Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
7, N
o
. 1
,
Mar
c
h
20
16
,
pp
. 10
7
~
11
3
I
S
SN
: 208
8-8
6
9
4
1
07
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
High P
o
wer Den
s
ity Multi-Mosfet-Bas
ed Seri
es Res
o
nant
Inverter for Induction
Heating Applications
M. Sar
a
vanan
,
A. Rame
sh
B
a
bu
Sa
ty
a
bha
ma
Unive
r
si
ty
, Che
n
na
i
,
Indi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 11, 2015
R
e
vi
sed Dec 2,
2
0
1
5
Accepte
d Ja
n
3, 2016
Induction heatin
g application us
es unique
ly
hig
h
frequency
ser
i
es resonant
inverter for ach
ieving high conv
ersion
efficien
cy. The proposed
work focus
on improving th
e practical
constraints in
r
e
quirin
g
the coo
ling
arr
a
ngements
necessar
y
for s
w
itching d
e
vices used in resonant inv
e
rter du
e to high
er
switching and conduction
loss
es.
B
y
introducing
high frequency
Multi-
MOSFET based
series r
e
sonant inver
t
er
for th
e app
lication
of
inductio
n
heat
ing
with t
h
e following m
e
rits
s
u
ch as m
i
nim
u
m
s
w
i
t
ching an
d
conduction losses using low vo
ltag
e
grad
e of
automotive MO
SFET’s and
higher conv
ersio
n
efficiency
with
hi
gh frequen
c
y
operation. B
y
ad
ding series
com
b
ination of
low voltage ra
ted Multi MOSFET switches, t
e
m
p
erature
variation accord
ing to the on
-state
res
i
s
t
an
ce
i
s
s
u
es
can be a
voided
b
y
sharing the voltage across the switche
s depends
on the number
of switches
connected in the bridge circuit
without co
mprising existing sy
stems
performance p
a
rameters such
as T
HD, power factor
and output power.
Simulation results also presents to ve
rif
y
that th
e proposed s
y
stem achiev
e
higher conver
t
er
efficiency
.
Keyword:
I
ndu
ctio
n h
eati
n
g
Power factor
c
o
rrection
Pu
lse wid
t
h
mo
du
latio
n
Tot
a
l
ha
rm
oni
c di
st
o
r
t
i
o
n
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M
.
Sara
va
nan
,
M.E Po
wer Electron
ics and
Ind
u
s
t
r
ial Driv
es
Satyab
h
a
m
a
Un
iv
ersity,
C
h
en
nai
60
0
1
1
9
, I
ndi
a
Em
a
il: sarav
a
nan
s
m
ile
y@g
m
ail.co
m
1.
INTRODUCTION
In
d
u
ct
i
on h
eat
i
ng (
I
H
) has m
a
i
n
l
y
used i
n
h
o
m
e
a
nd i
ndus
t
r
i
a
l
appl
i
cat
i
on. I
n
d
u
ct
i
o
n h
eat
i
ng i
s
t
h
e
p
r
o
cess o
f
h
eat
g
e
n
e
rated
with
in
th
e ob
j
ect
i
t
self,
no
t
via heat conduction by an exte
rnal
heat source a
n
d it is
base
d o
n
t
h
e eddy
cu
rre
nt
an
d ski
n
resi
st
an
ce of coi
l
s
. I
n
IH a
ppl
i
cat
i
o
n
s
, hi
g
h
er s
w
i
t
c
hi
n
g
fre
q
u
e
n
cy
bri
n
g
s
t
w
o
bene
fi
t
s
:
reduci
ng t
h
e c
o
m
pone
nt
s si
ze, an
d hi
g
h
p
o
we
r de
nsi
t
y
i
n
t
h
e re
gi
o
n
o
f
t
h
e ext
e
ri
or
of t
h
e
heating
object
s. The inc
r
eas
ed fre
quen
cy resu
lts
m
o
re switch
i
ng
lo
ss
wh
ich
b
l
o
c
k
s
t
h
e efforts to
raise th
e
fre
que
ncy. Because of high switching fre
quency hi
ghe
r orde
r Harm
onic
s
and acoustic noises are ge
nerat
e
d
and s
w
i
t
c
hi
ng
edge
s o
f
swi
t
c
hes.
