Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l. 5,
N
o
.
1
,
Ju
ly 20
14
, pp
. 24
~31
I
S
SN
: 208
8-8
6
9
4
24
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
ZVZCS Based High Frequenc
y Link Grid Connected SVM
Applied Three Phase Three Leve
l Diode Cl
amped I
n
vert
er f
o
r
Photovol
t
aic App
licati
o
ns Part-II
Soum
yadeep
Ray,
Madiche
t
ty
Sree
dh
ar, Abhiji
t Das
g
u
p
ta
School of
Electr
i
cal Engin
eer
ing,
KIIT University
,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 19, 2013
Rev
i
sed
May 21
, 20
14
Accepte
d
J
u
n 1, 2014
This article pro
poses a
newly
proposed highly
effective Zero Voltage an
d
Zero Current s
w
itching based
Front e
nd converter with a Hig
h
Frequen
c
y
Trans
f
orm
e
r wit
h
a Thre
e P
h
as
e Thre
e Lev
e
l
Diode Clam
ped
Inverter
in
photovoltaic ap
plications. Th
e switc
hing scheme is implemented in
MATLAB/ Simulink condit
i
on.
ZVZCS cond
itio
n is achieved
.
T
h
is t
y
pe of
converter shows high eff
i
ciency and ver
y
n
e
glig
ible switching loss. Finally
ZVZCS based High Frequenc
y
Link Diode Clamped Inverter
is connected to
Grid. An MCI
optimized Current contro
l
l
er is used with SVM switching
techn
i
que. In T
h
is artic
le
, resp
onses w
ith three ty
p
e
s of contro
llers (I, PI,
P
I
D) have bee
n
exam
ined
an
d com
p
ared. S
i
m
u
lation res
u
l
t
s
s
how the
effec
tiven
es
s
,
an
d
val
i
di
ty
of this
technique.
Keyword:
Di
o
d
e C
l
am
ped
In
vert
e
r
Hi
g
h
F
r
e
que
nc
y
Li
nk
M
i
nori
t
y
C
h
a
r
ge C
a
r
r
i
e
r
Ins
p
ire
d
Alg
o
ri
thm
SVP
W
M
ZVS ZCS
C
o
nverter
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Sou
m
yad
eep
Ray,
Sch
ool
o
f
El
ec
t
r
i
cal
En
gi
neer
i
ng,
KI
IT Uni
v
er
sity
,
I
ndia
Em
a
il: write2
p
rith
u@g
m
ail.co
m
1.
INTRODUCTION
Sol
a
r e
n
er
gy
i
s
becom
i
ng
po
pul
a
r
f
r
om
pre
v
i
o
us d
a
y
s
. M
a
i
n
l
y
Two t
y
p
e
s of s
o
l
a
r e
n
e
r
gy
sy
st
em
s
are prese
n
t. Stand alone sy
ste
m
a
nd G
r
i
d
co
n
n
ect
ed s
y
st
em
i
s
prop
os
ed
in
Literatu
re.
Gri
d
conn
ected
Ph
ot
o
vol
t
a
i
c
(P
V) sy
st
em
does not
re
q
u
i
r
e b
u
l
k
b
a
t
t
e
ry
. Th
e wo
rk
on
PV
gene
rat
i
o
n sy
st
em
s, l
i
k
e PV arra
y
connected t
h
roung first boost
conve
r
te
r and
Three
Phase
Inverter t
o
the gr
id, has inc
r
eas
ed in the last decade
due
t
o
t
h
e
ri
s
e
i
n
dem
a
nd
f
o
r el
ect
ri
c
po
wer
.
W
i
t
h
the
advancem
ent of t
h
e
po
wer electronics
c
o
nve
rters
main
ly th
e DC-DC co
nv
erters an
d
t
h
ree
p
h
a
se in
v
e
rters,
t
h
is g
e
n
e
rated
p
o
wer can
b
e
u
tilized
and
supp
lied
to
gri
d
. Inverter
efficiency ne
e
d
s to
be im
prove
d in
orde
r
to m
itigate th
e losses,
photovoltaic m
odule
'
s low
effi
ci
ency
.
M
a
ny
resea
r
c
h
ers
have
p
r
op
ose
d
va
ri
o
u
s t
o
p
o
l
o
gi
es a
n
d
di
f
f
er
ent
co
nt
r
o
l
t
h
e
o
ri
es
f
o
r t
h
ree
pha
se
gri
d
co
n
n
ect
ed
p
hot
ov
ol
t
a
i
c
sy
st
em
.[1-
10]
Ad
va
nt
ages
w
h
i
c
h a
r
e m
o
t
i
vat
i
n
g
g
r
i
d
c
o
nnect
e
d
ph
ot
o
vol
t
a
i
c
appl
i
cat
i
o
ns ar
e R
e
duct
i
o
n of
cost
s of PV
p
a
nel
;
Oper
at
i
o
n d
o
es n
o
t
pol
l
u
t
e
t
h
e envi
r
o
n
m
ent
.
Fi
gur
e 1
sho
w
s
th
e conv
en
ti
o
n
al p
r
o
c
ed
ure
o
f
con
n
ecting
pho
tov
o
ltaic syst
e
m
to
th
e
g
r
i
d
.
Fi
gu
re
1.
