M
a
xi
m
u
m
Power
Poi
n
t
t
r
ac
ki
n
g
c
ont
r
o
l
l
e
r
i
s
basi
cal
l
y
us
ed t
o
o
p
erat
es
t
h
e Ph
ot
ov
ol
t
a
i
c
m
odul
es i
n
a m
a
nner t
h
at
al
l
o
ws t
h
e l
o
a
d
c
o
n
n
ect
e
d
w
i
t
h
t
h
e
PV
m
odul
e t
o
e
x
t
r
act
t
h
e m
a
xim
u
m
p
o
we
r
w
h
i
c
h
t
h
e P
V
m
odule capa
b
l
e
to
produce
at a gi
ven atm
o
sphe
ric c
o
nd
itions. PV
m
odule
has
a
single operating point whe
r
e
th
e v
a
lu
es
of th
e curren
t
and
v
o
ltag
e
o
f
t
h
e
cell resu
lt in
a max
i
m
u
m
o
u
t
pu
t po
wer. It is
a b
i
g
task
t
o
operate a
PV m
odul
e c
o
nsi
s
t
e
nt
l
y
o
n
t
h
e m
a
xim
u
m
po
we
r p
o
i
n
t
a
nd
f
o
r
whi
c
h
m
a
ny
M
PPT a
l
go
ri
t
h
m
s
have
been
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
101
–
1
11
10
6
devel
ope
d
[5]
.
The m
o
st
po
pul
a
r
am
ong t
h
e avai
l
a
bl
e
M
PPT t
ech
ni
q
u
es i
s
Pert
ur
b
and
Ob
ser
v
e
(P&
O
)
m
e
t
hod.
Thi
s
m
e
t
hod i
s
ha
v
i
ng i
t
s
ow
n a
d
vant
a
g
es a
n
d
di
sad
v
a
n
t
a
ges.
The ai
m
of t
h
e
prese
n
t
w
o
rk i
s
t
o
i
m
p
r
ov
e th
e (P&O). MPPT co
n
t
ro
ller and
t
h
en th
e
fu
zzy
co
n
t
ro
l
h
a
s i
n
trodu
ced on
it t
o
im
p
r
ov
e its
o
v
e
rall
per
f
o
r
m
a
nce.
6.
PER
T
UR
B &
OBSERV
E TEC
H
NIQU
E (P&O)
FOR
MAX
I
MU
M POWER
POIN
T
TR
AC
KIN
G
Cu
rren
tly th
e m
o
st p
o
p
u
l
ar MPPT algo
rith
m
is
p
e
rtu
r
b
an
d ob
se
r
v
e (
P
&
O
)
,
wh
e
r
e the
cur
r
ent
/
v
ol
t
a
ge
i
s
repeat
edl
y
pert
ur
bed
by
a fi
xed am
ount
i
n
a gi
ven di
re
ct
i
on, an
d t
h
e
di
rect
i
o
n i
s
al
ternat
e
d
onl
y
t
h
e al
go
ri
t
h
m
det
ect
s a dro
p
i
n
p
o
w
er.
Here i
f
t
h
e
r
e i
s
an im
pro
v
e i
n
po
wer
,
t
h
e su
bse
que
nt
pert
u
r
bat
i
o
n
shoul
d
be ke
pt in the sa
m
e
dir
ection to
reach the MPP and if the
r
e
is a decrease in power the
n
the
pert
ur
bat
i
on
sh
oul
d be
reve
rs
ed. I
n
t
h
e
pr
o
pos
ed
wo
r
k
ea
ch pe
rt
u
r
bat
i
o
n o
f
t
h
e c
ont
ro
l
l
e
r gi
ves a re
f
e
renc
e
vol
t
a
ge
whi
c
h
i
s
co
m
p
ared
wi
t
h
t
h
e i
n
st
a
n
t
a
ne
ou
s PV
m
odul
e out
p
u
t
vol
t
a
ge an
d t
h
e err
o
r i
s
fed
t
o
a PI
cont
roller
which in turns
deci
des t
h
e
duty cy
cle of the
DC
/D
C conv
er
ter
as show
n in
Figu
r
e
8. Th
e
p
r
o
c
ess of
pert
urbation is repeat
ed pe
ri
odically until t
h
e MPP is reached. He
n
ce at every instant of
PV-array we are
d
e
term
in
in
g
M
PP an
d correspo
n
d
i
ng
ly capacito
r-DC link
s
vo
ltag
e
is ch
arged
.
