Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
7
,
No
. 2,
J
une
2
0
1
6
,
pp
. 49
8~
50
8
I
S
SN
: 208
8-8
6
9
4
4
98
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Control of DFIG Stator Voltage
on Autonomous Micro Hydro
Power Plant
Feri
Yusi
var
, Na
nd
a Avi
a
nt
o
Wi
c
a
ks
on
o,
Ari
e
s
Su
bi
an
t
o
ro
, Ri
dw
an
Gun
a
w
a
n
Department o
f
Electrical E
ngin
e
ering, Univ
ersity
of I
ndonesia, Jak
a
rta, Indon
esia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 28, 2015
Rev
i
sed
Mar
19
, 20
16
Accepte
d Apr 1, 2016
An autonomous micro h
y
dro
po
wer plan
t was p
r
oposed to u
tilize th
e small
h
y
dro power
potency
as a run-of
-river.
It
consisted of a PMSG, a DFIG, and
a conv
erter and
should be operated
in
the of
f-grid conf
iguration. In
a
previous research, the DFIG sta
t
or vo
ltages cou
l
dn’t be controlled. In this
paper,
the novel control algorith
m that is
able to maintain th
e
DFIG stator
voltag
e
s of the autonomous micro h
y
dro p
o
wer plant in
the off-grid
configuration is
proposed. The control algorith
m was propose
d
to use the
actu
a
l DF
IG s
t
at
or volt
a
ges
and
currents
as
fe
ed
back s
i
gn
als
.
Th
e con
t
roll
er
was tested b
y
v
a
r
y
ing
three input signa
ls, i.e. th
e
DC-link voltag
e
, the DFIG
stator voltage r
e
ference,
and th
e
extern
al sta
t
or lo
ad which sim
u
la
ted th
e off-
grid configur
atio
n. The r
e
sult of
the simulation s
howed that th
e
DFIG
stator
voltag
e
s
could be controll
ed a
nd were alwa
ys
in accordanc
e
with the
referen
c
e.
Keyword:
Aut
o
n
o
m
ous p
o
we
r pl
ant
DFI
G
Micr
o
h
ydr
o
po
w
e
r
p
l
an
t
O
f
f
-
g
r
i
d
co
nf
igu
r
ation
PMSG
Variab
le angu
lar sp
eed
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Feri Yusi
var,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
U
n
i
v
er
sity of
In
don
esia,
Kam
pus
U
I
De
po
k,
Ja
kart
a, 1
6
4
2
4
, I
n
d
o
n
esi
a
.
Em
a
il: yu
siv
a
r@ee.u
i
.ac.id
1.
INTRODUCTION
Tw
o t
y
pes
of
ge
nerat
o
rs
f
r
e
que
nt
l
y
use
d
i
n
hy
dr
o
p
o
w
er
pl
a
n
t
ap
p
l
i
cat
i
ons are
a
sy
nch
r
on
o
u
s
gene
rat
o
r an
d
a squi
rrel
cage
i
n
d
u
ct
i
on
ge
n
e
rat
o
r
.
B
o
t
h
types are
operat
ed at a constant rot
o
r s
p
ee
d. The
gene
rat
e
d
po
wer i
s
co
nt
r
o
l
l
e
d by
adj
u
st
i
ng fl
ow r
a
t
e
by
vary
i
n
g t
h
e de
gree
of
t
h
e fl
ow
gat
e
s. Th
e
im
pl
em
ent
a
t
i
o
n by
usi
ng t
h
e
fl
o
w
gat
e
s nee
d
s an
ope
rat
o
r
and/
or a gat
e
c
ont
rol
l
e
r
whi
c
h i
s
expe
nsi
v
e.
These
co
nfigu
r
ation
s
d
on’t su
it to lo
catio
ns
wh
ich is rem
o
te
an
d far fro
m
citie
s with
l
o
w electricity co
n
s
um
p
t
io
n
and sm
al
l
pop
ul
at
i
on. T
h
e h
y
d
r
o
po
we
r pl
a
n
t
sho
u
l
d
have
a sim
p
l
e
confi
g
u
r
at
i
o
n an
d a l
o
w m
a
i
n
t
e
nance but
sh
ou
l
d
still h
a
ve a h
i
g
h
reliab
i
lity.
To
u
tilize th
e
sm
a
ll h
y
d
r
o po
wer
po
ten
c
y
as a run
-
o
f
-ri
ver, t
h
e m
i
cro
h
ydro power
plan
t m
u
st b
e
able to
be
operated in t
h
e
varying
an
gu
lar
sp
eed withou
t a m
ech
an
ical g
a
te co
n
t
ro
l.
It co
u
l
d
b
e
co
nn
ected
to
th
e v
a
ryin
g
iso
l
ated
lo
ad
with
ou
t an
aux
iliary so
ur
ce
o
r
wh
ich
was called
th
e off-grid
co
nn
ection. The
sim
p
l
e
st
confi
g
u
r
at
i
o
n t
h
at
coul
d
be ch
os
en
was
by
us
i
ng a
pe
rm
anent
m
a
gnet
sy
nch
r
on
o
u
s
gen
e
rat
o
r
(PMSG) and
a
co
nv
erter,
bu
t t
h
is
c
o
n
f
i
g
urat
i
o
n
i
s
e
xpe
nsi
v
e.
In th
e
wind
t
u
rb
i
n
e ap
p
licatio
n, th
e altern
ativ
e g
e
n
e
rat
o
r
typ
e
th
at co
u
l
d
b
e
u
s
ed
in th
e
v
a
rying
angular spee
d
is a doubly fe
d in
duction generator
(DFIG). Belkacem
et al
. [1]
a
n
d
No
ra
et al.
