Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
4, No. 4, Decem
ber
2014, pp. 499~
507
I
S
SN
: 208
8-8
6
9
4
4
99
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Stability Analysis of DC-link Vo
ltage Control on Autonomous
Micro Hydro Power Plant System
F. Yusivar,
M.
Sh
aniz
al, A. Subiantoro, R.
Gu
naw
a
n.
Real-
T
ime Measurement and
Co
ntrol R
e
sear
ch G
r
oup, Electrical
Engine
ering D
e
p
a
rtment, Univers
itas Indon
esia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 16, 2014
Rev
i
sed
Jun
27,
201
4
Accepte
d
J
u
l 20, 2014
Micro H
y
dro P
o
wer Plant has
become one
of
the interesting topics to be
res
earch
ed nowa
d
a
y
s
.
Th
is
pap
e
r
dea
l
s
with
the
stabil
it
y
ana
l
y
s
is
on contro
l
s
y
stem of excitation voltage in
Micro H
y
dro Po
wer Plant. Th
e control of this
voltag
e
can b
e
achiev
ed b
y
contro
lling
the Permanent Magnet Sy
nchronou
s
Machine
(PMSM) with part
icu
l
ar a
l
gori
t
hm
so the vo
ltag
e
on
the DC-lin
k
part of th
e s
y
s
t
e
m
can be
control
l
ed. W
itho
u
t kno
wing the
exac
t s
p
ecif
i
ca
tio
n
of s
y
st
em
param
e
ters,
th
e s
y
s
t
em
will
be most likely
unstable.
The DC-link
control s
y
stem is modeled,
si
mul
a
te
d,
a
nd ma
the
m
a
t
i
c
a
l
ly
a
n
aly
z
e
d
so t
h
e
param
e
ter
s
p
ec
if
ica
tion for
th
e s
t
able
s
y
s
t
em
can
be obt
ained
.
Keyword:
D
C
-
link
Ex
citatio
n
Micr
o
H
ydr
o Po
w
e
r
Plan
t
Perm
anent Magnet
-
Syn
c
hro
nou
s Mach
in
e
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
F. Yusi
var
Real-Tim
e Measurem
ent and
Co
n
t
ro
l Research
G
r
ou
p,
El
ect
ri
cal
Engi
neeri
n
g
De
part
m
e
nt
, U
n
i
v
e
r
si
t
a
s In
d
one
si
a,
Kam
pus
B
a
r
u
UI De
po
k,
16
4
2
4
,
In
d
onesi
a.
Em
a
il: yu
siv
a
r@eng
.
u
i
.ac.i
d
1.
INTRODUCTION
Micro Hydro
Power Plant has been
one of the
m
o
st increasing uses of powe
r ge
neration syste
m
in
t
h
e w
o
rl
d
.
Thi
s
t
y
pe of P
o
we
r
Pl
ant
has hi
gh
pot
e
n
t
i
a
l
especi
al
l
y
on devel
opi
ng c
o
unt
ry
t
h
at
has m
a
ny
ri
vers
.
The a
u
t
o
n
o
m
ous sy
st
em
on
M
i
cro
Hy
dr
o
Po
wer
Pl
ant
c
a
n
be ac
hi
eve
d
by
usi
n
g
D
o
u
b
l
y
Fe
d I
n
d
u
ct
i
o
n
Gene
rat
o
r (
D
F
I
G
)
an
d Perm
anent
M
a
g
n
et
S
y
nch
r
o
n
ous M
achi
n
e (
P
M
S
M
)
. B
l
ock di
a
g
ram
of t
h
e sy
st
em
is
sho
w
n i
n
Fi
gu
r
e
1.
Fi
gu
re
1.
M
i
cr
ohy
dr
o
DF
IG
gene
rat
i
o
n sy
st
em
wi
t
h
PM
S
M
exi
t
a
t
i
on.
The sy
st
em
show
n i
n
Fi
g
u
re
1 can
be di
vi
de
d i
n
t
o
t
w
o i
nde
pen
d
e
n
t
co
nt
r
o
l
sy
st
em
s. The fi
rst
sy
st
em
is r
e
gu
latin
g
the stato
r
vo
ltag
e
to
lo
ad
b
y
co
ntr
o
llin
g
D
F
I
G
an
d
t
h
e second syste
m
is r
e
g
u
latin
g
th
e ex
cit
a
tio
n
DF
I
G
PM
S
M
PW
M
1
PW
M
2
Tu
r
b
i
n
e
B
a
c
k
t
o
b
a
ck C
o
n
v
e
r
t
e
r
Loa
d
Co
n
t
r
o
ll
e
r
S
p
eed
S
ens
o
r
V
o
l
t
ag
e/
C
u
r
r
ent
S
e
ns
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
49
9 – 507
50
0
vol
t
a
ge
by
co
nt
r
o
l
l
i
ng PM
S
M
. On t
h
i
s
st
u
d
y
,
we are
foc
u
si
n
g
o
n
t
h
e c
ont
rol
o
f
exci
t
a
t
i
on v
o
l
t
a
ge
on t
h
e
syste
m
. Th
erefo
r
e th
e seco
nd syste
m
is
mai
n
ly u
s
ed
for easier an
alysis th
at will b
e
p
e
rfo
r
m
e
d
in
th
is p
a
p
e
r.
