Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
5, N
o
. 4
,
A
p
r
il
201
5, p
p
.
52
0
~
52
8
I
S
SN
: 208
8-8
6
9
4
5
20
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Braking of Three Phase Induc
tion Motorsby Controlling
Applied Voltage and Frequenc
y Based on Particle Swarm
Optimization Technique
Mahm
oud M. Elkholy, M. A.
Elhamee
d
Ele
c
tri
cal
P
o
wer
and M
a
chin
es
Departm
e
nt
, F
a
cul
t
y
of
Engin
eerin
g, Zagazig Un
iv
ersity
, Zagazig,
Eg
y
p
t
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 8, 2014
Rev
i
sed
Jan 25, 201
5
Accepte
d
Ja
n 14, 2015
Braking of three phase induction moto
rs i
s
r
e
quired in many
industrial
applications. This paper introdu
ces br
aking of th
ree phase
induction motors
using particle s
w
arm optimization (
PSO) tech
nique. The objective
is to
determ
ine
the
o
p
tim
um
values
of the
appl
ied v
o
ltag
e
and
frequ
enc
y
dur
ing
braking to stop the motor in a certain time with minimu
m braking ener
g
y
losses to limit
an
y
excessive thermal
heating
.
The proposed
techn
i
que is
important and
more useful in applicat
ions of repeated brak
ing
cy
cles. Th
e
results ar
e
compared with th
at o
b
ta
in
ed using p
l
ugging brak
ing
method and
it'
s
found
that th
e proposed
techn
i
que g
i
ves low
e
r
braking
en
erg
y
and shorter
braking time. Th
e braking energ
y
losses with the
proposed method are abou
t
20% of the plugging braking en
erg
y
losses with
the same braking time. The
proposed method determines th
e varia
tion of
optimal valu
es
of applied
voltag
e
and freq
u
ency
to have a
certain
braking time of three phase induction
m
o
tor at a
cer
t
a
in lo
ad torqu
e
with m
i
nim
u
m braking
energ
y
losses. The
chara
c
t
e
risti
c
s of
the
m
o
tor ar
e si
m
u
lated using
SIMULINK/MAT
L
AB.
Keyword:
Br
ak
ing
I
ndu
ctio
n m
o
to
r
Pl
ug
gi
n
g
PSO
R
e
gene
rat
i
v
e
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M
a
hm
oud M
.
El
kh
ol
y
Electrical Power a
n
d M
achines De
partm
e
nt,
Facu
lty of En
gin
eering
,
Zag
a
zig
Un
iv
ersity,
Zag
azig, Eg
yp
t
.
Em
a
il: melk
h
o
ly7
1
@
yah
o
o
.
co
m
1
.
IN
TR
OD
UC
TI
ON
B
r
aki
n
g o
f
t
h
r
ee phase i
n
d
u
c
t
i
on m
o
t
o
rs i
s
an im
port
a
nt
i
ssue especi
al
l
y
i
n
i
ndust
r
i
a
l
appl
i
cat
i
o
ns
th
at req
u
i
re m
u
lti sto
p
in a
d
e
fin
ite ti
m
e
. Brak
ing
can
b
e
m
ech
an
ical t
h
ro
ug
h frictio
n
or electrical. Mechan
ical
bra
k
i
n
g
res
u
l
t
s
i
n
wast
e
o
f
r
o
t
o
r st
ore
d
ki
net
i
c
ene
r
gy
a
n
d
e
x
cessi
ve
heat
. El
ect
ri
ca
l
bra
k
i
n
g
has
m
a
n
y
m
e
t
hods s
u
c
h
as pl
u
ggi
n
g
, re
gene
rat
i
v
e a
n
d
dy
nam
i
c braki
n
g
.
Pl
u
g
g
i
n
g d
e
pen
d
s
on
re
ve
rsi
n
g t
h
e
di
rect
i
on
of
th
e ro
tatin
g field
b
y
ch
an
g
i
ng
th
e su
pp
ly ph
ase sequ
en
ce, th
is resu
lts in an
op
po
si
n
g
to
rqu
e
th
at st
op
s t
h
e
m
o
to
r. Plugg
ing
resu
lts i
n
h
i
g
h
cu
rren
ts, seriou
s
o
v
erh
eatin
g an
d th
e m
o
to
r m
u
st b
e
d
i
scon
n
ected
when
t
h
e
spee
d reache
s
zero
otherwise
it will revolve in the oppo
s
ite direction. If the m
o
tor speed is greater
than
syn
c
hrono
us sp
eed, th
e slip
is n
e
g
a
tiv
e.
In th
is case
the m
o
tor acts as
a gene
rator ret
uni
ng t
h
e ene
r
gy to
sup
p
l
y
, t
h
i
s
i
s
cal
l
e
d
rege
ne
rat
i
v
e
bra
k
i
n
g.
Dy
nam
i
c bra
k
i
n
g i
s
ac
hi
e
v
ed
by
di
sco
n
n
ect
i
ng t
h
e s
u
p
p
l
y
an
d
co
nn
ecting
ex
tern
al
resistan
ces acro
ss m
o
to
r term
in
als, in
th
is case ro
tor
k
i
n
e
tic en
erg
y
is co
nv
erted
i
n
to
h
eat
losses.
Other
braki
ng m
e
thods can also be
used suc
h
as DC injection, zero se
que
nce, m
a
gnetic and ca
pacitor
sel
f-e
xci
t
a
t
i
on bra
k
i
n
g.