Fi
gu
re
8.
Al
go
ri
t
h
m
for M
a
xi
m
u
m
Power
P
o
i
n
t
t
r
ac
ki
n
g
b
y
Pert
u
r
b
an
d
Obse
r
v
e m
e
t
hod
7.
FUZ
Z
Y
LOGIC
CONTROLLER
Fu
zzy log
i
c con
t
ro
l m
o
stly co
n
s
ists of t
h
ree
stag
es:
a) Fuzzification
b)
R
u
l
e
base
c) Defuzzification
D
u
r
i
ng
f
u
zzi
f
i
catio
n
,
nu
m
e
r
i
cal in
pu
t
v
a
r
i
ab
les ar
e conv
er
ted
i
n
to
linguistic v
a
r
i
ab
le
b
a
sed
o
n
a
me
m
b
ership
functions. For these MPP techniques t
h
e input
s
to fuzzy logic cont
roller a
r
e
taken as
a cha
nge
i
n
po
we
r w.
r.t
ch
ange i
n
cur
r
e
n
t
E and c
h
an
ge
i
n
vol
t
a
ge
error C. Once E and C are
calculated and conve
rted to
the linguistic variables, the fuzzy
controller out
put,
whic
h is the duty cy
cle ratio D of the powe
r converter,
can be sea
r
c
h
for rule base t
a
ble. T
h
e va
riables assign
ed
t
o
D
for th
e
d
i
fferen
t co
m
b
in
atio
n
s
of E an
d
C is
b
a
sed
o
n
th
e i
n
tellig
en
ce of the u
s
er.
Here the ru
le
b
a
se is
prep
ared b
a
sed
o
n
P&O al
g
o
ri
th
m
.
In the
de
fuzzi
fication sta
g
e, t
h
e
fuzzy
logic
cont
rolle
r ou
tpu
t
is con
v
e
rted fro
m
a lin
gu
istic v
a
riab
le
to
a n
u
m
erical v
a
riab
le still u
s
ing
a m
e
m
b
ersh
i
p
fu
n
c
tion
.
MPPT
fu
zzy co
n
t
ro
llers
h
a
v
e
b
e
en
shown
to
per
f
o
r
m
wel
l
un
der
vary
i
n
g at
m
o
spheri
c
con
d
i
t
i
ons
. Ho
we
ver
,
t
h
ei
r i
n
fl
uence
d
e
pen
d
s a l
o
t
on t
h
e
in
tellig
en
ce o
f
th
e u
s
er o
r
con
t
ro
l
eng
i
n
e
er in
ch
oo
sing the righ
t erro
r co
m
p
u
t
atio
n
and
co
m
i
n
g
up
with
t
h
e
rule
base ta
ble. The
com
p
aris
on for error E
and
cha
n
ge i
n
code
C
are
gi
v
e
n as
f
o
l
l
o
w
s
:
1
1
K
I
K
I
K
P
K
P
E
(
5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Imp
r
o
vemen
t
of Po
wer
Qu
a
lity u
s
i
n
g Fuzzy
Log
i
c Con
t
ro
ll
er in
Grid Conn
ected
… (K.Rama
ling
e
sw
a
r
a
Rao
)
10
7
1
K
V
K
V
C
(
6
)
8.
FUZ
Z
Y
CONTROLLER
The
gene
ral structure of a c
o
m
p
le
te fuzzy c
ont
rol sy
st
em
is gi
ve
n i
n
Fi
g
u
r
e 9
.
T
h
e pl
a
n
t
cont
rol
‘u
’
is infe
rre
d
fr
o
m
the tw
o sta
t
e varia
b
les, e
r
r
o
r
(e
)
a
n
d c
h
ange i
n
e
r
ror (Äe)
The
actual cris
p i
n
put are
approxim
a
tes to the clos
er
va
lues
of
th
e
resp
ectiv
e
un
iv
erses of its cou
r
se.
Hen
c
e, the fu
zzyfied inpu
ts are
descri
bed
by
si
ngl
et
o
n
f
u
zzy
set
s
. The el
abo
r
at
i
on o
f
t
h
i
s
cont
rol
l
e
r i
s
bas
e
d o
n
t
h
e pha
s
e
pl
an. The c
o
nt
r
o
l
rules
base are
designe
d
to ass
i
gn a
fuzzy set
of t
h
e cont
ro
l in
pu
t u
fo
r each co
m
b
in
ati
on
of fuzzy sets of
e and
de.