C
o
nv
ent
i
onal
PV
sy
st
em
con
n
ect
ed t
o
G
r
i
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
ZVZC
S
B
a
sed
Hi
g
h
Fre
q
uenc
y Li
nk
Gri
d
C
o
nnect
e
d
SVM Ap
pl
i
e
d
T
h
ree Ph
ase
T
h
ree…
(Soumyadee
p
Ray)
25
Multi Level Diode Clam
ped Inverte
r
has been propo
sed
and acce
pted for a
pp
lications in Medium
an
d Hi
g
h
p
o
wer
d
r
iv
es an
d th
e
u
tility syste
m
s. As co
m
p
ared with th
e o
t
h
e
r m
u
lti-lev
e
l
con
v
e
rter topo
log
i
es
t
h
e Di
o
d
e C
l
a
m
ped con
v
ert
e
r uses a
ve
ry
l
e
ss n
u
m
b
er of
capaci
t
o
rs a
n
d
swi
t
c
hes i
n
o
r
der t
o
get
t
h
e
desi
re
d
o
u
t
p
u
t
vo
ltag
e
lev
e
l.
I
t
is th
eref
or
e m
o
r
e
econ
o
m
ical an
d
r
e
liab
l
e.
[1
1
]-[1
7].
H
e
n
ce,
it is
co
m
b
in
in
g th
e
b
e
st
pos
si
bl
e t
w
o t
e
chni
que
s a
n
d
m
a
kes t
h
e sy
st
em
m
u
ch m
o
re effi
ci
ent
.
In th
e abo
v
e
syste
m
Stab
ilit
y o
f
th
e
po
wer system
was
m
o
d
e
led
and
an
alysed
, To
tal Harm
o
n
i
c
Di
st
ort
i
o
n (T
H
D
) s
h
o
u
l
d
be m
i
nim
u
m
,
Lower
Or
der
Har
m
oni
cs shoul
d
be
m
i
nim
u
m
.
The t
o
t
a
l
set
up si
z
e
sh
ou
l
d
b
e
sm
al
l, In
v
e
r
t
er
ef
f
i
cien
cy shou
ld
be h
i
gh
.
In
add
ition
it i
s
also
i
m
p
o
r
tan
t
th
at th
e in
verter n
e
ed
s to
o
p
e
rate v
e
ry qu
ick
l
y an
d
a h
i
g
h
freq
u
e
n
c
y
o
p
e
ration
wh
il
e g
e
n
e
rating
PWM sign
als
wi
th
m
i
n
i
m
u
m
lo
sses.
Hen
c
e, t
h
e con
t
ro
ller
p
l
ays a v
ital ro
le.
Fi
gu
re
2.
Pr
o
p
o
se
d P
V
sy
st
e
m
connect
ed
w
i
t
h
G
r
i
d
In
orde
r to ac
hieve
Less set
up size, less
tota
l
harm
oni
c
di
st
o
r
t
i
o
n
,
l
e
s
s
l
o
we
r
Or
de
r
Harm
oni
cs
without com
p
rom
i
sing efficiency a ne
w
techn
i
qu
e is alr
eady p
r
opo
sed
[1
8]-
[
2
8
]
. In
th
is pap
e
r
G
r
i
d
connected
ZVZC
S
base
d
Th
ree Le
vel
Three
P
h
ase
D
i
ode C
l
am
ped
In
vert
e
r
[
2
9]
, [
30]
i
s
p
r
o
p
o
se
d
wi
t
h
a
n
opt
i
m
i
zed
cu
rren
t con
t
ro
ller. In
t
h
is
p
a
per SV
P
W
M
t
e
chni
que
i
s
use
d
i
n
o
r
der t
o
m
i
nim
i
ze swi
t
c
hi
n
g
l
o
ss i
n
t
h
e Fi
nal
Inv
e
rter. Grid
co
nn
ected
ZVZCS b
a
sed
In
verter is i
m
p
l
e
m
en
ted
in
M
A
TLAB/ Sim
u
lin
k
cond
itio
n
and
resu
lts
sh
ow
t
h
e ef
f
ect
iv
en
ess of
t
h
e t
ech
n
i
q
u
e
along w
ith
Gr
id
Vo
ltag
e
an
d Cur
r
e
nt.
2.
P
AN
D O
MP
PT
Th
e Ph
o
t
o
v
o
ltaic syste
m
h
a
s so
m
e
maj
o
r
d
i
sad
v
a
n
t
ag
es, the co
nv
ersion
an
d
g
e
neration
o
f
Power, till
n
o
w, is
no
t efficien
t an
d
po
wer ch
ang
e
s with
v
a
ry
ing in
so
lation
and
tem
p
eratu
r
e. Power-Vo
ltage and
Cu
rren
t-
vo
ltag
e
relation
s
h
i
p is n
o
n
lin
ear i
n
n
a
t
u
re.
So
a
u
n
i
q
u
e
po
in
t is p
r
esen
t in
Power- Vo
ltag
e
cu
rv
e or
i
n
C
u
r
r
e
n
t
-
V
o
l
t
age C
u
r
v
e cal
l
e
d M
a
xi
m
u
m
Po
wer
poi
nt
, at
whi
c
h p
o
i
n
t
t
h
at
m
odul
e o
p
e
r
at
es wi
t
h
m
a
xim
u
m
efficien
cy at
particu
l
ar
weather co
nd
itio
n. Th
e ex
act
v
a
lu
e
o
f
Max
i
m
u
m
p
o
w
er
po
in
t is
no
t fi
x
e
d,
b
u
t
can
be
fo
u
nd
by
usi
n
g
search t
y
pe a
l
go
ri
t
h
m
s
. M
a
inl
y
Inc
r
em
ent
a
l
con
duct
a
nce
and
Pert
u
r
b an
d O
b
ser
v
e
(
P a
nd
O)
M
PPT al
g
o
ri
t
h
m
s
are used
. P
and
O M
PPT
al
go
ri
t
h
m
i
s
sim
p
l
e
for im
pl
em
ent
a
t
i
on p
u
r
p
ose. Fi
gu
re 3 s
h
o
w
s
P and
O MP
PT
algorithm
.