It
ad
dress
e
s t
h
e EM
C
t
h
at
i
s
su
bject
e
d
t
o
t
h
e
un
-i
nt
ent
i
onal
gene
r
a
t
i
on,
propagation and rece
ption
of
electro
m
a
gnetic energy in re
gards t
o
elect
romagnetic interference
. He
nce, EMC
filter
m
ean
s co
m
b
in
atio
n
of p
a
ssiv
e
elemen
ts to
m
i
n
i
mi
ze th
e no
ise
wh
ich
is produ
ced
b
y
em
iss
i
o
n
and
su
scep
tib
ility i
ssu
es [1
]-[2
]
.
Nex
t
stag
e, an AC-DC con
v
erter prov
id
es su
pp
ly to
th
e
in
v
e
rter b
l
o
c
k. Th
e
rectifier can b
e
eith
er a
n
o
n
-
co
n
t
ro
lled
stage
,
i.e.
diode rect
ifier,
or a c
o
nt
r
o
l
l
e
d one
.
I
H
I
n
cl
u
d
es po
we
r fact
o
r
co
rrectio
n boost co
nv
erter the
m
a
in
o
b
j
ectiv
e is to
d
r
aw
a sin
u
s
o
i
d
a
l cu
rren
t, i
n
-ph
a
se
w
ith
th
e
u
tility
v
o
ltag
e
as well as increase the rectifier ou
tput [3]-[4]. Sem
i
conductor switc
hes
IGBT and MOSFET norm
a
lly used i
n
IH.
The
IGB
T
devi
ce i
s
sel
e
ct
abl
e
whi
c
h g
i
ves m
i
nim
u
m
o
n
-state lo
sses, h
i
gh
er ef
ficiency than t
h
e
high-
vol
t
a
ge
M
O
SF
ET de
vi
ces
[
5
]
.
Ne
ve
rt
hel
e
ss,
t
h
e m
a
i
n
dra
w
back
o
f
t
h
e
IG
B
T
’s a
r
e l
a
r
g
e
swi
t
c
hi
n
g
t
i
m
es a
n
d
l
i
m
i
t
a
t
i
on of
i
n
creasi
n
g s
w
i
t
chi
ng
fre
q
u
e
n
cy
(<
20
KH
z).
Whe
r
eas t
h
e hi
gh
-
vol
t
a
ge M
O
S
F
ET
carri
es
m
i
nim
u
m
swi
t
chi
n
g l
o
ss a
nd
hi
g
h
fr
eq
ue
ncy
appl
i
cat
i
ons
(
>
20
0
K
H
Z
).
A
ccor
d
i
n
g t
o
a
b
ove
, M
O
S
F
ET
devi
ce
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
7, No
. 1, Mar
c
h
2
016
:
10
7 – 11
3
10
8
appea
r
s t
o
be chos
en f
o
r IH a
s
i
t
uses for
Hi
gh
fre
que
ncy
a
ppl
i
cat
i
o
n [6]
.
No
net
h
el
ess
,
M
O
SFET
de
vi
ces ha
s
vari
at
i
o
n i
n
t
e
m
p
erat
ure de
p
e
nd
s u
p
on
o
n
-
s
t
a
t
e
resi
st
an
c
e
that leads the volta
ge stres
s
across the
devices.
Pro
p
o
se
d seri
es com
b
i
n
at
i
on o
f
M
O
S
F
E
T
devi
ces e
n
a
b
l
e
s b
o
t
h
a
n
on
- st
at
e l
o
ss
es
m
i
nim
i
zat
ion a
n
d
decrease
d
swi
t
ching tim
es
while
requiri
n
g t
h
e sam
e
chip area
[7
]
-
[
10]
.
F
u
rt
herm
ore
,
t
h
e
t
e
m
p
erat
ur
e
v
a
riation
of th
e on
-state resistan
ce is red
u
c
ed
, en
ab
ling
greate
r
efficiency ev
en
if a greate
r
am
bient
te
m
p
erature is
reflected (90
◦
C
)
. The m
o
t
i
v
at
i
on
fo
r usi
ng c
o
m
b
i
n
at
i
on of s
e
ri
es-c
on
nect
e
d
M
O
SF
ETs s
w
i
t
c
h
is to
min
i
m
i
ze
th
e vo
ltag
e
st
ress on
th
e M
O
SFETs.