The
Tabl
e
1 i
s
as
sh
o
w
n
i
n
bel
o
w:
Fi
gu
re
9.
B
a
si
c st
ruct
ur
e
of
fuzzy control sy
ste
m
Tabl
e 1.
F
u
zz
y
R
u
l
e
s
Here
,
NL=Negative
Large
NM
=Ne
g
at
i
v
e
M
e
di
um
NS=
N
egative
Sm
a
l
l
Z=Zero
PS=Po
sitiv
e
Small
PM=
Positiv
e
Med
i
u
m
PL= Po
sitiv
e Larg
e
9
.
EMPL
OYED CON
fi
GURATION OF
THE GRID-INTER
FA
CING CONV
ER
TER
SY
STEM
In
th
is case, UPQC fi
n
d
s
t
h
e ab
ility o
f
in
j
e
cti
n
g
power
usin
g
PV to
sen
s
itiv
e lo
ad
du
ri
n
g
sou
r
ce
vol
t
a
ge i
n
t
e
rr
u
p
t
i
o
n
.
Fi
g
u
re
1 sh
ows t
h
e c
o
n
f
i
g
urat
i
o
n o
f
pr
o
pose
d
sy
s
t
em
. In t
h
i
s
desi
gne
d sy
st
em
, t
w
o
Ope
r
ational mode
s are
studied as
Inte
rconnected m
ode
:
whe
r
e PV tra
n
sfers
powe
r t
o
load a
n
d s
o
urce and
Island
ing
m
o
de: wh
ere t
h
e sou
r
ce vo
ltag
e
is
in
terru
p
t
ed
and PV pr
ov
i
d
es a p
a
r
t
of
lo
ad
pow
er sep
a
r
a
tely.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
101
–
1
11
10
8
Fig
u
re
10
.
Grid
in
terfaci
n
g
co
nv
erter ystem
10
.
RESULTS
10.1. E
x
perim
e
ntal Res
u
lts
of the
Series-p
arallel S
y
ste
m
under
Unb
a
lanced
Voltage
Dips
Fig
u
re
11
.
UPQC system
u
n
d
e
r d
i
storted co
nd
itio
n
From
t
h
e abo
v
e
Fi
gu
re 1
1
re
sul
t
s
un
de
r di
s
t
ort
e
d
gri
d
v
o
l
t
a
ge si
de a ha
r
m
oni
cs i
s
obt
ai
ned wi
t
h
PI
cont
rol
l
e
r. T
h
e
s
e harm
oni
cs a
r
e el
im
i
n
at
ed in g
r
i
d
v
o
l
t
a
ge
si
de by
ap
pl
y
i
ng
fuzzy
c
ont
r
o
l
l
e
r so i
n
t
u
r
n
pu
re
si
nus
oi
dal
wav
e
i
s
obt
ai
ne
d.
The m
a
gni
t
ude
of
o
u
t
p
ut
v
o
ltag
e
of
p
a
rallel co
nv
erter is red
u
c
ed
b
y
u
s
i
n
g fu
zzy
co
n
t
ro
ller co
m
p
ared
t
o
PI con
t
ro
ller.