The sim
p
lified system
can be done
by re
pl
acing the e
x
cit
a
tion l
o
ad (DF
I
G) system
by pure
resistive
loa
d
.
Fig
u
re
2
sho
w
s th
e sim
p
lified
syste
m
th
at is u
s
ed
in th
is st
ud
y.
Fig
u
re
2
.
Sim
p
lified
system
s
c
h
e
m
e
Fig
u
re
3
.
Stab
i
lity p
r
ob
lem
in
th
e ex
citatio
n
v
o
ltag
e
(
) sy
st
em
of
A
u
t
o
nom
ous
M
i
cro
Hy
dr
o P
o
w
e
r
Plant
Stability probl
e
m
arise in the
excitation
volt
a
ge c
ont
rol sys
t
em
without
us
ing
a
n
a
p
propriate value
of
p
a
ram
e
ters su
ch
as water
v
e
lo
city, vo
ltag
e
referen
c
e,
loa
d
resistance
, etc
.
For ex
am
p
l
e, Figu
r
e
3 sh
ow
s t
h
e
ex
citatio
n
vo
ltag
e
(DC-link
vo
ltag
e
) resu
lt wh
en
a sim
u
la
t
i
on i
s
per
f
o
r
m
e
d wi
t
h
ra
n
d
o
m
val
u
e of m
e
nt
i
o
n
e
d
param
e
t
e
rs. T
h
e si
m
u
l
a
ti
on i
s
per
f
o
r
m
e
d by
usi
n
g M
A
TL
A
B
’s Si
m
u
l
i
nk.
Fro
m
si
m
u
lati
o
n
resu
lt shown
on
Figu
re
3
,
it is n
o
ticed
th
at u
n
s
tab
l
e syst
e
m
co
n
d
ition
co
u
l
d
o
c
cu
r if
an ina
p
propriate value of cer
tain param
e
ters is used. T
o
clarify this
issue, it is neces
sarry to e
x
am
ine this
co
n
t
ro
l prob
lem d
eep
ly. Th
e syste
m
is
m
o
d
e
led
an
d
th
en
si
m
u
lated
an
d
an
alyzed
m
a
th
ematical
ly
in
o
r
d
e
r to
kn
o
w
t
h
e
exac
t
val
u
e
o
f
t
h
os
e pa
ram
e
t
e
rs. B
y
usi
n
g t
h
i
s
m
e
t
hod,
t
h
e
pa
ram
e
t
e
r’s val
u
e re
qui
re
d t
o
a
c
hi
ev
e
stable system
c
a
n
be
notice
d
.
2.
SYSTE
M
MO
DEL
The whole sys
t
e
m
is co
m
pos
ed of PMSM, shafts,
t
u
rbi
n
e
,
i
nve
rt
er, DC
-
l
i
nk, an
d co
nt
r
o
l
l
e
r. Each
one
o
f
t
h
ese c
o
m
ponent
s i
s
m
a
t
h
em
ati
cal
ly
m
odel
e
d t
o
eas
e t
h
e a
n
al
y
s
i
s
p
r
oces
s.
2.
1. PM
SM
M
o
del
Electrical
m
o
del of PMSM is
exp
r
esse
d
by
(
1
)
an
d
(2
).
(
1
)
(
2
)
Wh
ere
p
is po
le pairs,
rot
o
r
spee
d,
stator
resistance
,
an
d
the
direct and
quadrature
a
x
is
inductances
,
,
,
,
are t
h
e
di
rect
a
n
d
qua
drat
ure
axi
s
vol
t
a
ge a
n
d
c
u
r
r
ent
co
m
ponent
s,
an
d
is th
e
perm
anent
m
a
gnet
fl
u
x
.
Mechanical model
of PMSM
will be
discussed on
sha
f
t
subsection b
ecause the state (rotor
spee
d)
on
PMSM is th
e
sa
m
e
as ro
tating sp
eed
o
f
th
e
sh
aft.
2.