Figure
3.
P a
nd O MP
PT
Algorithm
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
24
–
31
26
Thi
s
al
g
o
ri
t
h
m
i
s
base
d
on
t
h
e cal
cul
a
t
i
on
o
f
o
u
t
p
ut
po
wer
of
P
V
m
odul
e
an
d p
o
w
er i
s
chan
ge
d
by
cu
rren
t and
v
o
ltag
e
. Th
e algo
rith
m
calcu
late th
e
v
a
lu
e
of
p
o
wer at k th
in
stan
t an
d at
(k
+1
) th
i
n
stant and
d
i
fferen
ce is calcu
lated
.
If the
m
a
g
n
itu
d
e
of th
e p
o
w
er
is in
creasi
n
g
in
natu
re, th
e p
e
rturb
a
tion
will co
n
tin
u
e
in
th
e sam
e
d
i
rectio
n
i
n
t
h
e n
e
x
t
cycle,
oth
e
rwise
rev
e
rsed
. At MPP, in
o
r
d
e
r to red
u
c
e oscillati
o
n
, th
e
pert
ur
bat
i
o
n
st
ep si
ze s
h
oul
d
be m
i
nim
i
zed.
Fi
gu
re
4 s
h
ow
s t
h
e
v
o
l
t
a
ge,
cur
r
ent
an
d
p
o
w
er
wa
vef
o
rm
s f
o
r
P
V
sy
st
e
m
s wi
t
h
M
PPT, i
n
co
nst
a
nt
irrad
i
ation
(
80
0 W
/
m
2
) and c
o
nst
a
nt
t
e
m
p
erat
ure
(
5
0
°
C
)
.
So, P
V
m
odul
e i
s
con
n
ect
ed
t
o
B
oost
C
o
nve
rt
er
whe
r
e
swi
t
c
hi
n
g
i
s
do
ne
by
fol
l
o
wi
n
g
M
P
P
T
alg
o
rith
m
.
Fi
gu
re
4.
P
o
we
r,
v
o
l
t
a
ge a
n
d
cur
r
ent
c
h
a
r
act
eri
s
t
i
c
s of
P
V
m
odul
e wi
t
h
M
PPT i
n
a c
o
n
s
t
a
nt
t
e
m
p
erat
ure a
n
d
co
nstan
t
irrad
i
atio
n
3.
HIGH FRE
Q
UENCY LINK THREE L
E
VEL TH
RE
E PHA
S
E
DI
ODE
CLA
M
P
E
D I
NVE
RT
ER -
BASI
C
P
R
I
N
CIPLE AN
D OPER
ATIO
N
Fi
gu
re
5.
Hi
gh
Fre
que
ncy
Li
n
k
Di
o
d
e C
l
am
ped T
h
ree
l
e
vel
Three
P
h
ase
In
vert
er
The
n
u
m
b
eri
n
g
or
de
r
of
swi
t
ches i
s
M
1
,
M
2
,
I
G
1
,
IG
2
a
n
d D1, D
2
, D
3
,
D4
and
S
1
, S2,
S3, S4,
S
5
,
S6. T
h
e
dc b
u
s
consi
s
t
s
of t
w
o ca
paci
t
o
r
s
C
1
, C
2
. Th
e
voltage across e
ach capacito
r is Vdc/
2. An m –level
i
nve
rt
er l
e
g r
e
qi
res (m
-1) ca
paci
t
o
rs
, 2
(
m
-
1) s
w
i
t
c
hi
n
g
d
e
vi
ces an
d (m
-1)
(
m
-
2) cl
am
p
i
ng
di
o
d
es [
3
1
]
. The
i
n
p
u
t
su
ppl
y
f
r
o
m
any
fuel
cel
l
can be gi
ve
n t
o
t
h
e i
n
ve
rt
er w
h
i
c
h c
onsi
s
t
s
of a t
w
o l
e
gs cal
l
e
d l
eadi
ng l
e
g
an
d lagg
ing
leg
.
B
o
th leg con
s
ists
o
f
a MOSFET and
IG
B
T
indicated
as
M1, IG1,
M
2
, IG
2 res
p
ective
l
y
.
Th
e
out
put
o
f
t
h
e i
nve
rt
er f
r
o
m
high
fre
q
u
ency
t
r
ansf
o
r
m
e
r al
ong wi
t
h
a
n
i
n
du
ct
or LS
o
u
rce.
The p
u
l
s
at
i
n
g out
pu
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
ZVZC
S
B
a
sed
Hi
g
h
Fre
q
uenc
y Li
nk
Gri
d
C
o
nnect
e
d
SVM Ap
pl
i
e
d
T
h
ree Ph
ase
T
h
ree…
(Soumyadee
p
Ray)
27
is given to t
h
e
diode bri
d
ge rectifier for
which the ca
pac
itor, induct
o
r
will acts as an input filter,
bl
ocki
ng
cap
acito
r as
well. Th
e
g
r
een
d
o
tted lin
e
will acts as
filte
r an
d co
m
b
in
ation
o
f
green do
tted
an
d red
do
tted
line
in
d
i
cates as aux
iliary ciru
it.
