Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
6
,
No
. 2,
J
une
2
0
1
5
,
pp
. 32
6~
33
6
I
S
SN
: 208
8-8
6
9
4
3
26
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Supply Power Factor Improvem
ent in Ozone Generator
System Using Active Power
Factor Correction Converter
G. Udh
a
yaku
mar
1
,
Ra
shmi M
.
R
.
2
, K
.
Pat
e
l
3
, G.
P.
R
a
m
e
sh
4,
Sures
h
A.
5
1,4
Department
of
Electr
i
cal and Electronics Engin
eer
ing
,
S
t
.P
eter
,s
U
n
ivers
i
t
y
,
Tam
il N
a
du
, Ind
i
a
.
2
Department of EEE,
Amrita
Vish
wa Vid
y
apeeth
am, School of
Engineer
ing, Ban
g
alore, Ind
i
a
3
Board of D
i
rector Intern
ation
a
l
Ozone Association, India
5
Department
of
EEE, SA Eng
i
neering Co
lleg
e
, In
dia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 26, 2014
Rev
i
sed
Mar
29
, 20
15
Accepted Apr 15, 2015
Artific
ial Ozon
e
Generat
i
ng s
y
s
t
em
needs High
Voltage, High
Frequency
supply
.
Th
e Ozonator distor
ts the supply
curr
ents and hencefo
r
th affect the
supply
pow
er f
actor
.
This pap
e
r pres
en
ts th
e
performance co
mparison of
PWM inverter
to Power Facto
r
Co
rrected
(PFC) converter
with PWM
inverter based
High-voltage
High
-frequency power supply
for ozone
generator s
y
stem. The conv
entional inv
e
rter h
a
s front end bridge rectifier
with smoothing capacitor
.
It draws non-sinusoid
a
l curr
ent from
ac mains;
as
a result
input supply
h
a
s more harmoni
cs and
poor power factor. Hen
c
e,
there
is a con
tin
uous need for p
o
wer facto
r
improvement and r
e
duction of
line curren
t
h
a
rmonics. Th
e p
r
oposed
s
y
stem has activ
e po
wer factor
correction conv
erter which is used to
achiev
e
sinusoidal curren
t
and improve
the supply
power factor. Th
e active PFC
converter with PWM i
nverter fed
ozone g
e
nerator
gener
a
tes more ozone
ou
tput
compared to th
e
conventional
inverter.
Thus the proposed s
y
s
t
em ha
s less cu
rrent h
a
rmonics and better
input power factor compared to the c
onventional
s
y
stem. The perf
ormance of
the both invert
e
r
s
are com
p
ared and anal
yz
ed with the help of
s
i
m
u
lation
results presen
ted
in
this p
a
per
.
Keyword:
Active
powe
r factor c
o
rrection
c
o
nv
er
te
r
s
e
con
d
Tot
a
l
ha
rm
oni
c di
st
o
r
t
i
o
n
O
z
on
ator
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
G. U
dhay
a
kum
ar
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
St.Peter,s
U
n
iversity,
Ch
enn
a
i-
60
005
4, Tam
il N
a
du
,
In
d
i
a.
Em
ail: udhay.e
ee@gm
ail.co
m
1.
INTRODUCTION
Ozon
e
h
a
s an
ex
trao
rd
in
arily larg
e m
i
cro
b
i
ci
d
a
l effi
ciency s
p
ectrum
.
Applied c
o
rrectly, it has a
ve
ry
qui
c
k
an
d ef
fi
c
i
ent
effect
o
n
a
l
m
o
st
al
l
kno
w
n
bact
e
r
i
a
, vi
r
u
ses an
d ot
her
m
i
croor
ga
ni
sm
s. M
o
re
o
v
er
, O
z
one
deg
r
a
d
es t
o
O
x
y
g
e
n
an
d
do
e
s
n
o
t
l
eave an
y
by
-p
ro
d
u
ct
s.
Th
us i
t
i
s
a h
i
ghl
y
effi
ci
e
n
t
and e
n
vi
r
onm
ent
a
l
l
y
friendly m
eans of
water
disinfection,
but als
o
for rem
oving Iron
or Mang
ane
s
e traces
from
drinking
water.
Ty
pi
cal
appl
i
cat
i
on areas are:
W
a
t
e
r t
r
eat
m
e
nt
i
n
swi
m
m
i
n
g
p
ool
s,
dri
n
ki
ng
wat
e
r or c
o
ol
i
ng
wat
e
r t
r
e
a
tm
ent
,
water treatm
e
n
t in
b
e
v
e
rag
e
in
du
stries or
zo
o poo
ls an
d aqu
a
ri
a.
I
t
do
es
no
t g
e
n
e
rate an
y r
e
sidues and
h
a
rm
fu
l b
yprod
u
c
ts
du
ring
p
r
o
cess.
It is u
s
ed
in
p
a
p
e
r m
a
n
u
f
act
u
r
ing
m
ill
, cem
en
t
mills
an
d
fo
od
p
r
o
c
essin
g
i
n
d
u
st
ri
es.