2. Sh
af
t Mo
del
Differen
tial equ
a
tio
n of t
h
e sh
aft is exp
r
essed
as:
/
(
3
)
(
4
)
PMSM
PW
M
1
LOA
D
Tu
r
b
i
n
e
Co
n
v
e
r
t
e
r
Co
n
t
r
o
l
l
e
r
S
p
eed
S
ens
o
r
V
o
l
t
ag
e
/
C
u
r
r
en
t
S
e
ns
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
S
t
ab
ility An
a
l
ysis o
f
DC-lin
k
Vo
ltag
e
Con
t
ro
l on
Au
t
o
nomo
u
s
Micro
Hydro
Po
wer
Plant S
y
stem (F. Yusiva
r)
50
1
Wh
ere B is in
tern
al
d
a
m
p
in
g
,
is electrical torq
ue fr
om
PM
SM
,
is
m
e
c
h
an
ical torqu
e
fro
m
tu
rb
in
e,
K is
gear ratio,
and
are in
ertia of
tu
rb
in
e and
PMSM.
2.
3. T
u
rbi
n
e
Mo
del
Tur
b
i
n
e c
o
m
pone
nt
d
o
es
no
t
have i
t
s
ow
n st
at
e. Thi
s
com
pone
nt
j
u
s
t
cont
i
n
ui
n
g
r
o
t
o
r spee
d’
s
feed
bac
k
st
at
e fr
om
shaft
an
d
wat
e
r
vel
o
ci
t
y
fr
om
i
t
s
i
nput
.
Out
put
of t
h
i
s
com
pone
nt
i
s
m
echani
cal
t
o
r
que t
o
s
h
a
f
t as
ex
pr
e
s
s
e
d
in
(5)
.
.
(
5
)
Whe
r
e
is water
d
e
n
s
ity, s is tu
rb
in
e swep
t,
is
water v
e
lo
cit
y
,
and
is tu
rb
i
n
e co
nstan
t
.
2.
4. I
n
ve
rter
Mo
del
The
inverter is
ass
u
m
e
d as
a
n
i
d
eal
powe
r c
onv
er
si
on
m
ach
in
e
w
ith
a
n
efficiency
fac
t
or
. T
h
e
po
we
r c
o
n
v
er
si
on
ex
p
r
essi
o
n
of
i
n
vert
er
m
odel
f
o
r
anal
y
s
i
s
p
u
r
p
ose i
s
e
x
p
r
esse
d as:
V
v
d
i
d
v
q
i
q
(
6
)
In th
e an
alysis
th
e inv
e
rter is
assu
m
e
d
to
b
e
id
eally efficient, th
erefore
=
1.
Th
e
on
ly state in
th
is co
m
p
o
n
en
t is
DC vo
ltag
e
d
e
tectio
n of in
v
e
rter
wh
ich can
b
e
exp
r
essed
as:
d
dt
V
T
DC
V
T
DC
V
(
7
)
Whe
r
e
V
i
s
DC
vol
t
a
ge
det
ect
i
o
n
val
u
e,
T
DC
i
s
de
t
ect
i
on t
i
m
e const
a
nt
,
an
d
V
is DC-link
v
o
ltage.
2.
5. DC-link Model
DC
-l
i
n
k ci
rc
ui
t
st
ruct
ure
can
be
see
n
on
Fi
gu
re
2.
M
o
del
i
ng
o
f
t
h
i
s
ci
r
c
ui
t
can
be
do
ne
by
usi
n
g
basi
c
Ki
rch
h
o
f
f’s l
a
w a
n
d ca
n
be e
x
pres
sed
a
s
:
(
8
)
Whe
r
e
is inp
u
t
curren
t
on
DC
-lin
k circu
it, C
is cap
ac
itor’s
c
a
pacitance, and R is l
o
ad’s
re
sistance.
2.
6. C
o
ntr
o
l
l
e
r
M
o
del
Th
e al
g
o
rith
m
an
d m
o
d
e
lin
g
o
f
th
is co
n
t
ro
ll
er is ex
pressed
b
y
th
e
state equ
a
tio
ns as
fo
llows:
∗
(
9
)
∗
(
1
0
)
∗
∗
∗
(
1
1
)
∗
∗
∗
(
1
2
)
∗
(
1
3
)
∗
0
(
1
4
)
∗
(
1
5
)
Whe
r
e
is con
t
ro
ller’s ti
m
e
co
n
s
tan
t
,
and
are DC
-
v
ol
t
a
ge c
ont
rol
l
e
r c
o
nst
a
nt
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
49
9 – 507
50
2
3.