A
t
0.00
045
sec wh
en
PV o
u
t
-
a
g
e
s, so
urce
curre
nt
returns to sinusoi
d
al
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-
100
0
100
Ti
m
e
G
r
id
V
o
lt
a
g
e
Re
s
u
l
t
s
O
f
T
h
e
U
P
Q
C
S
y
s
t
e
m
U
n
d
e
r A Di
s
t
ort
e
d
G
r
i
d
W
i
t
h
P
I
Con
t
r
o
l
l
e
r
0
1
2
3
4
5
6
7
8
9
10
x 10
4
-
100
0
100
Ti
m
e
G
r
id
V
o
lt
a
g
e
Re
s
u
l
t
s
O
f
T
h
e
U
P
Q
C
S
y
s
t
e
m
U
n
d
e
r
A Di
s
t
ort
e
d
G
r
i
d
W
i
t
h
F
u
z
z
y Co
n
t
r
o
l
l
e
r
0
1
2
3
4
5
6
7
8
9
10
x 10
4
-
100
0
100
Ti
m
e
V
o
l
t
a
g
e &
C
u
rren
t
O
u
t
p
u
t
V
o
l
t
a
g
e
O
f
P
a
ra
l
l
e
l
C
o
n
v
e
r
t
e
r&
P
h
a
s
e
O
f
T
h
e
Lo
a
d
C
u
rr
e
n
t
W
i
t
h
P
l
C
o
n
t
ro
l
l
e
r
0
1
2
3
4
5
6
7
8
9
10
x 10
4
-
100
0
100
Ti
m
e
O
u
t
p
u
t
V
o
l
t
a
g
e
O
f
P
a
r
a
l
l
e
l
C
o
n
v
e
r
t
e
r
&
P
h
a
s
e
O
f
T
h
e
L
o
a
d
C
u
r
r
e
n
t
W
i
t
h
F
u
z
z
y
C
o
n
t
r
o
l
l
e
r
V
o
l
t
a
g
e &
C
u
rren
t
0
100
0
2000
3000
400
0
5000
6000
7000
8000
900
0
1
0000
-2
0
0
20
Ti
m
e
C
u
rren
t
C
u
rr
e
n
t
De
l
i
v
e
re
d
F
r
o
m
S
y
s
t
e
m
T
o
T
h
e
G
r
i
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Imp
r
o
vemen
t
of Po
wer
Qu
a
lity u
s
i
n
g Fuzzy
Log
i
c Con
t
ro
ll
er in
Grid Conn
ected
… (K.Rama
ling
e
sw
a
r
a
Rao
)
10
9
m
ode aft
e
r pa
ssi
ng
he t
r
a
n
si
ent
st
at
e. It
can u
n
d
erst
oo
d t
h
at
, be
fo
re P
V
out
a
g
es,
vol
t
a
ge has
1
8
0
°
p
h
ase
d
i
fferen
ce
with
its curren
t
an
d PV inj
ects
cu
rren
t t
o
so
urce in
ad
d
ition
to
prov
id
i
n
g
lo
ad th
at is isl
a
n
d
i
n
g
m
o
d
e
. After PV ou
tag
e
s, it is seen
th
at, curren
t
an
d v
o
l
t
a
ge are i
n
sa
m
e
phase an
d
UPQC
c
o
m
p
ensat
e
s
cur
r
ent
ha
rm
oni
cs and
po
w
e
r fact
o
r
. The
THD fact
or
i
n
gri
d
vol
t
a
g
e
si
de t
h
e di
f
f
ere
n
ce i
s
7.0
3
% by
co
m
p
arin
g bo
t
h
co
n
t
ro
llers.
10
.2
.
Experimen
tal Results
of the Series-p
ara
lle
l
Sys
t
em unde
r
Un
bal
a
nced
Vol
t
age Dips
Fi
gu
re
1
2
.
U
P
QC
sy
st
em
un
der
u
n
b
al
ance
d
v
o
l
t
a
ge
di
ps
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-1
0
0
0
10
0
G
r
id
V
o
lt
a
g
e
Re
s
u
l
t
s
Of
UP
QC
S
y
s
t
e
m
Un
d
e
r
U
n
b
a
l
a
n
c
e
d
V
o
l
t
a
g
e
D
i
p
s
W
i
t
h
P
I
C
o
n
t
r
o
l
l
e
r
0
1
2
3
4
5
6
7
8
9
10
x 10
4
-1
0
0
0
10
0
G
r
id
V
o
lt
a
g
e
Re
s
u
l
t
s
Of
UP
QC
S
y
s
t
e
m
Un
d
e
r
U
n
b
a
l
a
n
c
e
d
V
o
l
t
a
g
e
D
i
p
s
W
i
t
h
F
u
z
z
y
C
o
n
t
r
o
l
l
e
r
0
1
2
3
4
5
6