The
oz
one
i
s
g
e
ne
rat
e
d
b
o
t
h
nat
u
ral
l
y
an
d
artificially. Natu
ral m
e
th
o
d
g
e
n
e
rates lo
w lev
e
l
o
z
on
e
conce
n
t
r
at
i
o
n,
so i
t
can
not
be
used
f
o
r i
n
d
u
s
t
ri
al
pur
p
o
se.
Artificially it c
a
n
b
e
g
e
n
e
rated
in
m
a
n
y
ways su
ch
as C
o
r
o
na Di
s
c
har
g
e,
El
ect
rol
y
si
s and
R
a
di
oc
hem
i
cal
m
e
t
hod. C
o
ro
na di
sc
har
g
e
m
e
t
hod c
r
eat
es hi
g
h
e
r
q
u
a
n
tities o
f
ozo
n
e
m
o
re efficien
tly. Co
ro
na cell life ex
ceed
s the life exp
ectan
cy
o
f
any Ultra Vi
o
l
et
(UV)
bul
b
whe
n
d
r
y
ai
r o
r
oxy
g
e
n i
s
use
d
. C
o
r
o
na
di
scha
r
g
e m
e
t
hod
i
s
m
o
re cost
-e
ffe
ct
i
v
e t
h
a
n
UV
-oz
o
ne
gene
rat
i
o
n f
o
r
l
a
rge scal
e hi
gh c
onc
ent
r
at
i
on i
n
st
al
l
a
t
i
ons. And m
u
ch less electrical
e
n
erg
y
is requ
ired
t
o
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
326
–
3
36
3
27
produce t
h
e s
a
m
e
qua
ntity of
oz
one
[1-3]. There
f
or
e C
o
rona disc
harge m
e
thod
for
gene
rating ozone is
considere
d
i
n
t
h
e
prese
n
t
work.
In C
o
r
o
na di
s
c
har
g
e m
e
t
hod
, t
h
e o
x
y
g
e
n
i
s
su
ppl
i
e
d t
h
r
o
u
g
h
t
w
o pl
at
es i
n
t
h
e
pres
ence o
f
hi
g
h
vol
t
a
ge
. A
s
a
resul
t
,
ozo
n
e i
s
ge
nerat
e
d. T
h
e hi
gh
v
o
l
t
a
g
e
i
s
gene
rat
e
d
by
di
f
f
ere
n
t
m
e
t
hods
[4
-
5
]
.
Hi
g
h
vol
t
a
ge
i
s
gen
e
rat
e
d
fr
om
l
i
n
e v
o
l
t
a
ge
of
2
3
0
V
,
50
Hz
u
s
in
g
step
up
tran
sfo
r
m
e
r. B
u
t
in
th
is m
e
th
o
d
large
size tran
sformer is requ
ired
t
o
c
o
n
v
e
r
t
l
o
w
vol
t
a
ge
ac t
o
h
i
gh
v
o
l
t
a
ge ac
due
t
o
l
i
n
e
f
r
e
que
ncy
a
n
d
al
s
o
has
less safety and efficiency [4]. High
voltage is gene
ra
t
e
d
fr
o
m
l
o
w vol
t
a
ge
dc t
o
hi
gh
vol
t
a
ge ac usi
ng
p
o
we
r
co
nv
erter or Rad
i
o
Frequ
e
n
c
y Oscillato
r. Th
e u
s
e
o
f
power con
v
e
rters
o
f
fers ad
ap
tab
i
lity
o
v
e
r
wid
e
rang
e
d
u
e
t
o
ease of co
n
t
ro
l using
an
alog
/d
ig
ital co
n
t
ro
llers. Conv
erters op
erated
at h
i
gh
fr
equen
c
y will also
h
e
lp
i
n
t
h
e re
duct
i
o
n
of l
a
r
g
e
v
o
l
u
m
e
of m
a
gnet
i
c
com
pone
nt
s
req
u
i
r
e
d
[
5
]
.
C
u
r
r
ent
f
e
d
p
u
s
h-
p
u
l
l
i
nve
rt
er base
d
ozo
n
e
gene
rat
o
r sy
st
em
devel
ope
d i
n
[6]
has
hi
g
h
v
o
l
t
a
ge c
o
n
v
e
r
si
o
n
rat
i
o
but
at
t
h
e cost
of m
o
re co
nd
u
c
t
i
o
n
l
o
sses an
d re
d
u
ced e
ffi
ci
enc
y
. The f
o
resai
d
p
r
o
b
l
e
m
can
be ad
dresse
d
usi
n
g so
ft
swi
t
c
hed
hi
g
h
f
r
eq
uenc
y
hi
g
h
vol
t
a
g
e
s
u
ppl
y
.
The use
of
hi
gh
fre
que
ncy
po
we
r su
ppl
i
e
s i
n
creases t
h
e po
wer
densi
t
y
appl
i
e
d t
o
t
h
e ozo
n
i
z
e
r
electrode s
u
rfa
ce whic
h in turn e
nha
nces the ozone pr
oduction for a
given surface a
r
e
a
, with re
duce
d pea
k
vol
t
a
ge
req
u
i
r
e
m
ent
[7]
.
B
y
increasi
ng t
h
e
o
p
erat
i
n
g f
r
eq
ue
ncy
t
h
e ozo
n
e pr
o
duct
i
o
n can
easi
l
y
be cont
rol
l
e
d
[8]
.