[2]
c
o
ntrolle
d
t
h
e gene
rat
e
d
act
i
v
e po
wer b
y
usi
ng t
h
e q
-
a
x
i
s
rot
o
r cu
rre
nt
as a feedbac
k
si
gnal
an
d t
h
e gener
a
t
e
d re
act
i
v
e
po
we
r by
usi
n
g t
h
e
d
-
axi
s
r
o
t
o
r c
u
rre
nt
as a
feed
bac
k
si
g
n
a
l
. M
e
dha
v
et al
.
ad
de
d t
h
e
st
at
or
v
o
l
t
a
ge c
ont
rol
l
e
r
b
y
using
th
e d-ax
is
ro
to
r cu
rren
t
as
a
feedback si
gnal
[3]. Murt
hy
et al.
co
n
t
ro
lled th
e
g
e
n
e
rated activ
e
and
reactive powe
r
by using
the stator flux
es
and the sli
p
s
p
ee
d
as fee
d
back signals
[4].
The
s
e
resea
r
che
s
use
d
t
h
e
DFI
G
i
n
a
n
o
n
-
g
ri
d c
o
n
f
i
g
urat
i
on.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
498
–
5
08
49
9
The a
u
t
o
nom
ous m
i
cro hy
d
r
o p
o
w
er
pl
ant
t
h
at
was
c
onnected t
o
the
off-gri
d
wit
h
the va
rying
angular s
p
eed
was proposed. It consiste
d of
a PMSG, a
DFIG, a
nd a back to back conve
r
ter. T
h
e capac
ity of
the PMSG and the c
o
nve
rt
er was
a qua
r
ter of the
ra
ted
power, so
it co
u
l
d
redu
ce th
e co
st
[5
]
.
Th
is
au
ton
o
m
o
u
s
con
f
i
g
ur
atio
n w
a
s show
n in
Figu
r
e
1
.
Fi
gu
re
1.
The
c
o
n
f
i
g
urat
i
o
n
o
f
t
h
e a
u
t
o
nom
o
u
s sm
al
l
/
m
i
cro hy
d
r
o
po
wer
p
l
ant
Th
e au
ton
o
m
ou
s m
i
cr
o
h
ydro po
w
e
r
p
l
an
t was pr
opo
sed b
y
An
sel
et al
.
[5].
A
n
sel
et al
.
’
s
m
odel
and
cont
rol
l
e
r
we
re
t
e
st
ed by
gi
vi
ng
t
h
e c
o
nst
a
n
t
DFI
G
st
at
or
vol
t
a
ge
re
fere
n
ce. I
f
t
h
e
D
F
I
G
st
at
o
r
t
e
rm
inal
wa
s
connected to t
h
e external
st
at
or l
o
a
d
and t
h
e DF
IG st
at
o
r
vol
t
a
ge
refe
rence was va
ri
ed, the DFIG stator
voltage c
oul
dn’t be cont
rolled in accorda
n
ce
with the refe
re
nce. It was ca
used by two fa
ctors
.
First, the Anse
l
et al
.’s
m
odel assum
e
d that the
DFIG
stator currents
we
r
e
t
h
e
di
st
ur
ba
n
ces (see
Fi
g
u
r
e
2)
an
d
om
i
t
t
ed t
h
e
relatio
n
i
n
th
e
Oh
m
’
s law
b
e
tween th
e
DFIG stator vo
ltage
s, the
DFIG stator c
u
rrents
, a
n
d the e
x
ternal stator
load. Sec
o
nd, t
h
e Ansel
et al
.’s controller
us
ed the
DFIG stator
volta
ge
s a
s
feedbac
k
signals (see
Figure 2).
To
co
n
t
ro
l th
e
DFIG stator
v
o
ltag
e
s, th
e
Ansel
et al
. m
odel
m
u
st
be adde
d
wut
h
a D
F
I
G
’
s
ext
e
r
n
al
st
at
or
l
o
ad
and the
Ansel
et al
. c
ont
rol
l
e
r
m
u
st
be m
odi
fi
ed.
Fi
gu
re 2.
The
Ansel
et al
.
’
s
m
odel
and c
o
n
t
rol
l
e
r
[5]
To
m
a
in
tain
th
e
D
F
IG
stator
vo
ltag
e
s, th
i
s
p
a
p
e
r
pr
oposed
th
e m
o
d
i
f
i
ed
co
n
t
ro
l algo
r
ith
m
.
Th
e
DFI
G
rot
o
r
v
o
l
t
a
ges
were c
ont
rol
l
e
d
by
u
s
i
ng t
h
e act
ua
l
DFI
G
st
at
o
r
vol
t
a
ges an
d
cur
r
ent
s
as
fe
edba
c
k
si
gnal
s
. T
h
e al
go
ri
t
h
m
was also eval
uat
e
d b
y
usi
ng a va
ry
i
ng e
x
t
e
r
n
al
st
at
or l
o
a
d
t
h
at
si
m
u
l
a
t
e
d t
h
e of
f-
gr
i
d
co
nf
igu
r
ation.
Thi
s
re
searc
h
cont
i
n
ue
d t
h
e
PM
SG c
o
nt
r
o
l
l
e
r i
n
t
h
e
aut
o
nom
ous m
i
cro
hy
d
r
o
pl
ant
m
odel
t
h
at
was
devel
ope
d by
Yusi
var
et al
. Th
e
Yu
siv
a
r
et al.