7
8
9
10
x 10
4
-1
0
0
0
10
0
V
o
l
t
age
O
u
t
p
u
t
V
o
l
t
a
g
e
s
O
f
T
h
e P
a
ra
l
l
el
C
o
n
v
erter
W
i
th
P
I
C
o
n
t
rol
l
er
0
1
000
20
00
30
00
4
000
50
00
60
00
70
00
80
00
90
00
10
00
0
-2
0
0
0
20
0
V
o
l
t
age
O
u
t
p
u
t
V
o
l
t
a
g
es
O
f
T
h
e
Pa
ra
l
l
el
C
o
n
v
er
t
e
r
W
i
t
h
Fu
z
z
y
C
o
n
t
r
o
l
l
er
0
1
2
3
4
5
6
7
8
9
10
10
4
-20
0
20
Ti
m
e
V
o
l
t
age
O
u
tp
u
t
V
o
l
t
a
g
es O
f
T
h
e S
eri
es
C
o
n
v
e
r
ter
0
1
2
3
4
5
6
7
8
9
10
x 10
4
-2
0
-1
0
0
10
20
Ti
m
e
C
u
rren
t
C
u
rre
n
t
s D
e
l
i
v
e
red
F
r
o
m
T
h
e S
y
stem
T
o
T
h
e
G
r
i
d
W
i
t
h
P
I
C
o
n
t
r
o
l
l
er
0
1
2
3
4
5
6
7
8
9
10
x 1
0
4
-1
5
-1
0
-5
0
5
10
15
Ti
m
e
C
u
rren
t
C
u
rren
ts D
e
l
i
v
e
red
F
r
o
m
T
h
e
S
y
stem
T
o
T
h
e G
r
i
d
W
i
th
F
u
z
z
y
C
o
n
t
ro
l
l
er
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
101
–
1
11
11
0
From
t
h
e ab
ov
e Fi
gu
re
12
re
sul
t
s
u
nde
r
un
bal
a
nce
d
vol
t
a
ge di
ps i
n
gri
d
vol
t
a
ge
si
de,
vol
t
a
ge
di
ps
are ob
tain
ed
with
PI co
n
t
roller th
at is el
i
m
in
ated
b
y
u
s
in
g
fu
zzy con
t
ro
ller and
a
pu
r
e
sinu
so
id
al wav
e
is
obt
ai
ne
d.
The
cur
r
ent
del
i
v
er
ed f
r
om
t
h
e sy
st
em
t
o
t
h
e gri
d
at
0
.
0
0
05 sec
t
h
ere i
s
c
h
an
g
e
i
n
m
a
gni
t
ude
val
u
e
in
PI
con
t
ro
ller th
at will b
e
red
u
c
ed
b
y
app
l
yin
g
fu
zzy co
ntro
ller. THD facto
r
in grid
vo
ltag
e
sid
e
d
i
fferen
ce
i
s
7.
0
6
%
by
co
m
p
ari
ng
bot
h c
ont
rol
l
e
rs
an
d
al
so i
n
seri
es c
o
n
v
e
r
t
e
r T
H
D
i
s
1.
3
6
% .
10.3.
O
u
t
put
Vol
t
ages of
t
h
e
Par
a
llel Converter
Tested
under
a
Singl
e
Phase
Nonlinear L
o
ad
Fig
u
r
e
13
. Ou
tp
u
t
vo
ltag
e
o
f
p
a
r
a
llel
conv
erter
und
er
sing
le
ph
ase no
n-
linear
lo
ad
Fr
o
m
th
e above Figu
r
e
13
r
e
su
lt sin
g
l
e
ph
ase no
n
lin
ear
lo
ad
at so
ur
ce
v
o
l
tag
e
V
s w
i
t
h
PI
co
n
t
r
o
ller
at
t
h
e t
i
m
e
peri
od d
u
r
i
n
g 2
0
00s
ec t
o
4
0
0
0
s
ec t
h
ere i
s
v
o
l
t
a
ge sag. T
h
i
s
sag i
s
red
u
ce
d by
ap
pl
y
i
ng
fuzzy
cont
roller as s
h
o
w
n in the a
b
ove
fig
u
re
.
Wh
en v
o
ltage (
Vi
n
j
ecj) is in
j
ect
ed
with
PI co
ntro
ller at sing
le p
h
a
se
n
o
n
lin
ear
lo
ad
th
e
ob
tain
ed
vo
ltag
e
swell
is eli
m
in
ated
b
y
u
s
ing
fu
zzy
con
t
ro
ller.
11
.
CO
NCL
USI
O
N
In t
h
i
s
pa
pe
r,
t
h
e res
u
l
t
s
o
f
anal
y
z
i
ng c
o
m
b
i
n
e
d
ope
rat
i
o
n o
f
UP
QC
a
nd
PV
i
s
ex
pl
ai
ned.