Th
e m
a
in
fu
n
c
tio
n
o
f
th
is
aux
iliary circu
it i
s
to
en
su
re th
e ZCS and
ZVS fo
r t
h
e
front end inverter.Lsr is the s
a
tura
bl
e reactor whic
h is in placed series
wi
th the high fre
que
ncy trans
f
orm
e
r,
ILsr is t
h
e current passi
ng t
h
rough th
e reactor,
IPTra
n
s, IStrans, VPt
r
ans
,
VStra
n
s is the
cu
rrent a
n
d voltage
o
f
th
e t
r
sanfom
rer p
r
im
ary an
d seco
nd
ay
resp
ectiv
ely.
Ilo
is th
e cu
rren
t passing
t
h
ro
ugh
the filter cu
m
au
x
iliary indu
cto
r
,
Id
a is th
e cu
rren
t
p
a
ssi
n
g
th
ro
ugh
th
e aux
ilay d
i
od
e. The p
r
op
osed circu
it is shown
Fig
u
re
5.
This
princi
ple
can
be explained in t
w
o sections
. In
t
h
e fi
rs
t, the ba
sic principle a
n
d ope
r
ation
of a
fr
ont
en
d i
s
ol
at
ed i
nve
rt
er
and t
h
ree p
h
a
s
e t
h
ree l
e
vel
di
ode cl
am
ped i
nve
rt
er i
n
t
h
e seco
n
d
.T
he
basi
c
ope
rat
i
o
n o
f
t
h
e pr
op
ose
d
Z
V
ZC
S co
nve
rt
er
have
fo
u
r
t
een
ope
rat
i
n
g m
odes and
w
o
r
k
i
n
g o
n
t
h
e
pri
n
ci
pl
e o
f
pul
se p
h
ase s
h
i
f
t
m
odul
at
i
o
n t
echni
que
. Here
, i
t
has been co
nsi
d
e
r
e
d
o
n
l
y
si
x op
erat
i
ng m
odes
for t
h
e
p
o
s
itiv
e h
a
l
f
cycle an
d
rem
a
i
n
ing
will b
e
reflected
of th
ese
m
o
d
e
s.
Mo
d
e
1
:
(0
<t<t
1
)
:
Here assu
med
that, th
e indu
ctor is
i
n
d
i
sch
a
rg
ed
co
nd
itio
n.
When th
e
switch
M
1
is
o
n
cond
tio
n, the to
tal en
erg
y
t
h
at is
p
r
esen
t i
n
indu
ctor
d
i
ssip
ated
an
d cu
rren
t
in
t
h
is co
nditio
n
is zero.
Mode
2: (t1<t<
t2): In this m
ode, both s
w
itches M1
and IG2 are in on. T
h
e total input powe
r will be
tran
sferred thro
ugh
t
h
e tran
sfo
r
m
e
r to
ou
tput. Here at t
h
is t
i
m
e
th
e filter cap
acito
r C is ch
arg
e
d
along
with
t
h
e
filter in
du
ctor. Th
e am
o
u
n
t
of en
erg
y
th
at ca
n
b
e
stored
at th
is ti
m
e
in
ind
u
c
t
o
r is
and in ca
pacitor i
s
.
Th
e cu
rren
t thro
ugh
th
e tran
sfo
r
m
e
r is g
i
v
e
n
in
Eq
u
a
tion
(1
).
.
1
.
sin
(1)
(
2
)
1
cos
sin
(3)
Mo
d
e
3
:
(t2
<
t
<
t3
): Th
is m
o
d
e
b
e
g
i
n
s
with au
x
iliary ciru
i
t
wh
ich
is shown
in
red
do
tted
lin
es,Th
e
cap
acito
r is
slowly ch
arg
i
ng
.Sin
ce th
e cap
a
cito
r vo
ltag
e
Vca is less th
an
th
e inp
u
t
v
o
ltag
e
, cu
rren
t will start
flow
ing
through
au
x
iliary circu
it wh
ich
is sh
own
in
Figu
re
2
.
M
1
turn
s
o
n
softly as ind
u
c
t
o
r
Lr is i
n
series
with
th
is switch
an
d limits th
e rise in
cu
rrent th
ro
ugh
it. Cr d
i
sch
a
rg
es i
n
to
th
e au
x
iliary in
du
ctor
du
ri
ng
th
i
s
m
ode. Si
nce v
o
l
t
a
ge Vcs i
s
l
e
sser t
h
a
n
t
h
e
bri
dge
vol
t
a
ge,
di
o
d
e D
1
i
s
re
verse
d
bi
ased
and
d
o
es n
o
t
c
o
n
d
u
ct
.
This m
ode e
n
ds when Cr
voltage
reaches
th
e
voltage ac
ros
s
off-state bridge switches
.
M
ode
4:
(t
4 <
t
< t
5
):
Thi
s
m
ode begi
ns
whe
n
di
o
d
e
D
1
bec
o
m
e
s for
w
ar
d
bi
ased a
nd
st
art
s
t
o
conduct. T
h
e
voltage ac
ros
s
the
bridge
swit
ches
the
r
e
f
ore follows
ca
pacito
r vo
ltag
e
Vca
wh
ich
is d
ecreasin
g
.