’s
PM
S
M
cont
roller a
ssum
e
d the D
F
IG
r
o
to
r as t
h
e loa
d
resistance
of the PW
M1
(see
Figure 1). T
h
e
load resist
ance
t
h
at
coul
d be
han
d
l
e
d
by
t
h
e
PM
SG
was be
t
w
ee
n
DF
I
G
PMS
M
PW
M
1
PW
M
2
Tu
r
b
i
n
e
B
a
c
k
t
o
b
a
c
k
C
o
nv
ert
e
r
Lo
ad
Co
n
t
r
o
ll
e
r
Sp
e
e
d
Se
n
s
o
r
V
o
l
t
ag
e/
C
u
rr
e
n
t
S
e
ns
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
C
ont
r
o
l
of
DF
I
G
St
at
o
r
V
o
l
t
a
ge
on
A
u
t
o
no
m
ous
Mi
cr
o
Hyd
r
o P
o
w
e
r
Pl
a
n
t
(Feri Yusivar)
50
0
1,
00
0 an
d 1
0
,
0
00
ohm
. At
t
h
e wat
e
r vel
o
ci
t
y
t
h
at
was gre
a
t
e
r t
h
an o
r
eq
ual
t
o
1.
5 m
/
s, t
h
e DC
-l
i
nk
v
o
l
t
a
ge
t
h
at
co
ul
d
be
g
e
nerat
e
d
by
P
M
SG
was i
n
ra
nge
bet
w
een
2
0
a
n
d
1
0
0
V
[6
]
.
2.
R
E
SEARC
H M
ETHOD
2.
1.
DFIG
M
o
del
El
ect
ri
cal
m
o
d
e
l
of
D
F
I
G
wa
s ex
pre
ssed
by
equat
i
o
ns
(
1
)
–
(
8
).
∅
∅
(1
)
∅
∅
(2
)
∅
∅
(3
)
∅
∅
(4
)
∅
(5
)
∅
(6
)
∅
(7
)
∅
(8
)
In these equations:
v
sd
and v
sq
w
e
r
e
stator
vo
ltag
e
s in
dq
-
a
x
i
s, i
sd
and i
sq
were stator c
u
rrents in
dq-
axis,
sd
and
sd
were
st
at
or
f
l
ux i
n
d
q
-a
xi
s,
v
rd
and
v
rq
were
ro
tor vo
ltages
in
dq
-ax
i
s,
i
rd
and i
rq
w
e
re
rot
o
r
currents
in dq-axis,
rd
and
rd
we
re
rot
o
r
fl
u
x
i
n
d
q
-a
xis,
was a
n
angular spee
d of electrical stator,
wa
s
a rotor s
p
eed.
2.
2.
Ansel
et al
.’s Model
and Contr
o
ller
I
n
[5
],
An
sel
et a
l
. ass
u
m
e
d t
h
at
t
h
e
DF
IG
st
at
or c
u
r
r
ent
s
as di
st
u
r
banc
es w
h
i
c
h
de
pe
nde
d
o
n
t
h
e
DFI
G
st
at
or v
o
l
t
a
ges v
s
a
n
d
neglecte
d
the
external stator
load R
L
.
Bo
t
h
co
nd
itio
ns d
i
dn
’t represen
t
t
h
e o
f
f-
gri
d
c
o
n
f
i
g
urat
i
on.
To
con
t
ro
l th
e
DFIG stator voltag
e
, An
sel
et al
. use
d
three c
o
rrectors C
q
(
rd
), C
d
(
rq
), and
C
(
v
s
).
Th
e
corrector C
d
(
rd
) m
a
ni
pul
at
ed
t
h
e DF
I
G
r
o
t
o
r
v
o
l
t
a
ge i
n
d-a
x
i
s
(
v
rd
) t
h
a
t
refer
r
e
d
to t
h
e er
ro
r
betwe
e
n the
DFI
G
r
o
tor
fl
ux
re
fere
nces
in d
-
a
x
is (
rd,re
f
) and
th
e actual D
F
IG
ro
to
r f
l
ux
in d-
ax
is (
rd
). The c
o
rrect
or
C
q
(
rq
) ad
ju
sted
th
e DFIG
ro
t
o
r vo
ltag
e
i
n
q-ax
is
(v
rq
) t
h
at
refe
rre
d to
the
err
o
r
bet
w
een
the D
F
I
G
rot
o
r
flu
x
refe
rence in
q-
axis (
rq,
r
ef
) an
d the actual D
F
IG
rot
o
r fl
ux
in q-a
x
is (
rq
). The correct
or C(v
s
) re
gulate
d
the
DFIG stator
voltage correction (e
vs
)
that re
fe
rre
d to t
h
e er
ro
r bet
w
een t
h
e
DFI
G
stato
r
vo
ltage refe
ren
c
e
(v
s,re
f
)
and t
h
e act
ual
DFI
G
st
at
or
vo
l
t
a
ge (v
s
)
.
The
DFI
G
r
o
to
r flu
x
refe
re
nces (
rd,ref
and
rq,ref
) and t
h
e
vari
a
b
l
e
s C
rd
and C
rq
we
re g
i
ven
by
eq
uat
i
ons
(
9
)
-
(
1
2
)
. T
h
e va
ri
abl
e
s C
rd
and C
rq
re
pre
s
ent
e
d t
h
e
sum
of t
h
e
dr
o
p
v
o
l
t
a
ge
whi
c
h was ca
use
d
t
h
e st
at
or
cur
r
ent
s
a
nd
t
h
e n
onl
i
n
ea
r-
cross
-
c
o
u
p
l
i
n
g
bet
w
ee
n d
q
-a
xi
s com
pone
nt
s. Th
e
di
ag
ram
bl
ock
of
t
h
e
A
n
sel
et al
.’s
M
o
del
a
n
d C
ont
r
o
l
l
e
r
w
a
s sh
o
w
n
i
n
Fi
gu
re
[5]
.