M
a
ny
co
m
p
act conve
rt
er t
o
p
o
l
o
gi
es have
been
pr
o
pos
ed i
n
o
r
der
t
o
im
prove ef
fi
ci
ency
[6
- 8]
of t
h
e
O
z
on
ator
.
Some p
o
w
e
r su
pp
ly d
e
r
i
v
e
d
f
r
o
m
ac
m
a
in
su
pp
ly.
I
n
th
is
case th
e fr
on
t
en
d
h
a
s
un
contr
o
lled
r
ectif
ier
w
ith
a lar
g
e D
C
lin
k
cap
acito
r. Th
is r
ectif
ier
is w
i
d
e
ly u
s
ed
b
ecau
s
e of
its si
m
p
licit
y an
d
r
obustn
ess
but
wi
t
h
t
h
e di
st
ort
e
d l
i
n
e c
u
r
r
ent
s
.
As a res
u
l
t
,
t
h
e i
n
put
p
o
we
r fact
or i
s
po
o
r
[
10]
.
V
ari
ous
PFC
t
ech
n
i
que
s
are em
p
l
o
y
ed
i
n
co
nv
erters to ov
erco
m
e
th
ese po
wer
qu
ality p
r
ob
lem
s
[11
-
16
] ou
t of
wh
ich
t
h
e
b
a
sic
b
o
o
s
t
con
v
e
r
t
e
r t
o
pol
ogy
has bee
n
e
x
t
e
nsi
v
el
y
use
d
i
n
va
ri
o
u
s
po
wer s
u
ppl
y
co
n
v
ersi
on a
p
pl
i
cat
i
ons.
Im
pl
em
ent
i
n
g
p
o
wer facto
r
co
rrectio
n (PFC
) in
t
o
l
o
w frequ
e
n
c
y
to
h
i
gh frequ
e
n
c
y power su
pp
lies
will max
i
m
i
ze th
e p
o
wer
h
a
nd
ling
cap
ab
ility o
f
th
e po
wer supp
ly an
d
cu
rren
t
h
a
nd
lin
g
cap
acities o
f
power
d
i
strib
u
tion
n
e
t
w
o
r
k
s
.
A
f
u
zzy con
t
ro
ller
b
a
sed
PFC fo
r
boo
st co
nv
er
ter
w
a
s pr
oposed
in
[
1
5
]
to
i
m
p
r
ov
e th
e dyn
amic p
e
r
f
o
rman
ce
and re
duce the
steady stae error.
Th
e low
fr
eq
uen
c
y to
h
i
gh
fr
equ
e
n
c
y h
i
gh v
o
ltag
e
po
wer
supp
ly system h
a
s m
o
r
e
in
pu
t cur
r
e
n
t
di
st
ort
i
o
n a
n
d
po
o
r
p
o
w
er
fa
ct
or.
It
a
ffect
s
t
h
e sy
st
em
perform
a
nce and life tim
e
. The
s
e ha
rm
onics
can
be
reduce
d by active PFC conve
r
ter. T
h
e PFC conve
r
ter is
u
s
ed
to
i
m
p
r
ov
e th
e in
pu
t
powe
r factor, re
duce
cable
and
de
vi
ce rat
i
ng a
n
d re
duce
t
h
e cur
r
e
n
t
har
m
oni
cs. Thi
s
p
a
per
pr
o
pose
s
PFC
hi
g
h
v
o
l
t
age hi
gh
fre
qu
ency
p
o
w
e
r
su
pp
ly fo
r O
z
on
ato
r
.
2.
POWER
FA
CTOR
OF V
A
R
I
OU
S
LOAD
S
Power fact
or is a
m
easure of the displacem
ent be
twee
n the input voltage
and curre
nt waveform
s to
an electrical load that is
powe
r
ed from
an
AC source
.
2.
1 P
o
w
er F
a
c
t
or
o
f
a L
i
ne
a
r
L
o
ad
The l
i
n
ea
r l
o
a
d
s l
i
k
e l
a
m
p
, coo
k
i
n
g st
ov
es dra
w
si
nus
oi
dal
cu
rr
ent
s
.
The
vol
t
a
ge
and c
u
rre
n
t
wave
form
s for
a linear l
o
ad
are shown i
n
Figure
1.
Fi
gu
re
1.
Ac
i
n
put
v
o
l
t
a
ge a
n
d c
u
r
r
ent
wa
ve
fo
rm
for l
i
n
ea
r
l
o
ad
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Su
p
p
l
y
P
o
w
e
r
Fact
or
I
m
prov
ement
i
n
Oz
on
e Ge
ner
a
t
o
r
Sy
st
em U
s
i
n
g Act
i
ve Pow
e
r …
(
G
.
Ud
ha
ya
kuma
r)
32
8
2.
2 P
o
w
er F
a
c
t
or
o
f
a
No
n L
i
near l
o
ad
A non
-lin
ear lo
ad
on
a power syste
m
is typ
i
cally a
rectifie
r, fl
u
o
rescen
t la
m
p
, weld
i
n
g
mach
in
e etc.