T
h
us
recover t
h
e breakdown
voltage.
Hence t
h
e
switch
h
eat m
a
n
a
g
e
men
t
and
system p
e
rform
a
n
ce will b
e
enrich
ed
. Series resonan
t
con
v
e
rter i
s
u
s
ed
to
en
h
a
n
ce th
e
soft
swi
t
c
hi
n
g
ope
rat
i
o
n by
creat
i
ng Z
V
S o
r
ZC
S [1
1]
-
[
13]. IH c
o
il inductance se
ri
es\p
arallel co
nn
ected
t
o
red
u
ce t
h
e swi
t
chi
n
g l
o
ss. I
n
pr
o
pose
d
ci
rcu
i
t
,
choose
s
t
h
e ZVS as capaci
t
o
r co
n
n
ect
ed i
n
seri
es wi
t
h
I
H
coi
l
in
du
ctan
ce to
cr
eate r
e
son
a
n
t
cir
c
u
it [
1
4
]-[15
]
.
Sw
itch
e
d
cap
acito
r
b
a
nk
ad
d
e
d
to
im
p
r
o
v
e
th
e
o
u
t
p
u
t
p
o
w
e
r
o
f
th
e im
p
l
e
m
e
n
ted
i
n
v
e
rter as it’s
d
o
n
e
b
y
ch
ar
g
i
ng
/d
isch
arg
i
n
g
th
rou
g
h
t
h
e au
x
iliary switch
[6
].
2.
CIR
C
U
IT DI
AG
RA
M
Fi
gu
re
1
sh
o
w
s t
h
e
basi
c
co
n
f
i
g
urat
i
o
n
of
t
h
e p
r
o
p
o
se
d
hi
g
h
fre
q
u
ency
i
n
vert
er
ci
rc
ui
t
.
The i
nve
rt
er
ci
rcui
t
m
a
i
n
l
y
com
p
ri
ses o
f
hal
f
bri
dge
s w
i
t
h
u
ppe
r sect
i
o
n
an
d l
o
we
r
sect
i
on.
U
p
per
swi
t
c
hes
are
M
H
1
,
M
H
2, M
H
3 a
n
d l
o
wer s
w
i
t
c
h
e
s are M
L
1
,
M
L
2, M
L
3, l
o
ad (L
0 a
nd R
0
). Eac
h
M
O
S
F
ET swi
t
c
h c
o
n
s
i
s
t
s
of
an
ti p
a
rallel d
i
o
d
e
and
cap
aci
to
r to ob
tain
t
h
e ZVS c
ond
itio
n
an
d pr
o
t
ection
o
f
sw
itch
e
s.
PFC boo
st co
nv
er
ter
ci
rcui
t
com
p
ri
ses of i
n
d
u
ct
o
r
(
L
p)
, swi
t
c
h
(
Q
p)
, capaci
t
o
r (
C
p) a
nd
di
o
d
e
(D
p)
, res
o
nant
capaci
t
o
rs
(C
r
1
), an
d
au
x
iliary switch
e
d cap
acito
r
n
e
two
r
k
(Cr2
). Cr1
i
s eng
a
g
e
d
in
series
with
IH lo
ad
an
d creates reso
n
a
n
c
e wit
h
lo
ad
L0
. Switch
e
d
cap
acito
r
Cr2
is
co
nn
ect
ed
in
p
a
rallel
with
Q3
and
also creates the
resonance a
n
d zero
vol
t
a
ge s
o
ft
-s
wi
t
c
hi
n
g
co
ndi
t
i
on of
QS. L
0
and R
0
are t
h
e i
nduct
a
nce and re
si
st
ance o
f
t
h
e IH coi
l
and l
o
a
d
,
respectively.
The e
q
ui
val
e
n
t
ci
rcui
t
o
f
m
ode
s
of
o
p
erat
i
on a
r
e
desc
ri
bed
bel
o
w
wi
t
h
c
o
n
s
i
d
eri
n
g
t
h
e i
n
vert
e
r
sect
i
on.