∅
,
(9
)
∅
.
(1
0)
ω
∅
(1
1)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
498
–
5
08
50
1
ω
∅
(1
2)
2.
3.
E
x
tern
al
S
t
at
or L
o
a
d
Th
e off-grid
co
nfigu
r
ation
was
sim
u
lated
by connecting t
h
e e
x
ternal sta
t
or l
o
ad R
L
to th
e
DFIG
stato
r
term
in
al
as sh
own
in
Fig
u
re 3
in
th
is resear
ch
pr
o
j
ect
. C
onse
q
uent
l
y
, t
h
e changing
stator load R
L
wo
uld
affect to t
h
e DFIG stator
voltages
v
s
and the
DFIG stator c
u
rrents
i
s
. Th
e
relatio
n
b
e
tween
th
e ex
tern
al
stato
r
load, the
DFIG stator
voltages
an
d
th
e DFIG
stato
r
cu
rren
ts
referred
to th
e
Oh
m
’
s law i
n
(1
3).
(1
3)
By
u
s
ing
(13
)
, th
e
dq-ax
is stato
r
vo
ltag
e
s
i
n
(1
)
and
(2) were
sub
s
titu
ted
b
y
(14
)
and
(1
5).
v
s
d
= -i
s
d
R’
L
(1
4)
v
sq
= -i
sq
R’
L
(1
5)
So
, th
e equ
a
tion
s
(1) and
(2)
o
f
th
e
DFIG mo
d
e
l
wo
u
l
d
b
e
written
as:
0
′
∅
∅
(1
6)
0
′
∅
∅
(1
7)
By using of the external stator loa
d
R
L
, i
t
chan
ged t
h
e
si
gnal
t
y
pe of
t
h
e DFI
G
st
at
or cu
rre
nt
s
.
Before usi
ng t
h
e exte
rnal stat
or l
o
ad R
L
, t
h
e DFIG stator cu
rren
ts
was inp
u
t
si
g
n
a
ls.
After u
s
ing
th
e
ex
tern
al
stator loa
d
R
L
,
the DFIG stator c
u
rren
t
s
beca
m
e
out
p
u
t
si
gn
al
s of
t
h
e
DF
I
G
m
odel
.
Fi
gu
re
3.
The
DFI
G
m
odel
w
i
t
h
t
h
e st
at
o
r
l
o
ad R
L
2.
4.
Proposed Control
Algorithm
The
pr
o
pose
d
DF
IG
st
at
or
vol
t
a
ge
s co
nt
r
o
l
co
nce
p
t
wa
s sh
ow
n i
n
Fi
gu
re
4. T
h
e
DFI
G
st
at
o
r
v
o
ltag
e
s were co
n
t
ro
lled
b
y
ad
ju
sting
th
e
DFIG ro
tor
voltag
e
s. Th
e
DFIG ro
tor vo
ltag
e
s were adju
sted
b
y
two
PI con
t
ro
llers. Th
e DFIG
ro
t
o
r
v
o
ltag
e
i
n
d-ax
is
were
ad
ju
sted
b
y
th
e PI con
t
ro
ller in
d-ax
is t
h
at referred
t
o
t
h
e
di
ffe
renc
e bet
w
een
t
h
e
DFI
G
r
o
t
o
r
fl
u
x
refe
rence
i
n
d-a
x
i
s
a
n
d t
h
e
act
ual
D
F
I
G
st
at
or c
u
rre
nt
i
n
q-a
x
i
s
.
On th
e
o
t
h
e
r
h
a
nd
, th
e DFIG
ro
t
o
r
vo
ltage in
q
-
ax
is
were m
a
n
i
p
u
l
ated b
y
the PI co
ntro
ller i
n
q
-
ax
is th
at
refe
rre
d to the
diffe
re
nce bet
w
een t
h
e D
F
I
G
r
o
to
r flu
x
r
e
fere
nce i
n
q-a
x
i
s
and t
h
e
act
ual DFIG stator current
in
d-ax
is (see Fig
u
re
5
)
.
To el
i
m
i
n
at
e a n
onl
i
n
ea
r-c
r
o
s
s
-co
u
p
l
i
n
g
bet
w
een
d
q
-
a
xi
s c
o
m
pone
nt
s, t
h
e dec
o
u
p
l
e
e
q
u
a
t
i
ons
wer
e
ad
d
e
d in
to th
e PI co
n
t
ro
llers ou
tpu
t
,
so the DFIG c
oul
d be
sighted as
a linea
r syste
m
(see Figure
4
and
Fi
gu
re 5)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
C
ont
r
o
l
of
DF
I
G
St
at
o
r
V
o
l
t
a
ge
on
A
u
t
o
no
m
ous
Mi
cr
o
Hyd
r
o P
o
w
e
r
Pl
a
n
t
(Feri Yusivar)
50
2
Fi
gu
re
4.