These l
o
a
d
s d
r
aw t
h
e n
o
n
-
si
nus
oi
dal
cur
r
e
n
t
.
Thi
s
cu
rre
nt
al
so has m
o
re di
st
ort
i
o
n and t
h
e s
u
p
p
l
y
po
wer
fact
or
i
s
po
or
.
Fi
gu
re
2 s
h
ows
t
h
e
rel
a
t
i
on
be
t
w
een c
u
rre
nt
and
v
o
l
t
a
ge
f
o
r
n
o
n
l
i
n
ear
l
o
a
d
.
Fo
r sinu
so
id
al
v
o
ltag
e
and
non
- sinu
so
i
d
al cu
rr
en
t t
h
e input p
o
w
e
r
f
act
o
r
can
b
e
ex
pr
essed
as
cos
(1)
Whe
r
e
a
n
d
range
i
s
[
0
,
1]
cos
is the
displace
ment factor
of
t
h
e v
o
l
t
a
ge
an
d
cu
rre
nt
.
i
s
t
h
e
pu
ri
t
y
fact
o
r
or
t
h
e
di
st
ort
i
on
f
act
or.
Fi
gu
re
2.
Ac
i
n
put
v
o
l
t
a
ge a
n
d c
u
r
r
ent
wa
ve
fo
rm
for
n
o
n
l
i
n
ear
l
o
a
d
An
ot
he
r i
m
por
t
a
nt
pa
ram
e
t
e
r
t
h
at
m
easures t
h
e
perce
n
t
a
ge
of
di
st
o
r
t
i
o
n i
s
k
n
o
w
n as t
h
e
cur
r
ent
TH
D
whi
c
h
is d
e
fi
n
e
d as
follo
ws:
(
2
)
Where
∑
(
3
)
Co
nv
en
tio
n
a
l
AC to
DC co
nv
ersi
o
n
is a v
e
ry in
efficien
t
p
r
o
cess, resu
lting
in
wav
e
fo
rm
d
i
sto
r
tion
of
t
h
e cur
r
e
n
t
dra
w
n
fr
om
t
h
e ac
m
a
i
n
suppl
y
.
At
hi
g
h
er p
o
w
er l
e
vel
s
se
v
e
re i
n
t
e
rfe
re
nc
e wi
t
h
ot
he
r el
ect
ri
cal
an
d
electron
i
c eq
u
i
p
m
en
t
may b
eco
m
e
ap
p
a
ren
t
sin
ce
harm
o
n
i
cs are in
j
ected
to
th
e p
o
wer
u
tility
lin
e.
Ano
t
h
e
r
p
r
ob
lem
is th
at th
e
po
wer
u
tility lin
e cab
ling
,
t
h
e i
n
stallatio
n
an
d th
e
d
i
stribu
tion
tran
sform
e
r, m
u
st
al
l
be desi
g
n
ed
t
o
wi
t
h
st
an
d t
h
ese pea
k
c
u
r
r
e
nt
val
u
es
resultin
g
in
h
i
gh
er electricity
costs for any electricity
u
tility
co
m
p
any. Th
is p
r
o
b
l
em can
b
e
ad
d
r
esses u
s
ing
pow
er fact
o
r
correcto
r
s. Powe
r facto
r
correct
o
r
s are of
t
w
o t
y
pes
vi
z.
Passi
ve a
n
d A
c
t
i
v
e. T
h
e pa
ss
i
v
e PFC
a
r
e m
a
de
of
passi
ve
com
pone
nt
s a
n
d are
n
o
rm
al
l
y
b
u
l
k
y
and
operate at powe
r fre
quency. Activ
e PFC o
ffers
b
e
tter THD and
is sig
n
i
fican
tly s
m
aller an
d
ligh
t
er th
an
a
p
a
ssiv
e
PFC ci
rcu
it. To
redu
ce th
e size and
co
st of
p
a
ssiv
e
filter ele
m
en
ts, an
activ
e
PFC o
p
e
rates at a h
i
gh
er
switching frequency. T
h
e Ac
tive PFC shape
s
the input cu
rrent and there
will be feed
ba
ck control to regulate
th
e ou
tpu
t
vo
ltag
e
. Buck, bo
ost, fly b
ack
and
o
t
h
e
r co
nv
erter to
po
log
i
es
are u
s
ed
in
act
iv
e PFC circu
its. Th
e
basi
c
bo
ost
c
o
nve
rt
er t
o
p
o
l
o
gy
has
be
en
e
x
t
e
nsi
v
el
y
use
d
i
n
va
ri
o
u
s
p
o
we
r s
u
ppl
y
c
o
n
v
e
r
si
o
n
a
ppl
i
cat
i
ons.
T
h
e
r
efo
r
e
a boo
s
t
co
nv
e
r
ter
is u
s
ed
a
l
o
n
g
w
ith
th
e inv
e
rter as a su
pp
ly un
it
for an
Ozon
ator.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
326
–
3
36
3
29
3.
P
O
W
E
R SU
PP
LY
SY
S
T
EM
FO
R O
Z
O
N
A
T
OR
A norm
al PWM inverte
r
wa
s use
d
so
far
as po
we
r supply conve
rter for
Ozonator.