Th
is vo
ltag
e
is also
equ
a
l to
th
e vo
ltag
e
acro
ss th
e tr
an
sform
e
r. Id
eally, if th
e vo
ltag
e
acro
ss t
h
e tran
sform
e
r
i
s
l
e
ss t
h
an t
h
e out
put
.
D
i
o
de
s becom
e
reve
rsed
bi
ased
and
po
wer is no
t tran
sferred
to th
e o
u
t
p
u
t
,
but th
is
powe
r trans
f
er does
not in fact st
op imme
diately becaus
e
of the
pres
e
n
ce of leaka
g
e inductance i
n
the
trans
f
orm
e
r. The tra
n
s
f
orm
e
r current
r
eac
hes
zero at the
end of this m
ode.
M
ode:1
M
ode:2
M
ode:3
M
ode:4
M
ode:5
M
ode:6
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
24
–
31
28
s
i
n
2
(
4
)
1
cos
(
5
)
sin
sin
(
6
)
M
ode 5:
(t
5 < t
< t
6
):
The out
put
capaci
t
a
nces o
f
swi
t
c
hes M
1
an
d I
G
2 a
nd ca
paci
t
o
r C
r
kee
p
d
i
sch
a
rg
i
n
g during
th
is m
o
d
e
. Th
e curren
t
in
th
e aux
iliary circu
it bran
ch is eq
u
a
l t
o
the su
m
o
f
th
e cu
rren
t
fr
om
t
h
e ful
l
-
b
r
i
d
ge cau
sed
b
y
t
h
e di
sc
har
g
i
ng
o
f
t
h
e
sw
itc
h out
put ca
paci
tances an
d C
r
,
and the input c
u
rrent
t
h
at
fl
o
w
s t
h
r
o
ug
h
Lsr
.
0
(
7
)
cos
(
8
)
s
in
(
9
)
M
ode
6:
(t
6 <
t
< t
7
):
At
t
h
e begi
nni
ng
o
f
t
h
i
s
m
ode, t
h
e
DC
b
u
s v
o
l
t
a
g
e
i
s
zero an
d i
s
cl
am
ped t
o
zero as
the
body-diodes of t
h
e converte
r s
w
itches are fo
r
w
ar
d
bi
ased a
n
d st
art
t
o
c
o
nd
uct
.
S
w
i
t
c
hes
I
G
2 ca
n
be t
u
r
n
ed
on w
i
t
h
ZVS som
e
tim
e duri
ng t
h
i
s
m
ode whi
l
e
cur
r
ent
i
s
fl
ow
i
ng t
h
r
o
ug
h t
h
ei
r bo
dy
-
d
i
o
de
s. Al
s
o
d
u
ring
th
is m
o
d
e
, th
e curren
t
th
at flo
w
s thro
ugh
th
e aux
iliary circu
it (and
th
us th
e cu
rren
t
th
ro
ugh
the fu
ll-
bri
dge
) be
gins
to decrea
se bec
a
use the
voltage across th
e auxiliary induct
o
r is negative as
the input volta
ge is
at o
n
e
end
of t
h
e circu
it and
th
e DC
b
u
s voltag
e
is zero.
Th
e au
x
iliary circu
it curren
t
is eq
ual to
th
e cu
rren
t
t
h
r
o
u
g
h
Lsa at
t
h
e en
d
of
t
h
i
s
m
ode, w
h
i
c
h
m
a
kes t
h
e cu
rre
nt
fl
o
w
i
n
g t
h
r
o
ug
h t
h
e
f
u
l
l
-
bri
dge
t
o
be
zero
.
Di
ffe
re
nt
m
odes o
f
s
w
i
t
c
hi
n
g
ope
rat
i
o
n i
s
s
h
ow
n i
n
Fi
gu
re
6.
In case of thre
e-phase full bridge three leve
l diode
-clam
p
e
d
con
v
e
rter in
wh
ich
th
e d
c
bu
s con
s
ists
of
four capacit
o
rs
, C1, C
2
,. For a
dc
bus
voltage V dc
,
the voltage
across each ca
pacitor is
V dc /
2
, and
each de
vice voltage stress
will be li
mite
d to one capa
c
itor voltage
level i.e. V dc/2, through c
l
a
m
ping
d
i
od
es[7
],
[
9
]-[1
1
]
.
Fi
gu
re
6.
Di
f
f
e
r
ent
m
odes
o
f
ope
rat
i
o
n
of a
Three
Le
vel
Di
ode
cl
am
ped H
i
gh
fre
q
u
ency
Li
nk
I
nve
rt
er
4.
CO
NTR
O
L T
E
CHN
I
Q
U
E
An
opt
i
m
i
zed
cur
r
ent
co
nt
r
o
l
l
er i
s
used f
o
r
cont
r
o
l
l
i
ng t
h
e vol
t
a
ge an
d
fre
que
ncy
o
f
t
h
e i
nve
rt
er
out
put
vol
t
a
ge
whe
r
e t
h
e
op
t
i
m
i
zat
i
on of t
h
e co
nt
r
o
l
l
e
r i
s
do
ne
by
t
h
e
M
i
nori
t
y
C
h
a
r
ge C
a
rri
er
In
spi
r
e
d
optim
ization Techni
que
(MCI). Space
vector
Pulse W
i
dth Modulation
Te
c
hni
que (SVPWM) is used
for pulse
gene
rat
i
o
n i
n
Hi
g
h
F
r
eq
ue
nc
y
Li
nk T
h
ree
Phase T
h
ree L
e
vel
I
nve
rt
er s
w
i
t
c
hes.