The
s
t
at
or
vol
t
a
ge
c
ont
rol
c
o
ncept
The D
F
I
G
st
at
or
vol
t
a
ge
s co
nt
r
o
l
l
e
r use
d
t
h
e di
ffe
rent
m
e
tho
d
s t
o
m
a
ni
p
u
l
a
t
e
t
h
e DF
IG
rot
o
r fl
uxe
s
b
e
tween
q
-
ax
is an
d d-ax
is. Th
e DFIG ro
t
o
r
flux
in
q
-
ax
is
was m
a
in
tain
ed
b
y
align
i
ng
t
h
e v
e
cto
r
resu
l
t
an
t o
f
th
e DFIG stator fl
u
x
e
s to
t
h
e
d
-
ax
is
o
f
t
h
e ro
tatin
g
refe
rence fram
e
. To
alig
n
th
e stato
r
flux
to
t
h
e
d
-
ax
is, the
co
n
t
ro
ller m
a
i
n
tain
ed
t
h
at th
e stato
r
flux
in
q
-
ax
is was eq
ual to
zero
(
Φ
sq
=0
) an
d t
h
e st
a
t
or fl
u
x
i
n
d-a
x
i
s
was
eq
u
a
l to
th
e mag
n
itud
e
of the DFIG stato
r
flux
es resu
ltant (
Φ
sd
=
Φ
s
)
. B
y
su
b
s
titu
tin
g
Φ
sq
=0,
th
e eq
uatio
n
s
(6) an
d (8
) of t
h
e
DFIG m
o
d
e
l wou
l
d b
e
written
as:
(1
8)
∅
(1
9)
So
, t
h
e alig
n
m
en
t o
f
t
h
e DFIG stato
r
flux
to th
e d
-
ax
is
o
f
t
h
e ro
tatin
g
referen
ce
fram
e
was always m
a
in
tain
ed
b
y
settin
g th
e
ro
tor fl
u
x
referen
ce in q-
ax
is that referred
t
o
t
h
e eq
u
a
tion
(20
)
.
∅
∗
(2
0)
The D
F
I
G
r
o
tor fl
ux
refe
re
n
ce in d-a
x
is w
a
s adjust
e
d
by
a PI co
ntrolle
r that refe
rre
d
to the err
o
r
b
e
tween
with
t
h
e
DFIG stator vo
ltag
e
refe
rence a
n
d the a
c
tual DFIG sta
t
or
vol
t
a
ge. T
h
e det
a
i
l
DF
IG
st
at
or
vol
t
a
ge
s c
ont
ro
l
l
e
r by
usi
n
g t
h
e DF
IG
st
at
o
r
vol
t
a
ge
s a
n
d
c
u
r
r
ent
s
as
feed
back
si
g
n
al
s
w
a
s sh
o
w
n
i
n
Fi
gu
re
5.
Fi
gu
re
5.
The
s
t
at
or
vol
t
a
ge
s c
ont
rol
refe
rre
d
t
o
t
h
e
r
o
t
o
r
fl
u
x
es
by
usi
n
g t
h
e st
at
or c
u
rre
nt
s as f
eed
bac
k
2.
5.
Software
Sim
u
lati
on
Th
e m
a
th
e
m
a
t
i
c
s
m
o
d
e
l o
f
DFIG-PMSG in
an
au
tono
m
o
u
s
m
i
cro
h
y
d
r
o
po
wer p
l
an
t was written
in
t
h
e C
M
E
X
S-F
unct
i
ons a
nd
was si
m
u
l
a
t
e
d by
usi
n
g
M
A
TLAB
/
Si
m
u
li
nk. T
h
e i
m
pl
em
ent
a
t
i
on of t
h
e
aut
o
nom
ous
m
i
cro hy
d
r
o
p
o
w
er pl
ant
m
odel
was
s
h
ow
n
i
n
Fi
gu
re 6.
r
*
i
s
PI
d
eco
u
p
le
V
r
*
rd
*
i
sq
PI
ω
sl
rq
V
rd
*
rq
*
i
s
d
PI
-
ω
sl
rd
V
rq
*
PI
i
sq
2
2
‐
∗
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
498
–
5
08
50
3
Fi
gu
re
6.
The
i
m
pl
em
ent
a
t
i
on o
f
D
F
I
G
-
P
M
S
G i
n
aut
o
n
o
m
ous m
i
cro hy
dr
o
p
o
w
e
r
2.
6.
T
e
st
Sce
n
ari
o
Th
e test scen
ario
o
f
t
h
e syst
e
m
was don
e
b
y
v
a
ryin
g three in
pu
t sign
al
s, i.e. t
h
e
DC-lin
k
v
o
ltag
e
(V
DClink
), the
D
F
IG stato
r
v
o
ltage re
fere
nce (
V
S_DFIG
), and t
h
e external stator loa
d
(R
L
). Th
e
DC
-lin
k
vo
ltag
e
(V
DClink
) gi
ven
was 0
V bet
w
e
e
n 0 a
nd
4 sec.
and t
h
e
n
10
0
V after
4 sec.
The DFIG stator
voltage
refe
renc
e
(V
S_DFIG
) gi
ve
n was c
o
nst
a
nt
si
gnal
0
V be
t
w
een
0 an
d 5
sec., t
h
e
n
1
0
0
V bet
w
ee
n
5 and
8 sec.
, an
d 5
0
V
after 8 se
c. T
h
e stator loa
d
re
fere
nce (R
L
)
gi
ven
was
30
o
h
m
bet
w
een
0 a
nd
7 sec. a
n
d t
h
en
2
0
o
h
m
aft
e
r 7
sec. Th
e tim
in
g
d
i
agram
o
f
the th
ree inp
u
t
sig
n
a
ls was sh
own in
Figu
re 7.
Fi
gu
re
7.
The
t
i
m
i
ng di
ag
ram
of
t
h
e t
h
ree i
n
p
u
t
si
g
n
al
s
3.