R
E
SU
LTS AN
D ANA
LY
SIS
Si
m
u
latio
n
m
e
th
od
u
s
ed in
t
h
is stu
d
y
is t
o
do
a
v
a
riation
of sev
e
ral
p
a
rameters: water
v
e
lo
city, DC
vol
t
a
ge
re
fere
nce,
resi
st
i
v
e l
o
ad
, a
nd c
o
nt
r
o
l
l
e
r co
nst
a
nt
.
Vari
at
i
o
n i
s
per
f
o
r
m
e
d by
chan
gi
n
g
o
n
e
of t
h
e
p
a
ram
e
ter as i
n
d
e
p
e
n
d
e
n
t
v
a
riab
le wh
ile k
eep
ing
o
t
h
e
rs with
th
ere in
itial
v
a
lu
e. Th
e syste
m
is
si
m
u
la
ted
i
n
M
a
t
l
a
b and t
h
e
resul
t
i
s
obt
ai
ned a
nd a
n
al
y
zed gr
ap
hi
ca
lly
an
d
m
a
th
e
m
ati
cally. Mo
d
e
l’s p
a
ram
e
ter is s
h
own
in
Tab
l
e 1 and
so
m
e
v
a
riab
le
v
a
lu
es ar
e i
n
itially stated
as sh
own
o
n
Tab
l
e 2
.
Tabl
e 1. Sy
st
em
Param
e
t
e
rs
Para
m
e
ter
Sy
m
bol
Value
PMSM
inertia
0,
01 [
]
Turbine inertia
0,
5 [
]
Shaft I
n
ter
n
al Da
m
p
ing
B
0,
001 [Nm
s
]
Gear ratio
K
9
Stator Resistance
0,
55 [
Ω
]
Dir
ect axis
inductance
16,
61 [m
F]
Quadrature axis in
ductance
16,
61 [m
F]
Perm
anent m
a
gnet
flux
0.
121 [W
b]
Pole pair
s
p
4
Controller ti
m
e
co
nstant
10 [
m
s]
DC-
voltage detection tim
e
constant
100 [m
s
]
DC-link capacitan
ce
C
0.1 [
m
F
]
Tab
l
e 2
.
In
itially
Stated
Variab
les Valu
e
Para
m
e
ter
Sy
m
bol
Value
Wate
r velocity
2 [
/
]
DC-v
o
ltag
e
ref
e
re
n
ce
∗
60 [V]
DC-
voltage contr
o
ller
pr
opor
tional constant
0,
3
DC-
voltage contr
o
ller
integr
al constant
0,
7
L
o
ad r
e
sistance
R
1000
[
Ω
]
Syste
m
stab
ilit
y is rev
i
ewed th
rou
g
h
p
o
l
es lo
catio
n of t
h
e
lin
earized
syst
e
m
wh
ich is describ
e
d
b
y
state equation
and expresse
d
in Appendix. State va
riab
les of th
e lin
earized syste
m
are as
fo
llows:
∆
∆
∆
∆
∆
∆
∆
∗
∆
∗
∆
∆
(1
6)
Th
e resu
lt of th
e system th
at
h
a
s in
itially sta
t
ed
p
a
ram
e
ters is sh
own
i
n
Fig
u
re 4. It shows th
at when
th
e p
a
ram
e
ters
u
s
ed
on
t
h
e syste
m
eq
u
a
l to th
e v
a
l
u
e th
at
was sh
own
on
Tab
l
e 2, th
e sy
ste
m
is stab
le. Thu
s
th
ese p
a
ram
e
te
rs
are u
s
ed
as base
v
a
riab
les. On
e
of
t
h
ese
param
e
ter will b
e
v
a
riated
for an
alysis pu
rpo
s
e.
Fig
u
re
4
.
DC
-lin
k vo
ltag
e
wh
en
∗
60
3.
1.
D
C
-
V
ol
t
a
ge Refere
nce Vari
ati
o
n
Si
m
u
latio
n
resu
lts can
b
e
seen
on
Fi
g
u
re
5
.
Resu
lts sho
w
t
h
at th
e system
can
withstand
in
a certain
r
a
ng
e o
f
D
C
vo
ltag
e
r
e
f
e
r
e
n
c
e.
On
t
h
is
occasio
n
,
if
D
C
vo
ltag
e
r
e
f
e
r
e
n
c
e
v
a
lu
e
is n
o
t
b
e
tw
een
2
0
and
100
vol
t
,
t
h
e sy
st
em
wi
l
l
be unst
a
bl
e. To de
scri
be t
h
i
s
si
t
u
at
i
on, p
o
l
e
s l
o
cat
i
o
n of eac
h sy
st
em
i
s
deri
ve
d as sho
w
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
S
t
ab
ility An
a
l
ysis o
f
DC-lin
k
Vo
ltag
e
Con
t
ro
l on
Au
t
o
nomo
u
s
Micro
Hydro
Po
wer
Plant S
y
stem (F. Yusiva
r)
50
3
in
Tab
l
e 3
.