Fi
g
u
r
e
7 s
h
o
w
s t
h
e
cont
rol
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
ZVZC
S
B
a
sed
Hi
g
h
Fre
q
uenc
y Li
nk
Gri
d
C
o
nnect
e
d
SVM Ap
pl
i
e
d
T
h
ree Ph
ase
T
h
ree…
(Soumyadee
p
Ray)
29
di
ag
ram
whi
c
h i
s
use
d
f
o
r
swi
t
c
hi
n
g
p
u
r
pos
es. T
h
i
s
co
nt
r
o
l
Tech
ni
q
u
e
i
s
sim
p
l
e
for im
pl
em
ent
a
t
i
on i
n
har
d
ware.
Fi
gu
re
7.
C
o
nt
r
o
l
Tec
hni
que
a
n
d
p
u
l
s
e
ge
ner
a
t
i
o
n
5.
SIMULATIONS AND
RESULTS
Fig
u
r
e
8
.
ZVZCS r
e
g
i
on
in Fr
on
t En
d Conver
t
er
Fi
gu
re 9.
V
o
l
t
a
ge wave
f
o
rm
wi
t
h
opt
i
m
i
zed
cont
rol
l
e
r
Fig
u
re 10
.
C
u
rren
t wav
e
fo
rm
with
o
p
tim
ized
cont
rol
l
e
r
Fi
gu
re
8 s
h
ow
s ZV
ZC
S
regi
on
i
n
Fr
o
n
t
E
n
d
C
o
n
v
ert
e
r
i
n
case
o
f
Z
V
Z
C
S base
d
Hi
g
h
F
r
e
que
nc
y
Li
nk T
h
ree P
h
ase Three Le
v
e
l
Di
ode C
l
am
ped
In
vert
e
r
. F
i
gu
re 9 sh
o
w
s
Gri
d
Vol
t
a
ge wave
f
o
rm
wi
th M
C
I
opt
i
m
i
zed C
u
r
rre
nt
C
o
nt
r
o
l
l
e
r an
d Fi
g
u
re
10
sh
o
w
s
Gr
i
d
Cu
rre
nt
wav
e
fo
rm
with M
C
I o
p
tim
ized cur
r
ent
cont
roller.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
24
–
31
30
Tab
l
e 1
.
Stab
ility
o
f
Vo
ltag
e
wav
e
fo
rm
Ty
pe of Controller
Settling Ti
m
e
(sec
)
Peak
Overshoot (V
olt)
Deviation (Volt)
I
contr
o
ller
0.
0800
194.
9
6.
5
PI
contr
o
ller
0.
0770
193.
0
4.
6
PI
D contr
o
ller
0.
0742
192.
8
4.
4
Tab
l
e 2
.
Stab
ility
o
f
C
u
ren
t
wav
e
fo
rm
Ty
pe of Controller
Settling Ti
m
e
(sec
)
Peak
Overshoot (V
olt)
Deviation (Volt)
I
contr
o
ller
0.
0770
55.
38
34.
45
PI
contr
o
ller
0.
0770
55.
30
34.
37
PI
D
0.
0736
55.
15
34.
22
From
Tabl
e
1 and Tabl
e 2
O
n
e
can
clearly state that Opti
mized PID
c
o
n
t
rol
l
e
r has
t
h
e best
res
p
ons
e
am
ong
al
l
ot
he
r c
ont
r
o
l
l
e
rs
us
ed.
6.
CO
NCL
USI
O
N
Thi
s
sy
st
em
has been s
h
o
w
n t
o
achi
e
v
e
t
h
e b
e
st
resul
t
s
wi
t
h
hi
gh c
o
n
v
e
r
si
on e
ffi
ci
ency
, t
h
o
u
gh
DC
-
A
C
-D
C-A
C
co
nv
er
sion
is
req
u
i
r
e
d fo
r this resu
lt. Th
is stud
y was carried
o
u
t
fo
r grid
conn
ectio
n
s
o
f
ph
ot
o
v
o
l
t
a
i
c
and ca
n
be ext
e
nde
d t
o
fu
rt
he
r
.
Fu
rt
he
r w
o
r
k
can be ca
rri
e
d
out
t
o
val
i
d
at
e
t
h
e pr
act
i
cal
resul
t
s
with
th
e th
eo
retical resu
lts.
REFERE
NC
ES
[1]
Ilves K, Antono
poulos A, Norrga S, Nee HP. Stead
y
-
Stat
e Analy
s
is of Interaction
between Har
m
onic Components
of Arm and Line Quantiti
es of Modular Multilevel Convert
ers.
Power Ele
c
troni
cs
,
IEEE T
r
ansactions on
. 2012;
27(1): 57-68
.
[2]
Ngu
y
en MK, Lim YC, Ki
m YJ. A Modified Single-Phase Quasi-Z-Source AC–AC Converter.
Power Ele
c
troni
cs
,
IEEE Transactio
ns on
. 2012; 27(
1): 201-210.
[3]
Jung JH. Feed-Forward Comp
ensator of Operati
ng Frequen
c
y
for APWM
HB Fly
b
ack C
onverter
.
Powe
r
Electronics
,
IEEE Transactions
on
. 2012; 27(1):
211-223.
[4]
Han Y, Cheung G, Li A, Sulliv
an CR, Perreaul
t
DJ. Ev
aluation
of Magnetic M
a
ter
i
al
s for Ver
y
High Frequen
c
y
Power Applications.