R
E
SU
LTS AN
D ANA
LY
SIS
3.
1.
Ansel
et al
.’s Model
and Contr
o
ller
In t
h
e re
searc
h
[5], t
h
e Ansel
et al
.’s m
o
d
e
l
o
m
i
tted
th
e rel
a
tio
n
in
t
h
e
Ohm
’
s law b
e
tween
th
e
DFIG
stator voltages,
the DF
IG
st
ator curre
nts, and t
h
e e
x
tern
al
stator l
o
ad. T
h
e DFIG st
ator currents
we
re resulte
d
s
t
at
or
c
u
r
r
ent
s
S
t
at
or
V
o
l
t
age
s
St
at
or
c
u
r
r
ents
R
o
t
o
r
v
o
l
t
a
ges
S
t
at
or
v
o
l
t
age
s
R
o
t
o
r c
u
rre
n
t
s
V
s
_r
ef
Vs
_
P
M
S
M
Vs
Vr
Sig
nal 1
S
i
gnal
B
u
i
l
der
S
c
o
pe5
Sc
op
e4
S
c
o
pe3
Sc
op
e2
PM
D
C
c
o
n
t
r
o
l
S-
F
u
nc
t
i
o
n
7
PM
SM
o
t
o
r
S
-
F
u
nc
ti
on6
dc
_
l
i
n
k
S
-
F
unc
t
i
on
5
DF
I
G
c
t
l
3
S-
F
u
nc
t
i
o
n
4
AB_
d
f
i
g
SA
S-
F
u
nc
t
i
on2
s
h
a
fts
3
S-
F
u
nc
t
i
o
n
1
tu
r
b
i
n
e
S
-
F
u
nc
t
i
on
10
R_
l
o
a
d
R
_LO
A
D
Ps
i
S
Is
_
P
M
S
M
Is
Ir
1
-K
-
1
1
e
m
e
m
e
m
e
m
e
m
e
m
e
m
e
m
e
m
e
m
e
m
e
m
e
m
e
m
DC_
v
o
l
t
a
g
e
*
-C
-
2.
5
V
DC
l
i
n
k
=
100
V
V
S_
D
F
I
G
=
100 V
V
S_D
F
I
G
=
50V
R
L
=
30 ohm
R
L
=
20
ohm
V
D
C
lin
k
V
S_D
F
I
G
R
L
t =
4
s
t =
5
s
t =
8
s
t =
7
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
C
ont
r
o
l
of
DF
I
G
St
at
o
r
V
o
l
t
a
ge
on
A
u
t
o
no
m
ous
Mi
cr
o
Hyd
r
o P
o
w
e
r
Pl
a
n
t
(Feri Yusivar)
50
4
fr
om
di
vi
di
n
g
t
h
e
po
wer
re
fer
e
nce
by
t
h
e
D
F
IG
st
at
or
v
o
l
t
a
ge. T
h
i
s
m
o
d
e
l
and c
o
nt
r
o
l
l
e
r we
re m
e
rel
y
t
e
st
ed
by
gi
vi
n
g
t
h
e
c
onst
a
nt
DFI
G
s
t
at
or
vol
t
a
ge
re
fere
nce
of
2
3
0
V.
The
DFI
G
st
at
or
v
o
l
t
a
ge c
oul
dn
’t
be
co
nt
r
o
l
l
e
d i
n
acc
or
da
nce
wi
t
h
t
h
e
re
fere
nce i
f
t
h
e
DFI
G
st
at
o
r
terminal was c
o
nnected to t
h
e
external
stator load and t
h
e
DFIG
stator
vo
l
t
a
ge refe
re
nce
was
va
ri
ed a
s
sho
w
n
in
th
e test scen
ario
in
Figu
re
7
.
By u
s
ing
th
e test s
cen
ario
, th
e si
m
u
latio
n
sh
owed
th
at th
e DFIG stato
r
vo
ltage
was u
n
c
ont
r
o
l
l
a
bl
e and i
n
c
r
ea
sed u
p
t
o
3
0
0
V st
art
i
ng at
4
s
al
t
hou
g
h
t
h
e DFI
G
st
at
or
vo
l
t
a
ges refer
e
nc
e wa
s
still at 0
V
(see zo
ne A i
n
Fig
u
re 8).
St
art
i
ng at
4.
5s, t
h
e resp
o
n
se
of
t
h
e DF
I
G
st
at
or
v
o
l
t
a
ges
be
cam
e
unst
a
bl
e (
s
ee z
one
B
i
n
Fi
g
u
r
e
8
)
.
Fi
gu
re
8.
The
r
e
sp
onse
o
f
t
h
e
DFI
G
st
at
or
v
o
l
t
a
ges usi
n
g
t
h
e A
n
sel
et al
.’
s m
o
d
e
l an
d co
ntr
o
ler
3.
2.
Proposed Control
Algorithm
By u
s
ing
th
e sa
m
e
test scen
ario
, th
e sim
u
latio
n
resu
lt showed th
at th
e propo
sed con
t
rol alg
o
rith
m
co
u
l
d
m
a
in
tain
th
e DFIG stato
r
v
o
ltag
e
in
acco
rd
an
ce w
ith the re
fere
nce
.
The res
p
on
se
of the D
F
I
G
stator
v
o
ltag
e
s b
y
u
s
i
n
g
t
h
e propo
sed
con
t
ro
l alg
o
rith
m
was sh
own
in
Figu
re 9
.
Un
til 5
s
, t
h
e DFIG stator vo
lt
ag
es
were still at 0V.