Fi
g
u
re
2 s
h
ow
s t
h
e
s
w
i
t
c
hi
n
g
pul
se
s o
f
t
h
e
di
ffe
re
nt
swi
t
c
hes.
Fi
gu
re
1.
Pr
o
p
o
se
d Se
ri
es re
s
ona
nt
c
o
n
v
e
r
t
e
r
Fi
gu
re
2.
P
W
M
si
gnal
s
f
o
r
M
O
SFET
There a
r
e t
h
re
e ope
rat
i
n
g m
ode
s. Eac
h
m
ode i
s
c
h
ar
act
erized
by an e
qui
valent circ
uit. The
real
challenge is how to feed the
P
W
M signal to Multi MOSF
ET switches that will be done
by sinus
oidal P
W
M
tech
n
i
qu
es. Series stack
ed
switch
e
s are t
r
ig
g
e
red
with
duty cycle. Ti
me
d
e
lay an
d
ph
ase d
e
lay will be g
i
v
e
n
to
av
o
i
d
th
e larg
e curren
t
availab
l
e at swit
ch
ing
ti
m
e
. Fo
r th
e reason
, prov
id
es
d
e
lay i
n
switch
i
ng
seq
u
e
n
c
e
di
ag
ram
.
a.
M
ode
I
Fi
gu
re
3 e
x
pl
ai
ns t
h
e
ope
rat
i
o
n
of
m
ode1.
T
h
e s
w
i
t
c
h
Q
3
c
o
n
d
u
ct
s f
o
r a t
i
m
e
Q3
o
n
wi
t
h
del
a
y
t
i
m
e
Td
.
For
th
e per
i
od
of
Q
3on + Td, th
e
upp
er
sw
itch
M
H
1, MH2
&
MH
3
con
d
u
c
ts f
o
r
th
e ti
m
e
in
ter
v
al
TH
ON1
, THON
2 & THON
3 w
ith d
e
lay.
H
e
n
c
efo
r
th f
i
rs
t m
ode o
f
o
p
e
ration
,
th
e c
u
rre
nt fl
ow
s
fr
o
m
th
e
so
urce
Vd
c to th
e switch
M
H
1
-
M
H
2 - M
H
3
,
th
e
IH
lo
ad
and
th
e so
urce throug
h th
e switch
Q3.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
High
Po
wer
Den
s
ity Mu
lti-Mo
sfet-Ba
s
ed S
e
ries Resona
n
t
In
verter for Indu
ctio
n Hea
ting … (M. Sa
ra
van
a
n
)
10
9
Fig
u
r
e
3
.
Mode I
-
Pr
opo
sed co
nv
er
ter
b.
M
ode
I
I
Fig
u
re 4
shows th
e second
m
o
d
e
o
f
op
eratio
n
,
th
e switch
MH1
-
M
H
2- MH3
still co
n
d
u
c
ts fo
r a
d
e
lay ti
m
e
Td
. It allo
ws the Cr1
to
ch
arg
e
with
p
o
sitiv
e po
larization
in
th
e
u
p
p
e
r p
l
ate and
neg
a
tive
pol
a
r
i
zat
i
on i
n
t
h
e l
o
wer
pl
at
e
.
As
sum
e
t
h
at
t
h
e re
so
na
nt
ca
paci
t
o
r
C
r
1 i
n
t
h
e I
H
l
o
a
d
di
s
c
har
g
es t
h
r
o
ug
h t
h
e
au
x
iliary sw
itch
d
i
o
d
e
D
3
and
series co
nductin
g
MO
SFET’s upp
er
b
r
i
d
g
e
d
i
o
d
e
. It can
b
e
an
ticip
ated
th
at th
e
ZVS condition can be accom
p
l
i
shed
for switches MH1, MH2 & MH3 an
d Q3. The lower side snubbe
r
capacitor C1 arrangem
ent onl
y plays the
f
u
n
c
t
i
on fo
r pr
ot
e
c
t
i
on of
t
h
e
ci
r
c
ui
t
.
Fi
gu
re 4.
M
o
d
e
II
- Pr
op
ose
d
con
v
e
r
t
e
r
c.