Power
El
ect
r
onics
,
IEEE Transactions on
. 2
012; 27(1): 425-
435.
[5]
P
ou J
,
Zaragoza
J
,
Ceballos
S
,
S
aeedif
ard M
,
Boro
y
e
v
i
ch
D. A Carrier-B
as
ed P
W
M
S
t
rateg
y
with Zero-S
equ
e
n
c
e
Voltage
Inje
ctio
n for a
Thre
e-L
e
vel
Neutra
l-Poi
n
t-Clam
ped Con
v
erter
.
Pow
e
r
E
l
ectr
oni
cs
,
IEEE Transactions
on
.
2012; 27(2): 642
-651.
[6]
Li HY, Chen H
C
. D
y
n
a
mic Modeling
and Controller De
sign
for a Single-Stage Single-Switch Parallel Boost-
Fly
b
ack–Fly
back Converter.
Po
wer
El
ectr
oni
cs
,
IEEE Transactio
ns on
. 2012; 27(
2): 816-827.
[7]
Baraia I, Barr
en
a, J Abad, G
Canales Segad
e
, J Iraola, U.
An Ex
perimentally
Verified
Active Gate Control Meth
od
for the Series Co
nnection of
IGBT/Diodes.
Pow
e
r Ele
c
tronics
,
IEEE Transactions
on
. 2012; 27(2)
: 1025-1038.
[8]
Mousavi A, Das P, Moschopoulos G.
A Comparativ
e Stud
y
of
a New ZCS DC–DC Full-Bridge Boost Conver
t
er
with a ZVS Active-Clamp Converter.
Pow
e
r El
ec
t
r
onics
,
IEEE Transactions on
. 2
012; 27(3): 1347
-1358.
[9]
Alonso JJ, Perdigão MS, Vaqu
er
o D, Ca
ll
eja
AJ,
Saraiv
a E
.
An
a
l
y
s
is,
Desi
gn, and Exper
i
mentation on Constant-
Frequency
DC-DC Resonant Conve
rters with
Magnetic Contr
o
l.
Power
El
ectr
onics
,
IEEE Transactions on
. 2012;
27(3): 1369-138
2.
[10]
Seong H, Kim
H, Park K,
Moon G, Youn M. High Step-Up DC-DC C
onverters Using Zero-Voltage Switch
i
ng
Boost Integratio
n Techniqu
e and
Light
-Lo
a
d Frequency
Modulation Control.
Pow
e
r Elec
tronics
,
I
EEE T
r
ansactio
ns
on
. 2012; 27(3):
1383-1400.
[11]
Lin R, Chen Y, Chen Y. Anal
y
s
is and Design of Sel
f-Oscilla
tin
g Full-Bridge El
ectron
i
c Bal
l
ast
for Metal Halid
e
Lamp at 2.65-M
H
z Operating Fr
equency
.
Power Ele
c
tronics
,
IEEE Transactions
on
. 2012; 27(3):
1589-1597.
[12]
Chen W
,
Ron H
u
i SS. E
lim
inat
i
on of an
El
ec
trol
yt
ic C
a
pa
citor
in
AC/DC Light
-E
m
itting Diode
(L
ED) Driver
Inpu
t
Power Factor
an
d Constant Outp
ut Curren
t
.
Powe
r Ele
c
tronics
,
IEEE Transactions
on
. 2012; 27(3)
: 1598-1607.
[13]
Arias M,
Lamar DG,
Linera
FF,
Balo
cco D, Aguissa Diallo
A,
Se
b
a
sti
á
n J.
De
si
g
n
of
a
So
f
t
-
S
wi
t
c
hi
ng
As
y
m
m
e
tri
cal
Half-Bridg
e Conv
erter
as
S
econd
S
t
age of
an
LE
D Driver for S
t
reet
Ligh
ting A
pplic
ation
.
Pow
e
r
Electronics
,
IEEE Transactions
on
. 2012; 27(3):
1608-1621.
[14]
Thielemans S, Ruderman A,
Reznikov B, Melkebeek J. Improved Natura
l Balan
c
ing With Modified Phase-Shifted
PWM for Single-Leg Five-
L
ev
el
Fly
i
ng-Cap
a
citor Converters.
Power Ele
c
tronics
,
IEEE Transactions on
. 2012;
27(4): 1658-166
7.
[15]
L Jia, SK Mazum
d
er. A loss-
m
itigating sch
e
m
e
for dc/
pulsat
i
ng-d
c
convert
er of a high frequency
-
l
i
nk s
y
stem
.
IE
EE
Transactions on
Indus
trial Electronics
. 2012
; 59(
12): 4537-4544.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
ZVZC
S
B
a
sed
Hi
g
h
Fre
q
uenc
y Li
nk
Gri
d
C
o
nnect
e
d
SVM Ap
pl
i
e
d
T
h
ree Ph
ase
T
h
ree…
(Soumyadee
p
Ray)
31
[16]
S
K
M
azum
d
er, A Rathore
.
P
r
im
ar
y
-
s
i
d
e
-conv
erter-
as
s
i
s
t
ed s
o
ft-s
witching s
c
h
e
m
e
for an
ac/
ac conv
ert
e
r in
a
cy
clo
c
onverter-ty
p
e h
i
gh-frequ
ency
-
link inv
e
rter
.
IEEE Transactions on Industrial Electronics
. 2011; 58(9): 4161-
4166.