Starting
at
5
s
, th
e
DFIG stato
r
v
o
lta
g
e
s o
f
100
V
were g
e
n
e
rated.
Startin
g
at 7
s
,
th
e DFIG
st
at
or v
o
l
t
a
ges
coul
d b
e
m
a
i
n
tai
n
ed at
c
onst
a
nt
1
0
0
V al
t
h
o
u
g
h
t
h
e
ext
e
r
n
al
st
at
or l
o
a
d
was c
h
an
ge
d f
r
o
m
30
t
o
2
0
o
h
m
at
7s. St
a
r
t
i
ng
at
8s, t
h
e D
F
I
G
st
at
or v
o
l
t
a
ges
coul
d f
o
l
l
o
w
t
h
e cha
ngi
n
g
o
f
t
h
e re
fe
rence
fr
om
1
00V
to 50V
.
Th
e
D
F
I
G
stato
r
vo
ltag
e
s
w
e
r
e
always i
n
ac
corda
n
ce
with
the re
fere
nce.
Fi
gu
re
9.
The
r
e
sp
onse
o
f
t
h
e
DFI
G
st
at
or
v
o
l
t
a
ges by
usi
n
g
t
h
e
pr
o
pose
d
c
ont
rol
al
go
ri
t
h
m
B
y
usi
n
g t
h
e
pr
o
pose
d
c
o
nt
r
o
l
al
g
o
ri
t
h
m
,
t
h
e
DFI
G
st
at
o
r
cu
rre
nt
s c
o
ul
d al
so
g
o
al
on
g
wi
t
h
t
h
e
changing of the stator voltages and th
e stator loa
d
. T
h
e re
sponse
of the
DFIG stator c
u
rrents
was shown i
n
Fig
u
re 10
. Th
e DFIG stato
r
cu
rren
t was still
at 0
A
u
n
til 5
s
. Startin
g
at 5
s
, th
e DFIG stato
r
cu
rren
ts could
go
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
498
–
5
08
50
5
al
on
g wi
t
h
t
h
e
chan
ges
of
t
h
e
DFI
G
st
at
o
r
vo
l
t
a
ge refe
renc
e
fr
om
0V t
o
10
0V
. St
art
i
n
g at
7s, t
h
e D
F
I
G
s
t
at
or
cur
r
ent
s
c
oul
d
go al
on
g wi
t
h
t
h
e cha
n
ges o
f
t
h
e ext
e
rnal
st
at
or l
o
a
d
fr
om
30 o
h
m
t
o
20 o
h
m
at
7s. St
art
i
ng a
t
8s, t
h
e
DF
IG
st
at
or c
u
r
r
e
n
t
s
c
oul
d al
s
o
go
al
on
g
wi
t
h
t
h
e c
h
an
ges
o
f
t
h
e
r
e
fere
nce
fr
om
10
0
V
t
o
5
0
V
.
Fig
u
r
e
10
. Th
e r
e
sp
on
se of
the D
F
I
G
stator
cu
rr
en
ts
Fi
gu
re
1
1
s
h
o
w
s t
h
at
t
h
e
D
F
IG
ge
ne
rat
e
d
p
o
we
r c
o
ul
d
sui
t
t
o
t
h
e
c
h
an
ge
s o
f
t
h
e st
at
o
r
vol
t
a
ge
s a
n
d
t
h
e st
at
or cur
r
e
n
t
s
. It
i
ndi
cat
e
s
t
h
at
t
h
e DFI
G
ge
nerat
e
d
p
o
we
r co
ul
d be
cont
rol
l
e
d
.
Fo
r
furt
her resea
r
ch, t
h
e
DFI
G
ge
nerat
e
d
po
we
r c
oul
d
be l
i
m
i
t
e
d by
u
s
i
n
g
t
h
e m
a
xi
m
u
m
st
at
or c
u
r
r
ent
s
at
t
h
e c
o
n
s
t
a
nt
st
at
or
v
o
l
t
ages.
Fig
u
r
e
11
. Th
e r
e
sp
on
se of
the D
F
I
G
g
e
n
e
r
a
ted
pow
er
In
sp
eed
sen
s
orless app
lication
,
t
h
e est
i
m
at
ed a
ngl
e
of t
h
e s
t
at
or fl
ux
ha
d t
o
m
a
t
c
h wi
t
h
t
h
e t
h
e
st
at
or
f
l
ux
or
ien
t
ation
.
Figu
r
e
12
sh
ow
s t
h
at
the
estim
a
ted angl
e of the stator
fl
ux
cou
l
d fo
llo
w th
e ch
an
g
e
s of the
stato
r
f
l
u
x
or
ien
t
atio
n
.
A
t
th
e
en
d, Figur
e 13
an
d
Figu
r
e
14
sh
ow
t
h
e r
e
spon
se
o
f
t
h
e DFIG
ro
tor
v
o
ltag
e
s and
currents
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
C
ont
r
o
l
of
DF
I
G
St
at
o
r
V
o
l
t
a
ge
on
A
u
t
o
no
m
ous
Mi
cr
o
Hyd
r
o P
o
w
e
r
Pl
a
n
t
(Feri Yusivar)
50
6
Fig
u
r
e
12
. Th
e r
e
sp
on
se of
the esti
m
a
ted
ang
l
e of
stator
f
l
ux
an
d th
e
r
e
sp
on
se
o
f
th
e
stator
f
l
u
x
Figu
re
1
3
. T
h
e
res
p
o
n
se
o
f
th
e DF
IG
r
o
to
r
v
o
ltages
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
498
–
5
08
50
7
Figu
re
1
4
. T
h
e
res
p
o
n
se
o
f
th
e DF
IG
r
o
to
r c
u
r
r
ents
4.