The propos
e
d
ozo
n
e
ge
nerat
i
ng
sy
st
em
i
s
sho
w
n i
n
Fi
g
u
r
e
1.
It
co
nsi
s
t
s
of si
ngl
e
p
h
as
e AC
su
p
p
l
y
,
bri
dge
rect
i
f
i
e
r
,
PFC
con
v
e
r
t
e
r,
hi
g
h
-
fre
q
u
ency
P
W
M
i
nve
rt
er
usi
n
g p
o
w
er I
G
B
T
s,
hi
g
h
-
f
r
e
que
ncy
t
r
an
sf
orm
e
r and a
n
el
ect
rod
e
t
ube.
Hi
g
h
fre
q
u
ency
P
W
M
i
n
vert
er
ope
rat
i
o
n i
s
expl
ai
ne
d
i
n
det
a
i
l
e
d i
n
[1
7-
1
8
]
.
The b
o
o
s
t
conve
rt
er i
s
use
d
to
co
n
t
ro
l th
e
in
pu
t cu
rren
t an
d
im
p
r
ov
e the p
o
wer f
act
or. As a result the overall syste
m
perform
ance is
im
pro
v
ed a
n
d
rat
i
ng
o
f
t
h
e
d
e
vi
ce i
s
re
duce
d
. T
h
e
out
put
vol
t
a
ge
o
f
t
h
e
i
nve
rt
er i
s
st
ep
ped
u
p
t
o
a
b
ov
e 5
-
6
kV
(pea
k val
u
e) usi
n
g Hi
gh
f
r
eq
ue
ncy
Hi
g
h
vol
t
a
ge t
r
a
n
sf
orm
e
r and t
h
e
n
i
s
fed t
o
t
h
e el
ect
ro
des f
o
r i
o
ni
zi
ng
th
e g
a
s. Th
e
UU-8
0 ferrite core is
u
s
ed
. Th
e
r
e
qu
ir
ed
f
r
e
q
u
e
n
c
y of
cu
rr
en
ts is 6 kH
z.
Fi
gu
re
3.
Pr
o
p
o
se
d sy
st
em
for
ozo
n
e
ge
nera
t
o
r
4.
SIMULATION RESULTS
Th
e
sim
u
lat
i
o
n
is carried ou
t
in
Matlab
/
Simu
lin
k en
v
i
ronmen
t. Th
e co
nv
en
tion
a
l ci
rcuit wh
ich
was
use
d
t
o
s
u
p
p
l
y
po
wer
f
o
r
Oz
onat
o
r
wi
t
h
out
PFC
i
s
sh
ow
n
i
n
Figure
4.
It consists
of ac
source, a
rectifier,
a
sm
oot
hi
ng
cap
aci
t
o
r, hi
g
h
fre
que
ncy
i
n
ve
rt
er, hi
gh
fre
quency trans
f
orm
e
r and electrodes
.
Fig
u
re
4
.
Con
v
en
tio
n
a
l
Power Supp
ly Circu
it fo
r
Ozo
n
a
t
o
r
with
ou
t PFC
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Su
p
p
l
y
P
o
w
e
r
Fact
or
I
m
prov
ement
i
n
Oz
on
e Ge
ner
a
t
o
r
Sy
st
em U
s
i
n
g Act
i
ve Pow
e
r …
(
G
.
Ud
ha
ya
kuma
r)
33
0
Fig
u
re
5
.
In
pu
t
Vo
ltag
e
an
d C
u
rren
t
(Scale
Vo
lt On
e
Un
it=10
v)
The i
n
p
u
t
ac sup
p
l
y
v
o
l
t
a
ge
and c
u
r
r
e
n
t
w
a
vef
o
rm
as sh
ow
n i
n
Fi
g
u
re
5. T
h
e swi
t
c
h
i
ng
pul
ses
,
cu
rr
en
t thr
ough
th
e sw
itch
e
s
an
d
v
o
ltage acr
o
ss the sw
itches ar
e sho
w
n
in
Figu
r
e
6
and Fig
u
r
e
7
fo
r
sw
itch
e
s
S2
,
S3
an
d
S1
, S4
r
e
sp
ecti
v
ely. Figu
r
e
8 sh
ow
s th
e tra
n
sform
e
r primary and se
condary curre
nts.
These
cur
r
ent
s
are
di
st
ort
e
d
.
Fi
g
u
re
9 sho
w
s t
h
e t
r
ans
f
orm
e
r secon
d
a
r
y
si
de vo
l
t
a
ge and cu
rre
nt
wave f
o
rm
.
Th
e
FFT sp
ectru
m
o
f
th
e
ou
tpu
t
cu
rren
t is shown
in Figure
1
0
.
Fi
gu
re
6.
S
w
i
t
c
hi
n
g
P
u
l
s
e,
C
u
rre
nt
T
h
r
o
u
g
h
and
V
o
l
t
a
ge a
c
r
oss
t
h
e
Swi
t
c
h
S2
an
d
S3
Fi
gu
re
7.
S
w
i
t
c
hi
n
g
P
u
l
s
e,
C
u
rre
nt
T
h
r
o
u
g
h
and
V
o
l
t
a
ge a
c
r
oss
t
h
e
Swi
t
c
h
S1
an
d
S4
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
326
–
3
36
3
31
Fig
u
r
e
8
.