The
desi
g
n
e
d
sy
st
em
i
s
co
m
pose
d
o
f
seri
es a
n
d sh
u
n
t
i
n
vert
ers, P
V
m
odul
e and
DC
/
D
C
con
v
e
r
t
e
r w
h
i
c
h can
co
m
p
en
sate the swell, vo
ltag
e
sag
,
in
terrup
tio
n an
d
reac
t
i
v
e p
o
w
er
an
d
harm
oni
cs i
n
bot
h i
s
l
a
ndi
ng
a
n
d
interconnected m
odes. T
h
e a
dva
ntage
s
of
proposed system
is reducing
the expe
nse
of PV interface i
nve
rte
r
co
nn
ection
to
g
r
i
d
b
ecau
s
e
of app
l
yin
g
UPQC shun
t in
v
e
rter an
d
also
i
s
th
e ab
ility of co
m
p
en
sating
th
e
0
10
00
200
0
3
000
400
0
5
000
60
00
700
0
80
00
-2
0
0
0
20
0
V
o
l
age
O
u
t
p
u
t
V
o
l
t
a
g
e
O
f
P
a
ra
l
l
e
r
C
o
n
v
erte
r
U
n
d
e
r S
i
n
g
l
e
P
h
a
s
e N
o
n
l
i
n
e
r
L
o
a
d
V
L
a
b
c
(L
o
a
d
V
o
l
a
g
e
) W
i
th
P
I
C
o
n
t
r
o
l
l
e
r
0
1000
2000
3000
4000
5000
6000
70
0
0
8000
-5
0
0
50
Ti
m
e
Vo
l
t
a
g
e
O
u
t
p
u
t
V
o
l
t
a
g
e
O
f
Pa
r
a
l
l
er
C
o
n
v
er
t
e
r U
n
d
e
r S
i
n
g
l
e
Ph
a
s
e N
o
n
l
i
n
er
L
o
a
d
V
i
n
j
a
b
c(I
n
j
ecte
d
V
o
l
t
a
g
e
)
W
i
th
P
I
co
n
t
ro
l
l
e
r
0
1
000
2
000
3
000
4
000
5
000
6
000
70
00
-2
0
0
0
20
0
V
o
l
t
age
O
u
tp
u
t
V
o
l
t
a
g
e O
f
P
a
ra
l
l
e
r
C
o
n
v
e
r
ter
U
n
d
er
S
i
n
g
l
e
P
h
a
s
e
N
o
n
l
i
n
er
L
o
a
d
V
s
a
b
c
(S
ou
r
ce
V
o
l
a
ge
) W
i
th
P
I
C
o
n
t
ro
l
l
e
r
0
10
00
2
000
30
00
400
0
50
00
60
00
700
0
-20
0
0
20
0
V
o
lt
age
O
u
t
p
u
t
V
o
l
t
a
g
e O
f
P
a
ra
l
l
er C
o
n
v
erter U
n
d
er
S
i
n
g
l
e
P
h
a
s
e
N
o
n
l
i
n
er
L
o
a
d
V
s
a
b
c(
S
o
u
r
ce V
o
l
t
a
g
e) W
i
h
F
u
z
z
y
C
o
n
t
r
o
l
l
er
0
1
2
3
4
5
6
7
x 1
0
4
-20
0
0
20
0
Vo
lt
a
g
e
O
u
tp
u
t
V
o
l
t
a
g
e
O
f
Pa
ra
l
l
er C
o
n
v
e
r
t
e
r
U
n
d
er S
i
n
g
l
e
P
h
a
s
e N
o
n
l
i
n
er L
o
a
d
V
l
a
bc
(
L
o
a
d V
o
l
t
ag
e
)
0
1
2
3
4
5
6
7
x 1
0
4
-5
0
0
50
Ti
m
e
V
o
l
t
age
O
u
t
p
u
t
V
o
l
t
a
g
e O
f
P
a
ra
l
l
er
C
o
n
v
erter U
n
d
er S
i
n
g
l
e
P
h
a
s
e N
o
n
l
i
n
er L
o
a
d
V
i
n
j
a
b
c(I
n
j
ected
V
o
l
t
a
g
e
)
W
i
th
F
u
z
z
y
C
o
n
t
r
o
l
l
er
Evaluation Warning : The document was created with Spire.PDF for Python.