[17]
SK Mazumder,
R Burra, R Hu
ang, M
Ta
hir,
K Achary
a,
G
Garcia,
S Pro,
O Rodrigues,
E Duheric. A h
i
gh-
efficiency
univ
e
rsal grid-
c
onnected fu
el-c
ell in
verter
for resid
e
ntial
applicatio
n.
IEEE Transactions on
Power
Electronics
. 201
0; 57(10): 3431-
3447.
[18]
R Huang, SK Mazum
d
er. A soft switching schem
e
for m
u
ltip
hase dc/pu
l
satin
g-dc conver
t
er f
o
r threeph
a
se hi
gh-
frequency
-
link
PWM inverter
.
I
E
EE Transactions
on Pow
e
r Electronics
. 2010
; 25(
7): 1761-1774.
[19]
M Veerachar
y
.
Power Tr
ackin
g for Nonlin
ear
PV S
ources with Coupled
I
nductor SEPIC
Converter.
IEEE
Transactions on
Aerospace and
Electronic Systems
. 2005; 41(3)
.
[20]
H Altas, AM Sh
araf. A Photovoltaic Array
Simu
lation Model
for
Matlab-Simulin
k GUI Environment
. IEE
E
, C
l
e
a
n
Electrica
l
Pow
e
r,International C
onference
on
Clean Electrica
l
Power (
I
CCEP '0
7)
. Ischia, Italy
.
2007.
[21]
S Chowdhury
,
SP Cho
w
dhury
,
GA Tay
l
or, YH Song.
Math
ematical Modelin
g and Performa
n
ce Evaluation of a
S
t
and-Alone P
o
l
y
cr
ys
t
a
l
line P
V
P
l
ant with M
P
PT F
acil
i
t
y
. I
E
EE Power and Energy Soc
iety G
e
neral Meeting
-
Conversion and
Delivery of Electric
al
energy in
the 21st C
e
ntury.
Pittsburg, USA. 2008.
[22]
Jee-Hoon Jung, S Ahmed. Model
Construction o
f
Single Crysta
lline Photo
v
ol
taic
Panels for Rea
l
-time Simulat
i
on
.
IEEE Energ
y
Co
nversion Congre
ss & Expo. Atlanta, USA. 2010.
[23]
T Esram, PL Chapman. Comparison of photovoltaic
arr
a
y
maximum power point track
ing techniq
u
es
. IEE
E
T
r
ans.
Ener
gy Con
ver
s
. 2007; 22(2)
: 43
9-449.
[24]
A Pandey
,
N D
a
sgupta, AK Mukerjee.
Design
issues in implementing MPPT
for improved tracking and dyn
a
mic
performance.
Proc. I
E
EE I
E
CON. 2006: 4387-4
391.
[25]
K Noppadol, W Theeray
od
, S Phaophak.
F
P
GA
implementation
of MPPT usin
g var
i
able s
t
ep-s
i
z
e P
&
O algor
ithm
for PV applications.
Proc.ISCIT. 2006: 212-215
.
[26]
M Sreedhar, NM Upadhy
ay
, S Mishra.
Optimized solutions for
an optimizati
on techn
i
que based on minority charge
carrier inspired algorithm applie
d to selective harmonic elimi
nation in induction
motor drive
. Recent Advances in
Information Technolog
y
(RAIT)
, 1st Inte
rnational Conferen
ce on.
3012; 788-793.
[27]
Sreedhar, Madichetty
, Dasgupta A.
E
xperimental v
e
rif
i
cation
of Minority
C
h
arge C
a
rrier
I
n
spired Algorithm
applied to
voltag
e
source inv
e
rter
.
Pow
e
r Electronics (
IICPE)
, IEEE 5th
India
Inter
national Con
f
erence on
. 2012
; 1-
6.
[28]
Sreedhar, Madichetty
, Dasgupta A.
Modelling
And Simulatio
n Of A H
y
st
er
esis Band Pulse
Width Modulated
Current Controller Applied To A
Three Phase
V
o
ltag
e
Source In
verter B
y
Using
Mat lab.
In
tern
ational Journal
of
Advanc
ed Res
e
a
r
ch
in El
ec
. 201
3: 4378-4387.
[29]
Soumy
a
d
eep R
a
y
,
Sreedhar M
a
dichetty
, Abhijit Dasgupta. ZV
CS Based Hi
gh Frequency
Lin
k
Grid Connected
SVPWM
Applied Three Phase Three Lev
e
l Diod
e Cl
amped Inver
t
er for Phot
ovoltaic Applications.
IEEE Power and
Energy S
y
stem
Conference: To
wa
rds Sustainable
Energy, PESTSE.
2014
: 1-6
.
[30]
Sreedhar Madi
chett
y
, Soum
y
a
d
eep Ray
,
Abhi
ji
t Dasgupt
a. Har
m
onic Mitigat
ed Front End Three Lev
e
l Dio
d
e
Clamped High F
r
equency
Link
I
nverter
b
y
Usin
g MCI Techn
i
qu
e.
In
ternationa
l
Journal of
Power Electronics an
d
Dr
ives
Sys
t
em
.
2
014; 4(1): 91-99.
[31]
Sreedhar Mad
i
chetty
, Abhijit
Dasgupt
a. Mod
u
lar Multilevel Converters
Part-I: A R
e
view
on Topolo
g
ies,
Modulation
,
Modeling and Control Schemes.
International Journ
a
l of Powe
r Electronics and Dri
ves System.
201
4
;
4(
1)
:
36-50
Evaluation Warning : The document was created with Spire.PDF for Python.