Mo
d
e
II
I
Fi
gu
re 5 s
h
o
w
s
t
h
e t
h
i
r
d m
ode of o
p
erat
i
on t
h
e l
o
we
r swi
t
c
h M
L
1, M
L
2,
M
L
3 i
s
swi
t
c
h
e
d o
n
f
o
r t
h
e
ti
m
e
in
ter
v
al of
TLo
n
1
,
TLon
2 & TLon
3.
Th
e ch
arg
e
d
c
a
pacitor C
r
1 release the stored e
n
ergy through t
h
e
sw
itch
ML1
,
ML2
,
ML3
.
Later
th
e cap
acito
r
r
e
leases com
p
le
tely, th
e r
e
v
e
r
s
e b
i
ased
cu
rr
en
t
f
l
ow
s t
h
rough
au
x
iliary switch
d
i
od
e
D3
and
ML1
,
ML2
,
ML3
switch
d
i
o
d
e
s. Sin
ce the tu
rn
o
n
o
f
the switch
Q3
can
be
d
o
n
e
at zero
vo
ltag
e
, an
d
th
e
lo
sses in
th
e switch
i
ng
at
the condition
of t
u
rn on can
be decrease
d
. It
com
p
letes
one
cycle of
operation.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
7, No
. 1, Mar
c
h
2
016
:
10
7 – 11
3
11
0
Fig
u
r
e
5
.
Mode I
I
I
-
Pr
opo
sed con
v
e
r
t
er
The swi
t
c
he
d
capaci
t
o
r C
r
2
act
s as a boost
capaci
t
o
r t
h
at
i
n
creases t
h
e
out
put
v
o
l
t
a
ge
and o
u
t
p
ut
p
o
wer. It
will b
e
u
n
d
e
rstand
fro
m
th
e
si
m
u
latio
n
resu
lts.
3.
SIMULATION RESULTS
Th
e resu
lts
of si
m
u
latio
n
are p
o
s
ted
b
e
low
an
d
fo
u
n
d
t
h
e
M
O
SFET
s
w
i
t
c
h
vol
t
a
ge
st
re
ss get
s
h
a
r
ed
base
d o
n
t
h
e
num
ber
of s
w
i
t
ch co
n
n
ect
ed
i
n
t
h
e
hal
f
bri
d
e seri
es
res
o
nant
i
nve
rt
er a
s
wel
l
as T
H
D val
u
e
red
u
ce
d. T
h
e s
i
m
u
l
a
t
i
on of
si
x s
w
i
t
c
hes,
fo
ur s
w
i
t
c
hes a
n
d t
w
o s
w
i
t
c
h
hal
f
bri
d
ge i
n
v
e
rt
er wa
s car
ri
ed o
u
t
usi
n
g M
A
TL
A
B
/
Sim
u
l
i
nk. T
h
e si
x
swi
t
c
h
h
a
l
f
b
r
i
d
ge seri
e
s
i
nve
rt
er
o
u
t
p
ut
s are
sh
o
w
n i
n
Fi
gu
re
6 an
d
7.
It
sho
w
s
t
h
at
vol
t
a
ge st
re
ss
on
si
ngl
e
swi
t
c
h
i
s
73
V.
T
h
e F
F
T
anal
y
s
i
s
i
ndi
ca
t
e
d as T
H
D
val
u
e
of
4
.
7
7
%.
Fi
gu
re
6.
P
W
M
,
v
o
l
t
a
ge a
n
d
cu
rre
nt
o
f
si
x
swi
t
c
h
i
nve
rt
er
Fi
gu
re
7.
FFT
anal
y
s
i
s
o
f
si
x
swi
t
c
h i
nve
rt
er
The f
o
u
r
swi
t
c
h hal
f
b
r
i
d
ge s
e
ri
es i
nve
rt
er o
u
t
p
ut
s are sh
o
w
n i
n
Fi
gu
re 8
and 9
.
It
sho
w
s t
h
at
vol
t
a
g
e
st
ress
o
n
sing
le sw
itch
is
11
0V
. Th
e FFT
an
alys
is
i
ndicated
as THD value of 4.94%.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
High
Po
wer
Den
s
ity Mu
lti-Mo
sfet-Ba
s
ed S
e
ries Resona
n
t
In
verter for Indu
ctio
n Hea
ting … (M. Sa
ra
van
a
n
)
11
1
Fig
u
r
e
8
.