It is clearly n
o
ticed
th
at th
ere is an
un
stab
le po
le wh
ich
is lo
cated
in
th
e Rig
h
Half Plan
e (R
HP) if
th
e DC
-vo
ltag
e
referen
ce is
o
u
t o
f
its certain
ran
g
e
.
(a)
(b
)
(c)
(d
)
Fig
u
re 5
.
Sim
u
latio
n
resu
lts wh
en
: (a)
∗
, (
b
)
∗
, (
c
)
∗
,
(d
)
∗
Table 3
.
Po
les Lo
cation
to
∗
V
a
ri
at
i
ons
Po
les
∗
(Volt)
10
20
100
110
Pole 1
7.
43 -
30.
66i
-
0
.
19 + 0.
12i
-
0.
28 + 0.
24i
-
0.
07 -
0.
17i
Pole 2
7.
43 + 30.
66i
-
0
.
19 -
0.
12i
-
0.
28 -
0.
24i
-
0.
07 + 0.
17i
Pole 3
-
0
.
394
-
22.
402
-
21.
081
40.
767
Pole 4
-
0
.
452
-
0
.
457
-
0
.
463
-
0
.
730
Pole 5
-
9
.
661
-
9
.
415
-
9
.
937
-
9
.
362
Pole 6
-
16.
27 + 15.
07i
-
40.
578
-
66.
74 + 20.
08i
-
34.
36 + 141.
82i
Pole 7
-
16.
27 -
15.
07i
-
91.
120
-
66.
74 -
20.
08i
-
34.
36 -
141.
82i
Pole 8
-
52.
920
-
177.
375
-
115.
95 -
108.
07i
-
198.
28 -
126.
65i
Pole 9
-
87.
349
-
749.
216
-
115.
95 + 108.
07i
-
198.
28 + 126.
65i
Pole 10
-
100.
000
-
100.
000
-
100.
000
-
100.
000
3.
2.
W
a
ter
Ve
l
o
ci
ty
V
a
ri
a
t
i
o
n
Si
m
u
latio
n
resu
lts can
b
e
seen
in
Figu
re 6
an
d po
les lo
cati
o
n
s
ar
e
show
n in
Tab
l
e 4. R
e
su
lts show
th
at syste
m
te
n
d
s
to
b
e
stab
l
e
if h
i
gh
water v
e
lo
city
occ
u
rred. Low
wate
r vel
o
city can
cause the
system to
becom
e
un
st
ab
l
e
. Thi
s
p
r
o
b
l
e
m
can be res
o
l
v
ed
by
rea
d
j
u
st
i
ng t
h
e
gi
ve
n
r
e
fere
nce
vol
t
a
g
e
t
o
l
o
we
r
val
u
e.
Table 4
.
Po
les Lo
cation
to
V
a
ri
at
i
ons
Po
les
Wate
r Velocit
y
(
m
/s)
1 1.
5
2.
5
3
Pole 1
-
0
.
33 + 0.
17i
-
0
.
38 + 0.
20i
-
0
.
22 -
0.
19i
-
0
.
19 + 0.
20i
Pole 2
-
0
.
33 -
0.
17i
-
0
.
38 -
0.
20i
-
0
.
22 + 0.
19i
-
0
.
19 -
0.
20i
Pole 3
-
38.
316
-
13.
933
-
20.
888
-
23.
534
Pole 4
-
3
.
654
-
0
.
540
-
0
.
342
-
0
.
265
Pole 5
-
9
.
228
-
10.
159
-
9
.
727
-
9
.
559
Pole 6
12.
162
-
43.
945
-
58.
791
-
64.
24 + 26.
43i
Pole 7
51.
185
-
91.
388
-
72.
713
-
64.
24 -
26.
43i
Pole 8
-
76.
54 + 29.
78i
-
87.
86 -
80.
23i
-
154.
48 -
101.
33i
-
190.
59 + 92.
14i
Pole 9
-
76.
54 -
29.
78i
-
87.
86 + 80.
23i
-
154.
48 + 101.
33i
-
190.
59 -
92.
14i
Pole 10
-
100.
000
-
100.
000
-
100.
000
-
100.
000
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
49
9 – 507
50
4
(a)
(b
)
(c)
(d
)
Fig
u
re 6
.
Sim
u
latio
n
resu
lts wh
en
: (a)
/
, (
b
)
.
/
, (
c
)
.
/
,
(d
)
/
3.
3.