Tr
an
sf
or
m
e
r
Pr
im
ar
y an
d Seco
nd
ar
y Cur
r
e
n
t
s
Fi
gu
re
9.
Tra
n
s
f
o
r
m
e
r Seco
nd
ary
Si
de
V
o
l
t
a
ge a
n
d
C
u
rre
nt
Fi
gu
re
1
0
.
FFT
Spect
rum
of t
h
e
Out
put
C
u
r
r
e
nt
As o
b
ser
v
e
d
f
r
om
t
h
e sim
u
lat
e
d wave
f
o
rm
s i
nput
cu
rre
nt
i
s
di
scont
i
n
uo
us an
d t
h
e su
p
p
l
y
po
wer
factor is poor. There
f
ore
a active power
fa
ctor correction converte
r bas
e
d P
W
M
i
n
ve
r
t
er i
s
pro
p
o
se
d
.
The
sim
u
l
a
t
i
on ci
r
c
ui
t
of
p
r
o
p
o
s
e
d c
o
n
f
i
g
urat
i
o
n
i
s
sh
o
w
n
i
n
Fi
gu
re
11
. I
t
has ac s
o
urc
e
, rect
i
f
i
e
r a
n
d
bo
ost
con
v
e
r
t
e
r,
sm
oot
hi
n
g
c
a
paci
t
o
r
,
hi
g
h
f
r
e
q
u
e
ncy
P
W
M
i
n
vert
er
,
hi
g
h
fr
eque
ncy
t
r
a
n
s
f
orm
e
r an
d el
e
c
t
r
o
d
es.
The i
n
p
u
t
ac
s
u
p
p
l
y
v
o
l
t
a
ge
and
cu
rre
nt
w
a
vef
o
rm
as s
h
ow
n i
n
Fi
gu
re
1
2
.
The
s
w
i
t
c
hi
n
g
pul
ses
,
c
u
r
r
ent
t
h
r
o
u
g
h
t
h
e sw
i
t
c
hes and
v
o
l
t
a
ge acr
oss t
h
e
swi
t
c
hes are s
h
o
w
n i
n
Fi
g
u
r
e
13 a
nd Fi
g
u
r
e
14 f
o
r swi
t
c
h
e
s S
2
,
S3
and
S1, S4 r
e
sp
ectiv
ely. Fig
u
r
e
15
show
s th
e tr
an
sf
or
m
e
r
p
r
i
m
ar
y
an
d
seco
nd
ar
y cu
r
r
e
n
t
s. Figur
e 16
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Su
p
p
l
y
P
o
w
e
r
Fact
or
I
m
prov
ement
i
n
Oz
on
e Ge
ner
a
t
o
r
Sy
st
em U
s
i
n
g Act
i
ve Pow
e
r …
(
G
.
Ud
ha
ya
kuma
r)
33
2
sh
ow
s th
e tr
ansf
or
m
e
r
second
ar
y
vo
ltag
e
an
d cu
rr
en
ts. The FFT an
alysis is carr
i
ed ou
t
an
d th
e ou
tpu
t
cu
rr
en
t
FFT s
p
ectrum
is shown i
n
Fi
gure
17.
Figure 11. Propos
ed
Po
wer Su
pp
ly Circu
it
fo
r Ozon
ato
r
wi
th
PFC
Figure 12
.
Inpu
t
Vo
ltag
e
and
Cu
rren
t (Scale Vo
lt On
e
Un
it=1
0v)
Fi
gu
re
1
3
.
S
w
i
t
c
hi
ng
Pul
s
e
,
C
u
r
r
ent
T
h
ro
u
g
h
an
d
V
o
l
t
a
ge
acr
oss t
h
e S
w
i
t
ch S
2
a
n
d
S
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
326
–
3
36
3
33
Fig
u
r
e
14
. Sw
i
t
ch
in
g
Pu
lse,
C
u
rr
en
t Thr
oug
h and
Vo
ltag
e
acro
ss th
e Switch
S1
and
S4
Fi
gu
re
1
5
. T
r
a
n
sf
orm
e
r P
r
i
m
ary and
Secondary C
u
rrents
Fi
gu
re
1
6
. T
r
a
n
sf
orm
e
r Sec
o
nda
ry
Vol
t
a
ge
and
C
u
rre
nt
(
S
cal
e Vol
t
One
Uni
t
=
1
0
0
0
v
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Su
p
p
l
y
P
o
w
e
r
Fact
or
I
m
prov
ement
i
n
Oz
on
e Ge
ner
a
t
o
r
Sy
st
em U
s
i
n
g Act
i
ve Pow
e
r …
(
G
.
Ud
ha
ya
kuma
r)
33
4
Fi
gu
re
1
6
.
FFT
Spect
rum
of t
h
e
Out
put
C
u
r
r
e
nt
A
s
o
b
s
erv
e
d fro
m
Fig
u
r
e
12
,
th
e supp
ly pow
er
f
actor
is i
m
p
r
o
v
e
d
in
t
h
e p
r
op
osed
con
f
i
g
ur
atio
n.