PWM, vo
ltag
e
and cur
r
e
n
t
of
f
our sw
itch
i
nve
rt
er
Fi
gu
re
9.
FFT
anal
y
s
i
s
o
f
f
o
u
r
s
w
i
t
c
h i
n
ve
rt
er
The t
w
o swi
t
c
h hal
f
b
r
i
d
ge s
e
ri
es i
nve
rt
er
o
u
t
p
ut
s are s
h
o
w
n i
n
Fi
g
u
re
1
0
an
d 1
1
.
It
sh
ows t
h
at
v
o
l
t
a
ge st
ress
o
n
sing
le sw
itch
is
22
0V
. Th
e FFT
an
alys
is
i
ndicated
as THD value of 5.15%.
Fig
u
r
e
10
.
PW
M, vo
ltag
e
and cur
r
e
n
t
of
t
w
o sw
itch
i
nve
rt
er
Fig
u
r
e
11
.
FFT an
alysis of
f
our
sw
itch
inv
e
r
t
er
d.
Si
m
u
latio
n
Sp
ecificatio
n
Tabl
e
1.
Speci
f
i
cat
i
on p
a
ram
e
t
e
r f
o
r
ne
w t
o
p
opl
ogy
DC input voltage,
Vdc
220 V
Switching fr
equen
c
y
,
fs
25 KHZ
Load resistance,
R
0
7 oh
m
L
o
ad inductance,
L
0
146 M
i
cr
o Henry
Snubber
capacitor
,
C1
0.
02 M
i
cr
o Far
a
d
Resonant capacitor
,
Cr
1
0.
33 M
i
cr
o Far
a
d
Switched capacitor,
Cr
2
0.
3 M
i
cr
o Far
a
d
e.
Perform
a
nce Param
e
ter
The pe
rform
a
nce param
e
ters are suc
h
as vol
t
age
stress, co
nd
u
c
tion
lo
ss, switch
i
ng
lo
ss, THD
wh
ere
co
m
p
ared
with two switch
fou
r
switch
a
n
d
si
x s
w
i
t
c
h s
e
ri
es res
o
nant
i
n
vert
er
.
Fr
om
thi
s
c
o
m
p
ari
s
o
n
resul
t
we c
oncl
ude
t
h
at
si
x s
w
i
t
c
h se
ri
es res
o
nant
i
n
vert
er
p
r
ovi
des
bet
t
e
r
res
u
l
t
com
p
ared t
o
ot
h
e
r t
ech
ni
q
u
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
7, No
. 1, Mar
c
h
2
016
:
10
7 – 11
3
11
2
Tabl
e
2. C
o
m
p
ari
s
o
n
of
seri
es
res
ona
nt
i
n
ve
r
t
er wi
t
h
di
f
f
er
e
n
t
t
o
pol
ogy
Para
m
e
ters
Two Switch
Half Br
idge I
nver
t
er
Four
Switch
Half Br
idge I
nver
t
er
Six Switch
Half Br
idge I
nver
t
er
Voltage str
e
ss on each switch
220 V
110 V
73 V
Switching fr
equen
c
y
25 KHZ
25 KHZ
25 KHZ
No of switches
2
4
6
Output cur
r
e
nt
17.
2 A
16.
85 A
16.
6 A
Output Voltage
462 V
454 V
445 V
Output Power
1.
1 KW
1 .
09 KW
1.
03 KW
Per
centage of T
H
D
5.
15%
4.
94 %
4.
77 %
Conductio
n loss
15.
76 W
15.
12 W
14.
61 W
Switching loss
3.
074 W
1.
505 W
0.
98 W
4.
CO
NCL
USI
O
N
In t
h
i
s
pa
per,
a new a
p
pr
oac
h
base
d
on t
h
e seri
es o
p
erat
i
on
of l
o
w
-
v
o
l
t
age M
O
SF
ET
has bee
n
success
f
ully proposed. On
the top
of that
, the decrease
d
sw
itchi
ng time of MOSFET devices re
duce
s
sw
itch
i
ng
an
d con
d
u
c
tion
l
o
sses, fu
r
t
h
e
r in
cr
easi
n
g the ef
f
i
cien
cy
o
f
con
v
e
r
s
ion and
ach
iev
e
d
g
ood
per
f
o
r
m
a
nces
con
s
i
d
eri
n
g
t
h
e ZV
S
ope
rat
i
o
n
m
ode
of
t
h
i
s
res
o
nant
c
o
n
v
ert
e
r
i
n
a
pr
o
f
i
t
a
bl
e way
.