L
o
ad
Res
i
stance
V
a
ri
a
t
i
o
n
Sim
u
l
a
t
i
on re
s
u
l
t
s
can
be
see
n
on
Fi
g
u
r
e
7
and
p
o
l
e
s l
o
cat
i
ons
are
sh
o
w
n
i
n
Ta
bl
e
5.
R
e
sul
t
s
s
h
o
w
th
at syste
m
te
n
d
s
to
b
e
un
stab
le if th
e lo
ad
resistan
ce is sm
a
ll. Th
e sy
ste
m
is relativ
ely stab
le if h
i
g
h
lo
ad
resistance is i
m
ple
m
ented.
(a)
(b
)
(c)
Fig
u
re 7
.
Sim
u
latio
n
resu
lts wh
en
: (a)
R
100
Ω
,
(b
)
R
1000
Ω
,
(c)
R
10000
Ω
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
S
t
ab
ility An
a
l
ysis o
f
DC-lin
k
Vo
ltag
e
Con
t
ro
l on
Au
t
o
nomo
u
s
Micro
Hydro
Po
wer
Plant S
y
stem (F. Yusiva
r)
50
5
Table 5
.
Po
les Lo
cation
to
R Variation
s
Po
les
R (Oh
m
)
100
1000
1000
0
Pole 1
-
0.
192 + 0.
195 i
-
0.
238 + 0.
18 i
-
0.
259 + 0.
196 i
Pole 2
-
0.
192 -
0.
195 i
-
0.
238 -
0.
18 i
-
0.
259 -
0.
196 i
Pole 3
7.
224
-
19.
894
-
16.
808
Pole 4
0.
466
-
0
.
443
-
0
.
441
Pole 5
-
9
.
957
-
9
.
840
-
9
.
804
Pole 6
-
59.
804 + 81.
537 i
-
45.
435
-
42.
572
Pole 7
-
59.
804 -
81.
537 i
-
87.
951
-
91.
135
Pole 8
-
195.
408 + 100.
28
5 i
-
174.
271 + 108.
70
8 i
-
124.
21 -
95.
38 i
Pole 9
-
195.
408 -
100.
28
5 i
-
174.
271 -
108.
70
8 i
-
124.
21 + 95.
38 i
Pole 10
-
100.
000
-
100.
000
-
100.
000
3
.
4
.
Co
nt
ro
ller Co
nst
a
nt
Varia
t
ions
Sim
u
l
a
t
i
on res
u
l
t
can be seen o
n
Fi
g
u
re 8
and
pol
es l
o
ca
t
i
ons are sh
o
w
n i
n
Tabl
e 6.
R
e
sul
t
s
sho
w
that controller constant
does not m
u
ch a
f
fect the system stability as lo
ng as withi
n
t
h
e acce
ptable
range.
Co
n
t
ro
ller constan
t
on
ly affect
syste
m
respons
e c
h
aracteri
s
tics.
(a)
(b
)
(c)
(d
)
Fig
u
re 8
.
Sim
u
latio
n
resu
lts wh
en
: (a)
k
0
.
1
5
,
(
b
)
k
1
.
5
, (
c
)
k
0
.
3
5
,
(d
)
k
3
.
5
Table 6
.
Po
les Lo
cation
to
and
Va
ri
at
i
ons
Po
les
Pr
opor
tional Const
a
nt Var
iation
I
n
tegr
al Constant Var
iation
k
p
dc
=0.
15,
k
id
c
=0.7
k
p
dc
=0
.5
,
k
id
c
=0.7
k
p
dc
=0
.3
,
k
id
c
=0.
35
k
p
dc
=0
.3
,
k
id
c
=3.5
Pole 1
-
0.
326 + 0.
239 i
-
0
.
07
-
0.
191 + 0.
089 i
-
0.
442 + 0.
137 i
Pole 2
-
0.
326 -
0.
239 i
-
0
.
262
-
0.
191 -
0.
089 i
-
0.
442 -
0.
137 i
Pole 3
-
19.
619
-
19.
598
-
19.
89
-
17.
068
Pole 4
-
0
.
477
-
0
.
413
-
0
.
425
-
1
.
075
Pole 5
-
9
.
808
-
9
.
983
-
9
.
915
-
9
.
859
Pole 6
-
45.
512
-
45.
314
-
45.
386
-
45.
359
Pole 7
-
87.
046
-
88.
887
-
88.
219
-
88.
277
Pole 8
-
88.
231 + 64.
441 i
-
212.
391
-
120.
976 + 96.
613
i
-
121.
823 -
89.
961
i
Pole 9
-
88.
231 -
64.
441 i
-
561.
979
-
120.
976 -
96.
613
i
-
121.
823 + 89.
961
i
Pole 10
-
100
-
100
-
100
-
100
4.