A
com
p
arat
i
v
e st
udy
i
s
bee
n
carri
ed
out
bet
w
een co
nv
ent
i
o
n
a
l
i
nvert
er a
n
d
pr
op
ose
d
i
n
v
e
rt
er an
d i
t
i
s
gi
ven i
n
Tabl
e 1.
Table 1.
C
o
m
p
arative Analysi
s
of
C
o
n
v
e
n
t
i
o
nal
an
d Pr
o
pos
ed In
vert
e
r
Para
m
e
ter
Conventional Inverter
Proposed Inverte
r
I
nput DC voltage
300 V
300V
I
nput PF
0.
31
0.
81
Output Voltage (
P
eak value)
5400 V
5470
I
nput power
427 W
412
Output power
345W
356
Ef
f
i
ciency (%)
80.7
86.4
T
HD (
%
)
15.
99
15.
73
The
gra
p
h i
n
F
i
gu
re
17
sh
o
w
s
t
h
e c
o
m
p
ari
s
o
n
bet
w
ee
n i
n
p
u
t
v
o
l
t
a
ge
an
d
out
put
v
o
l
t
a
ge.
Fi
g
u
re
1
8
s
h
o
w
s t
h
e
com
p
arison
be
tween input voltage and e
fficiency of c
o
nv
e
n
t
i
onal
.
The
pr
o
pos
ed sy
st
em
h
a
s higher efficienc
y
whi
c
h i
s
e
v
i
d
e
n
t
f
r
om
t
h
e gr
aph
.
T
h
e
pr
op
ose
d
PFC
s
u
p
p
l
y
sy
st
em
has hi
g
h
e
ffi
ci
enc
y
of
88
.3
% a
n
d hi
g
h
powe
r fact
or of 0.81
com
p
ared to
the c
o
nventional i
n
vert
er whe
r
e the
e
fficiency
was
80.7% a
n
d the
powe
r
fact
or
wa
s
0.
31
Fi
gu
re 1
7
. In
p
u
t
V
o
l
t
a
ge v/
s Out
put
V
o
l
t
a
g
e
Fig
u
r
e
18
. I
npu
t
Vo
ltag
e
v
/
s Ef
f
i
cien
cy G
r
ap
h
0
1000
2000
3000
4000
5000
6000
0
200
400
output
voltage
(V)
Input
voltage
(
V)
Dc
vo
l
t
a
g
e
vs
output
vo
l
t
a
g
e
Vo_conv
Vo_prop
55
65
75
85
95
0
100
200
300
400
%
of
Efficiency
Input
vo
l
a
t
g
e
(V)
Input
voaltge Vs Efficiency
Efficiency_Conv
Efficiency_prop
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
326
–
3
36
3
35
5.
CO
NCL
USI
O
N
A bo
ost
c
o
n
v
e
r
t
e
r
as
P
F
C
f
o
r
i
nve
rt
er feedi
n
g
a Oz
onat
o
r
was pr
o
pose
d
.
From
t
h
e
si
m
u
lat
i
on resul
t
s
it is o
b
serv
ed t
h
at th
e pr
opo
sed
co
nf
igur
atio
n of
f
e
r
h
i
gh
ef
f
i
cien
cy
o
f
86
.4
% co
m
p
ar
ed
to th
e conv
en
tio
n
a
l
configuration whe
r
e
efficiency
was 8
0
.7%. It is also
ev
id
en
t fro
m
th
e si
m
u
la
tio
n
resu
lts th
at th
e p
o
wer factor
of
p
r
o
p
o
se
d s
u
ppl
y
sy
st
em
i
s
0.
81
w
h
i
c
h
i
s
v
e
ry
m
u
ch bet
t
e
r t
h
a
n
t
h
e c
o
n
v
e
nt
i
onal
p
o
w
e
r
su
ppl
y
sy
st
em
.
REFERE
NC
ES
[1]
L. Dascalescu “An introduction
to ionized
gases
.
Theor
y
and app
lications”, P
ublished b
y
To
y
ohashi University
o
f
Techno
log
y
. 199
3.
[2]
M.A. Dimitriou
,
“Design guida
nce manual fo
r ozone s
y
stems”,
Internationa
l ozone association (
i
oa)
.
Pa
n
Am
erican com
mittee.
1990.
[3]
J.
S.
Cha
n
g,
A.
J.
Ke
lly
a
nd J.
M.
Crowley
,
“
Hand
book of Electr
ostatic Processes
”, Marcel Dekk
er,
Inc. 1995
.
[4]
J.
M.
Alonso,
M. Ric
o
-Se
c
a
d
e
s
,
E.
Coromina
s,
J. Ca
rd
esín, J
.
Ga
rcía
, “
L
ow-Power
High-Voltag
e
High-Frequency
Power Supply
fo
r Ozone Gener
a
tion”.
[5]
V.
Kinnares
,
S. Potivejkul, and Ra
ttan
a
vichien
P. “Design of Ozone
Gen
e
rator using
Solar Energ
y
”,
IE
EE
A
s
i
a
-
Pacif
i
c
Confer
en
ce on
Cir
c
u
its
a
nd Sys
t
ems
, pp.2
17-220, 1998
.