Fi
nal
l
y
, a
com
p
arat
i
v
e eval
uat
i
o
n di
sc
ussi
o
n
,
we
un
derst
o
o
d
t
h
at
e
x
i
s
t
i
ng sy
st
em
Two
Swi
t
c
h
-
M
O
SFET
b
r
ea
k d
o
w
n
vol
t
a
ge
can
be
reco
vere
d as
i
t
t
o
be l
e
d t
o
re
d
u
ce t
h
e
coo
ling ar
r
a
ng
em
en
ts an
d in
cr
ease the po
w
e
r
co
nv
er
sion
efficiency.
REFERE
NC
ES
[1]
W.M.V. Loock,
“
Electromagnetic heating applications fa
ced with EMC regulatio
ns in Europe
”, i
n
P
r
oc. Int. S
y
m
p
.
EMC, Aug. 199
9, pp
. 353–356
.
[2]
U.S. CFR. 47
part 0–19, pp. 876
–877, (2005
, Oct.). [Online]
.
Av
ailable: www.gpo.gov.
[3]
M.S Jay
a
kumar,
Ajeesh G, “A Hi
gh Efficient Hig
h
I
nput Power Factor Interleav
ed
Boost Converter”,
International
Journal of Electrical and
Computer
Eng
i
neer
ing
,
ISSN: 2088-8708, Vol.2, No.3, June 2012, pp. 33
9~344.
[4]
H.
Sarnago,
O.
Luc
ı
a, A. Mediano, and J.M. Burd
ı
o, “Direct ac-
ac resonant boos
t
converter for e
fficient domestic
induction
heatin
g applications”,
IEEE
T
r
ans. Po
wer El
ectron
., n
o
. 2014
.
[5]
Pradip Kumar Sadhu, Palash Pal, N
itai Pa and
Sourish Sany
al,
“Selecti
on of Po
wer Semiconductor Switches in
M.H.B.R.I
.
Fitted Induction
Heater for
Less Har
m
onic Injection
in Power Lin
e
”,
Internationa
l
Journal of Pow
e
r
Electronics and
Drive System
, ISSN:
2088-8694
,
Vol. 6
,
No. 1, March 2015
, pp
. 1
21~128.
[6]
Bishwajit Sah
a
and Rae-Young
Kim
,
“High
Po
wer Densit
y
Ser
i
es Resonant
Inv
e
rter Using
an A
uxiliar
y
Swi
t
ched
Capacitor Cell f
o
r Induction
Heating Applicatio
ns”,
IEEE Transactions on Pow
e
r Electronics
,
29 (4), 1-3, April
2014.
[7]
A. Ramesh Babu, “Comparativ
e
Anal
y
s
is
of Cas
caded
ed M
u
lti
le
vel Invert
er for
P
h
as
e Dis
pos
ition and P
h
as
e S
h
ift
Carrier PWM for Different
Load
”,
Indian
Journal of Science an
d Technology
, I
SSN
0974-5645
Vol 8(S7), 251-
262, April 2015.
[8]
S. Page, A.Wajd
a, and H
.
Hess, “
High voltag
e
tolerant stacked M
O
SFET
in a Buck converter application
”, in
P
r
oc
,
IEEE Workshop Microelectron.
Electron Devices,
2012, pp
. 1–4
.
[9]
W
e
senbeeck
, M.P.N.; De Drie
Ele
c
tron., Neth
e
r
lands; Kl
aasens
,
J.B.; von Stoc
khausen, U.; M
unoz de Morale
s
Anciola, A, “A m
u
ltiple-swit
c
h
high-voltag
e
DC
-DC convert
er”,
IEEE
T
r
ans. Po
wer El
ectron
., v
o
l. 44
, no
. 6, pp.
0278–0046, Dec. 1997
.