CO
NCL
USI
O
N
Th
ere is a stabilit
y p
r
ob
lem
o
n
th
e
Au
t
o
nom
o
u
s
Micro
Hyd
r
o
Power Pl
an
t syste
m
cau
sed
b
y
low
wat
e
r vel
o
ci
t
y
, out
of ra
n
g
e DC
vol
t
a
ge
re
fere
nce, an
d
lo
w lo
ad
resist
an
ce. In
th
is pap
e
r, for 2
m
/s
water
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
49
9 – 507
50
6
v
e
lo
city, th
e param
e
ters required
t
o
ach
i
ev
e stab
le syst
em
are
DC-voltage refe
re
n
ce of
20
-
1
0
0
V
o
l
t
an
d
l
o
a
d
resistan
ce
o
f
10
00-100
00
Ohm
.
If th
e
water v
e
lo
city is lo
wer, th
en
readju
stm
e
n
t
to
lo
wer
v
o
ltag
e
referen
c
e is
require
d
. T
h
e c
ont
roller c
onst
a
nt does not affect system
stability as long a
s
within
acce
ptable range.
Prospect
f
o
r
fu
r
t
h
e
r
study is ad
d
i
ng
Dou
b
l
y Fed
In
du
ctio
n
G
e
n
e
r
a
t
o
r
(
D
FIG
)
to
t
h
e syste
m
so
th
e o
v
e
r
a
ll Micr
o
H
y
d
r
o
Power
Plan
t sy
ste
m
is co
m
p
le
ted
.
ACKNOWLE
DGE
M
ENTS
Th
is work
was p
a
rtially fun
d
ed
b
y
th
e
Un
i
v
ersita
s In
don
esia u
n
d
e
r in
ternatio
n
a
l co
llaboratio
n
gran
t
wi
t
h
co
nt
ract
n
u
m
b
er:
06
84/
H
2
.R
12/
HKP
.0
5
.
0
0
Per
j
a
n
ji
a
n
/
2
0
1
3
. Th
e aut
h
ors
wo
ul
d l
i
k
e
t
o
t
h
an
k Pr
of
. Ti
an-
H
u
a L
i
u,
r
e
s
e
ar
c
h
er
a
t
N
a
tiona
l T
a
iw
an Un
i
v
ersity of
Scien
ce an
d Tech
no
log
y
as
ou
r collab
o
r
ation
p
a
rtn
e
r.
REFERE
NC
ES
[1]
F Khatounian, E Monmasson, F
Berther
eau
, E Delaleau
, JP Louis. Control of
a Doubly
Fed Induction Generator for
Aircraft Application.
Industrial Electronics
So
ciety
.
2003; 1: 2711
-2716.
[2]
Nababan S,Muljadi E, Blaabjerg
F.
An overview
of power topologi
es for micro-hydro turbines.
IEEE Int
e
rnat
ion
a
l
S
y
mposium on Power Electron
ics fo
r Distributed Gener
a
tion
S
y
stems
(PEDG), 2012 , Page(s): 73
7 – 744
.
[3]
Andreica
M
,
Ba
cha S
,
Ro
ye
D,
Exteb
e
rria-Ot
ad
ui I, M
unt
eanu I
. Micro-hydro wa
ter current turbine control
for grid
connected or islanding operatio
n
. IEEE Power Electronics Specialists C
onfer
ence, 2008. PESC 2
008. Page(s): 95
7
– 962.
[4]
Breban S, Nasser M, Vergnol
A, Rob
y
ns B, Radu
lescu MM.
Hybrid wind/microhydro power
sy
ste
m
assoc
i
ate
d
with
a supercapacito
r energy storage
device - experimental resu
lts
. 18th In
tern
ation
a
l Confer
ence on Electrical
Machines, 2008. ICEM. 2008: 1-
6.
[5]
Breban S, Rob
yns B, Radules
cu
MM.
Study of a
grid-connected
hybrid wind/
micro-hydro power system associated
with a superca
pacitor en
ergy
storage device.
12th Intern
ation
a
l Confer
ence o
n
Optimization
of Electrical an
d
Electronic
Equip
m
ent (OPTIM).
2010: 1198 –
12
03.
[6]
Fa
ria
J,
Ma
rga
t
o E,
Re
se
nde
MJ.
Self-
Excited Induction Generator for Mi
cro-Hy
dro Plants Usin
g Water Curren
t
Turbine
s
Ty
pe
.
Twent
y
-Seven
th
Intern
ation
a
l
T
e
lecom
m
unicat
io
ns Conferenc
e
. I
N
TELEC
'
05. 20
05: 107 –
112.