[6]
J. Marcos Alons
o, Jorge García
,”
Analy
s
is, Design, “Experi
men
t
ation o
f
a High-
Voltage
Power
Supply
for
Ozon
e
Generation Bas
e
d on Current-
F
ed Paralle
l-Resonant Push–Pull Inverter”,
I
EEE transact
i
o
n
s on industry
applications
, vo
l. 41
, no
. 5
,
2005
[7]
Oleg Koudriav
t
sev, Shengp
ei Wang, Yoshihiro
Konishi,
and
Mutsuo Nakaoka, “
A
Nove
l Pulse-
Density
Modulated
High-Frequency Inverter for
Sile
nt Disch
a
rge-
Ty
pe Ozonizer
”,
IEEE Transaction on Industry
Applica
tion
, V
o
l
.
38,No. 2
,
pp
. 36
9-378, Mar
c
h/A
p
ril 2002
.
[8]
J. Marcos Alonso, Jesus Cardesi
n
, Em
ilio
Lope
z
Corom
i
nas, Manuel Ri
co-S
eced
es and Jorge Gar
c
ia
, “
L
ow-P
ower
High-Voltage High- Frequency
Powe
r Supply
for
Ozone Generation,”
IEEE Transaction on Industry Application
,
Vol. 40
, No.2
, p
p
. 414-421
, Mar
c
h/April 2004.
[9]
P. Hothongkham, V. Kinnar
e
s,
“Performance
Evalu
a
tion
of an Ozone Ge
n
e
rator Using a Phase Shift PWM Full
Bridge Inv
e
rter”,
ECTICON2008
, May
,
2008
.
[10]
Hussain S. Athab and P.K. Shad
hu Khan, “A Cost Effe
ctiv
e Method of Reducing
Total Harmonic Distortion (
T
HD)
in S
i
ngle-P
h
as
e Boos
t Rectifi
e
r”
IEEE Power El
ectroni
cs and Drive
Systems Conferenc
e
Proce
e
d
ings
, pp. 669-
674, 2007
.
[11]
Shikha Singh, G
.
Bhuvaneswar
i,
Bhim
Singh and Hauz Khas, “Multipl
e
Output S
M
PS with Im
pro
v
ed Input Power
Qualit
y”
IEEE I
ndustrial and In
formation Syst
em
s (
I
CIIS
)
conference
Proceedings
, pp
.382-387, 2
010.
[12]
Shakil Ahamed Khan, Mousumi
Aktar, Md. Is
mail Hossain
, “Single Phase PFC Converter f
o
r Plug-in H
y
br
id
Ele
c
tri
c
Vehic
l
e
Batte
r
y
Ch
arger
s
”
International
Journal of Power El
ectronics and Drive Systems (
I
JPEDS)
, V
o
l
2
No 3, 2012
pag
e
s 325-332.
[13]
J
i
n J
i
apei
, Ch
en
Tian
ti
an,S
u S
h
aoze
, “
A
Contro
l S
t
rat
e
g
y
for
S
i
ngle ph
as
e Grid
Connect
ed Inv
e
rter wi
th P
o
wer
Quality
R
e
gulator
y
Function “
TELKOMNIKA Indonesian Journ
a
l
of Electrica
l
Engineering
, Vo
l 12 No 1, p
a
ges
225-233, 2014
.
[14]
Young hoon Ch
o, “A Low Cost Single Switc
h
Bridgeless Boost PFC Converter
”,
In
ternational
Journal of Power
Electronics and
Drive Systems (
I
JPEDS)
,
Vol 4
No 2, p
a
ges 256
-264, 2014
.
[15]
D. Lenin
e
,
Ch.
Sai Babu, Shan
karaiah,
” Perfor
m
ance Evaluatio
n
of Fuzzy
and
PI Controller fo
r Boost Converter
with Active PFC”
Internationa
l Journal of Po
wer El
ectronics
and Drive Systems (
I
JPEDS)
,
Vol 2 No 4, 2012
pages 445-453
.
[16]
Paul Nosike Ekemezie, “Design of a Po
wer
Factor Corr
ection AC-DC Converter
”,
I
E
E
E
AFRICON 20
07
Confer
enc
e
Pr
o
c
eedings
,
pp.1-8
,
2007.
[17]
Prasopchok Hothongkham, Somkiat Kongk
achatand Narongch
a
i
Thodsaporn,
“Performance Comparison of PWM
and Phase-Shifted PWM Inverter Fed High-
Vo
ltag
e
High-Freq
uency
Ozon
e G
e
nerator”,
TEN
C
ON 2011, IEEE
Region
10 Conference proceed
in
gs
,
pp.976-980
, 2011
[18]
G
.
Udhay
a
kumar, Rashmi M R
,
K. Patel, G.P
.
Ram
e
sh
and Suresh A., “High-Fre
quency
Hig
h
-Voltage Power
Supply
for
Ozon
e Gener
a
tor
S
y
stem”,
Internation
a
l Journal of
Ap
plied
Engin
eerin
g Research
,
Volume
9,
Numbe
r
23 pp. 18913-18
930, 2014
.
Evaluation Warning : The document was created with Spire.PDF for Python.