CO
NCL
USI
O
N
Th
e au
t
h
ors were ab
le to
d
e
v
e
lop
th
e con
t
ro
l algo
rith
m
wh
ich
cou
l
d
main
tain
th
e DFIG stator
vol
t
a
ge
s o
f
t
h
e aut
o
n
o
m
ous m
i
cro hy
dr
o
po
we
r pl
a
n
t
i
n
t
h
e o
f
f
-
g
ri
d
c
o
n
f
i
g
urat
i
o
n.
The
pr
o
pose
d
cont
rol
alg
o
rith
m
co
u
l
d
m
a
in
tain
th
e DFIG ro
tor
vo
ltag
e
s
b
y
u
s
i
n
g th
e actu
a
l
DFIG
stato
r
vo
ltag
e
s and
curren
t
s as
feedbac
k
signa
l
s. The c
ont
rol
l
er was tested
by va
ryi
n
g
t
h
ree in
pu
t sign
als i.e. th
e
DC-l
in
k
v
o
ltage and
the
DFIG stator voltage re
fere
nc
e, and the e
x
te
rnal stator
lo
ad
wh
ich
sim
u
l
a
ted
th
e off-g
rid
con
f
i
g
uration
.
Th
e
resul
t
of t
h
e si
m
u
l
a
t
i
on s
h
o
w
ed t
h
at
t
h
e
DF
IG
st
at
or
v
o
l
t
a
ges c
oul
d
be
m
a
i
n
t
a
i
n
ed by
t
h
e p
r
o
p
o
se
d c
ont
rol
algorithm
and
were
always in
accorda
n
ce wi
th
the refe
re
nc
e.
ACKNOWLE
DGE
M
ENTS
Thi
s
resea
r
ch
was su
p
p
o
r
t
e
d
by
M
i
ni
st
ry
of
R
e
search, Tec
h
n
o
l
o
gy
an
d H
i
ghe
r Ed
ucat
i
o
n, R
e
p
ubl
i
c
of
I
n
d
o
n
esi
a
a
n
d
U
n
i
v
e
r
si
t
y
of
I
n
d
o
n
esi
a
(
2
33
5/
U
N
2
.R
12/
HK
P.
05
.0
0/
2
0
1
5
)
.
REFERE
NC
ES
[1]
Belabb
as Belk
ac
em
, T
a
yeb Al
lao
u
i, Moham
e
d
Ta
djine
,
a
nd Ahme
d Safa, “Hy
b
rid
Fuzzy
Slid
ing Mode Control of a
DFIG Integrated
into the Ne
twork”,
Internation
a
l Journal of Powe
r Electronics and Drive System
, vol. 3-4, p
p
.
351-364, 2013
.
[2]
Zerzour
i Nora and Labar Hocin
e
, “Active and
Reactive
Power
Control of a Doubly
Fed Indu
ction Gener
a
tor
”
,
International Jo
urnal of
Powe
r Electronics
and
Drive
System
, vo
l. 5-2
,
pp
. 244-2
51, 2014
.
[3]
G. Venu Madhav and Y. P. O
bulesu, “A Fuzzy
Logic Contro
l Strateg
y
for Do
ubly
Fed Indu
ction Generator f
o
r
Im
proved Perform
ance under Fault
y
Operating C
onditions”,
Inter
national Journal of
Power Electronics and Drive
System
, vo
l. 4-4, pp. 419-429, 20
14.
[4]
K. Viswanadha
S Murthy
, M. Kirankum
ar, and G
.
R.K. Murth
y
. “
A
Performan
ce Comparison of DFIG using
Power
Transfer Matr
ix
and Direct Po
wer Control Techniques”,
Inter
national Journa
l of
Power Electronics and Drive
System
, vo
l. 5-2, pp. 176-184, 20
14.
[5]
A. Ansel and B. Rob
y
ns, “Modelling and
simulation of an auton
o
mous variable speed micro h
y
d
r
opower station
”
,
Mathematics an
d Computers in
Simulation
, vol.
71, pp
. 320–332
, 2006.
[6]
F.
Yusiva
r,
M.
Sha
n
iz
al,
A.
Subia
n
toro
, and R
.
Gunawan, “Stability
An
al
ysis
of DC-link Voltag
e
Control o
n
Autonomous Mi
cro H
y
dro Power Plant S
y
stem”,
Internationa
l
Journal of Pow
e
r
Ele
c
tr
oni
cs
and
Dr
ive S
y
s
t
em
,
vol. 4-4
,
pp
. 499
-507, 2014
.
[7]
S. Nababan
,
E.
Muljadi, and
F.
Bl
aabjerg, “An overview of
po
wer topolog
ies f
o
r micro-h
y
dro turbines”, in
the
3rd
IEEE Int
e
rnatio
nal Symposium
on Power Electr
onics
for Distrib
u
ted Generation
Systems
(
P
EDG)
2012,
pp. 737–
744, 2012
.
[8]
M
.
Andreic
a
,
S
.
Bacha
,
D.
Ro
ye
,
I.
Exteb
e
rri
a-Ot
adui,
a
nd
I. Mun
t
eanu
,
“Micro-h
y
d
ro w
a
ter
curr
ent turbin
e
contro
l
for grid
connected or
islanding operation”,
in
I
EEE
Power Electronics Specia
l
ists Conference (
P
ESC)
2008
, pp
.
957–962, 2008
.
Evaluation Warning : The document was created with Spire.PDF for Python.