[7]
Breban S, Rob
yns B, Radulescu
MM. Islanding d
e
tection
methods for a micro-h
y
d
r
o power station
- Simulation
and
experimental r
e
sults. 8th Intern
ation
a
l S
y
mposium on
Advanced Ele
c
trom
ech
a
n
ica
l
M
o
tion S
y
s
t
em
s
& El
ect
ric
Drives Joint S
y
m
posium
,
EL
ECT
R
OMOT
ION
2
009: 1 –
6.
[8]
Scherer LG,
d
e
Camargo
RF.
C
ontrol of micro
hydro power sta
tions
using nonlinear model of
hydraulic
turbin
e
applied
on microgrid systems.
B
r
azilian
Power Electronics Conf
erence (COBEP),
2011: 812 –
818.
[9]
Scherer LG,
de Camargo
RF.
Frequency and voltage
control o
f
micro hy
dro p
o
wer stations b
a
sed on hydraulic
turbine's linear
model applied o
n
induction
gen
e
rators.
Brazilian Power Electro
n
ics
Conferen
ce (COBEP), 2011:
546 – 552
.
[10]
Guocheng Wang
, Qingzhi
Zh
ai, Jianhua Y
a
ng.
Vo
ltage control
o
f
cage
indu
ction
g
e
nerator in micro hydro based o
n
var
i
able
ex
ci
tati
on
. International Conferen
ce
on
Electrical Mach
ines and
S
y
stems (ICEMS). 2011
: 1 –
3.
APPE
NDI
X
Linearize
d
Sys
t
e
m
:
∆
∆
∆
∆
∆
∆
∆
∗
∆
∗
∆
∆
0
0
0
00
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
00
0
0
0
0
00
0
0
0
0
1
00
0
00
00
0
1
00
1
00
0
0
0
0
0
1
0
00
00
0
0
0
0
∆
∆
∆
∆
∆
∆
∆
∗
∆
∗
∆
∆
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
S
t
ab
ility An
a
l
ysis o
f
DC-lin
k
Vo
ltag
e
Con
t
ro
l on
Au
t
o
nomo
u
s
Micro
Hydro
Po
wer
Plant S
y
stem (F. Yusiva
r)
50
7
Whe
r
e:
.
.
.
.
.
.
.
;
.
;
.
.
;
.
.
.
;
.
.
;
.
.
.
.
;
.
.
;
.
.
.
;
.
;
;
.
.
;
;
.
.
;
.
;
.
.
;
.
.
;
;
.
;
;
.
.
;
.
;
.
BIOGRAP
HI
ES
OF AUTH
ORS
Feri Yusivar was born in Band
ung,
Indonesia.
He receiv
ed his
Bach
elor d
e
gree in
Electr
i
cal
Engineering at
Universitas Ind
onesia in 1992,
and completed
his Doctor degree in 2003 at
W
a
s
e
da Univer
s
i
t
y
, J
a
p
a
n. He
is
curr
entl
y
t
h
e Head
of C
ontrol L
a
bora
t
o
r
y
in E
l
e
c
tri
cal
Engine
ering
at
Univers
itas
Indo
nes
i
a.
His
res
e
ar
ch int
e
res
t
s
are
control s
y
s
t
em
,
ele
c
tri
cal
driv
e,
power el
ec
tronic
s
, and
renew
a
ble
energ
y
.
M. Shanizal Hasn
y
was born
in
Jakarta, Indonesi
a in 1992
. He
is curren
t
ly
purs
u
ing bachelor
degree in Electrical Engin
eer
ing
at Universitas In
donesia. His area
s of interests involve control
s
y
s
t
em
s
and
el
ec
tric
al m
a
chines
.
Aries Subiantor
o
was born in Jakarta, Indon
esia.
He receiv
e
d h
i
s Bachelor
d
e
gr
ee in Electrical
Engineering at
Universitas Ind
onesia in 1995,
and completed
his Doctor degree in 2013 at
Universitas Ind
onesia.
His res
earch
int
e
rests
are m
odel
and
sim
u
lation
,
in
t
e
llig
ent
contro
l
s
y
s
t
em
,
and m
o
d
e
l pr
edic
tiv
e co
n
t
rol s
y
s
t
em
.
Ridwan Gunawan was born in
Jaka
rta, Indon
esia. He receiv
e
d h
i
s
Bach
elor d
e
gree in
Electr
i
cal
Engineering at
Universitas Ind
onesia in 1978,
and completed
his Doctor degree in 2006 at
Univers
itas
Ind
ones
i
a. His
res
e
arch int
e
res
t
s
ar
e power s
y
s
t
em
, el
ectr
i
c
a
l driv
e s
y
s
t
em
, and
power el
ec
tronic
s
s
y
s
t
em
.
Evaluation Warning : The document was created with Spire.PDF for Python.