[10]
Babu A.R, Ragh
avendir
a
n, T.
A.
"Analy
sis of non-isolated two phase in
ter
l
eaved h
i
gh voltag
e
gain
boost converter
for PV application", In
Control, Instrumentation
,
Communicatio
n
and Computational Techno
log
i
es (
I
CCICCT)
,
2014 Internation
a
l Conference o
n
, pp
. 491-496
. I
EEE, 2014
.
[11]
R.L. Steigerw
ald, "A comparison of hal
f-bridg
e
resonant conv
erter topologies",
IEEE Transa
c
tions on Pow
e
r
Electronics
, vol. 3, no. 2, pp. 174
-182, April 1988
.
[12]
M.K. Kazimierczuk, N. Thirunar
a
y
a
n,
and S. Wang, “Analy
si
s of series parallel
resonant conver
t
er”,
IEEE Trans.
Ae
rosp.
E
le
c
t
ron. Sy
st
., vo
l. 29, n
o
. 1
,
pp
. 88–99
,
Jan. 1993
.
[13]
Babu, A. Ramesh, and T.A.
R
a
ghavend
iran
, "Performan
ce an
aly
s
is of novel three phase Hig
h
step-up dc-dc
interleav
ed boos
t conv
erter
usin
g coupled indu
ctor",
In C
i
rcuit,
Power and Com
puting Techno
lo
gies (
I
CCPCT),
2015 Internation
a
l Conference o
n
, pp
. 1-8
.
I
EEE, 2015.
[14]
R.L. Steig
e
rwald, “A compariso
n
of hal
f-bridg
e resonant conver
t
er
topo
logies”,
I
EEE
T
r
ans. Pow
e
r El
ectron
, vol.
3, no
. 2
,
pp
. 174
–182, Apr. 1988.
[15]
H.
Sarnago, O.
Lucia,
A.
Me
dia
no,
a
nd J.
M.
Burdio,
“Cla
ss-D/DE
dual-mode-operation r
e
sonant conv
erter f
o
r
improved-efficiency
domestic
in
duction h
eating
s
y
stem”,
I
EEE
T
r
ans. Power El
ectron
., vol. 28, no. 3, pp
. 1274
–
1285, Mar
.
2013
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
High
Po
wer
Den
s
ity Mu
lti-Mo
sfet-Ba
s
ed S
e
ries Resona
n
t
In
verter for Indu
ctio
n Hea
ting … (M. Sa
ra
van
a
n
)
11
3
BIOGRAP
HI
ES OF
AUTH
ORS
M. Saravanan c
o
m
p
leted his B.E Ele
c
tri
cal and
Elect
ric
a
l Engg
ineer
ing at Seth
u institute of
Techono
log
y
, K
a
riap
atti, Virudh
unagar-626 115
in th
e
y
e
ar
of 20
07-2011. Curren
t
ly
he
is doing
his ME-Power Electronics
and In
dustrial Driv
es
in Saty
abh
a
ma U
n
iversity
, Chenn
a
i-600119.
A.
Ra
me
sh Ba
bu ha
s c
o
mpl
e
te
d B.E. degr
ee
in Electrical &
Electronics Eng
i
neer
ing from
Manonmaniam Sundaranar University
,
Tirun
e
lv
elli,
India in
20
01. He got h
i
s
M.E. in
Power
Electronics and
Industrial Driv
es from Sath
y
a
b
a
ma
University
Chennai, India in 2008. He is
having more th
an 14
y
ears of
ex
perien
ce (11
y
ears in teaching
+
3
y
ears industr
y). He
is a
life
m
e
m
b
er of Indi
an S
o
ciet
y for Techn
i
ca
l Educ
ation (ISTE)
. Presently
he is pursuing ph.D.
program
at S
a
th
yab
a
m
a
Univers
i
t
y
Chenna
i, Ind
i
a. His
Res
e
arch
interes
t
includ
e
DC-DC Boost
converter for
PV application.
Ha
s presented
more than 15
research p
a
pers
in
various
journals,
National and International Conf
erence. Presently
se
rving a
s
Assista
n
t profe
ssor in Sa
thy
a
ba
ma
University
.
Evaluation Warning : The document was created with Spire.PDF for Python.