Th
e issu
e
o
f
i
n
d
u
c
tion
m
o
to
r
b
r
ak
ing
is
d
i
scu
ssed
in
literat
u
re, fo
r
ex
am
p
l
e [1
] d
eals
with
sen
s
orless
vect
o
r
co
nt
r
o
l
of
p
u
l
s
e wi
dt
h-m
o
d
u
l
a
t
e
d i
nve
rt
er
-fe
d i
n
duct
i
o
n m
o
t
o
r
dri
v
eseq
ui
p
p
e
d
wi
t
h
a t
h
ree
-
p
h
ase
di
o
d
e rect
i
f
i
e
r.
An el
ect
ro
ni
cal
l
y
cont
rol
l
e
d
braki
ng
resi
st
or acr
oss t
h
e
dc l
i
nk i
s
not
use
d
, b
u
t
i
n
st
ead, t
h
e
po
we
r re
ge
ner
a
t
e
d
du
ri
n
g
bra
k
i
n
g i
s
di
ssi
pat
e
d i
n
t
h
e
m
o
t
o
r.
In
[
2
]
bra
k
i
n
g
of
t
h
ree
pha
s
e
i
n
duct
i
o
n m
o
t
o
r i
s
do
ne usi
ng c
o
m
b
i
n
at
i
on of t
w
o
or m
o
re conve
nt
i
o
nal
m
e
tho
d
s, i
t
i
s
fou
nd t
h
at
ef
fect
i
v
e bra
k
i
n
g i
s
obt
ai
ne
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Braki
n
g
of
T
h
r
ee Ph
ase
I
n
d
u
c
t
i
on M
o
t
o
r
s
by
C
ont
r
o
l
l
i
ng
Ap
pl
i
e
d V
o
l
t
a
ge
a
nd…
(
M
ah
m
o
u
d
M
.
El
kh
ol
y)
52
1
b
y
ap
p
l
ying
d
i
fferen
t
m
e
th
o
d
s at d
i
fferen
t
sp
eed
rang
es,
bu
t th
is will resu
lt in
co
m
p
lex
circu
it fo
r brak
ing
.
Br
ak
ing
t
o
rq
ue in
non
-r
egene
r
ative AC
drives without t
h
e
nee
d
of
add
itio
n
a
l
po
wer circu
its is d
i
scu
s
sed
in
[3
]. In
[4
] co
nv
en
tion
a
l m
e
th
o
d
s
o
f
b
r
ak
ing, b
r
an
ch
eli
m
i
n
atio
n
m
e
th
o
d
in
co
nj
un
ction
with
conv
entio
n
a
l
ten
s
or techn
i
qu
e is
u
s
ed to
estab
lish
a
d
i
g
ital co
m
p
u
t
er p
r
og
ram
to
si
m
u
late th
e syste
m
. In
[5, 6] two
b
r
ak
ing
m
e
th
od
s are ex
am
in
ed
to
redu
ce
m
o
to
r cu
rren
t, o
n
e
b
a
sed
o
n
th
e in
j
ecti
o
n
of an
AC vo
ltag
e
to
th
e
rot
o
r wi
ndi
ng
du
ri
n
g
bra
k
i
n
g
.
The i
n
ject
ed
vol
t
a
ge m
u
st
have t
h
e sam
e
freq
u
e
n
cy
, s
a
m
e
phase
s
h
i
f
t
and
op
p
o
si
t
e
i
n
di
r
ect
i
on t
o
t
h
e
ro
t
o
r i
n
d
u
ce
d v
o
l
t
age. T
h
e sec
o
nd
m
e
t
hod
dep
e
nd
s o
n
di
scret
e
vari
a
b
l
e
f
r
eq
uency
cont
rol
u
s
i
n
g
t
h
ree
p
h
ase
i
n
v
e
rt
er,
AC
t
h
y
r
i
s
t
o
rs m
oni
t
o
re
d by
a m
i
crocont
rol
l
e
r P
I
C
.
R
e
duci
ng e
n
er
gy
l
o
ss
du
ri
n
g
bra
k
i
n
g
i
s
exam
i
n
ed
b
y
usi
n
g
di
rect
t
o
r
q
ue c
ont
r
o
l
i
n
[
7
]
,
t
h
e m
e
t
hod
i
s
i
n
vest
i
g
at
ed
wi
t
h
c
onst
a
nt
an
d
tractio
n
l
o
ad toq
u
e
s.
Op
tim
izat
io
n
o
f
brak
i
n
g
energ
y
is a
n
o
n
lin
ear pro
b
l
em; it is su
itab
l
e to ex
am
i
n
e
h
e
u
r
istic
o
p
tim
izat
io
n
tech
n
i
q
u
e
s to solv
e th
is prob
lem
.
PSO is
u
s
ed
ex
te
n
s
iv
e
l
y to
d
e
s
i
gn
, co
n
t
ro
l an
d op
er
a
t
e
th
r
e
e
p
h
a
se ind
u
c
tion
m
o
to
r [8
-11
]
. Th
e
ru
le
o
f
t
h
e PSO i
n
th
is pap
e
r is to
find
t
h
e su
itab
l
e v
a
ri
atio
n
of
v
o
ltage an
d
freq
u
e
n
c
y du
ri
n
g
a certain
brak
ing
p
e
riod
to
m
i
n
i
mize en
erg
y
lo
sses in
the
m
o
to
r, th
is will resu
lt in
les
s
h
eat
an
d allo
w fo
r fr
equ
e
n
t
br
aki
n
g in a ce
rtain time.
2
.
MATHEMATICAL MODEL
The
voltage e
q
uations
of t
h
re
e phase s
q
uirre
l
cage induction m
o
tor i
n
d-q
fram
e
are [12]:
(
1
)
(
2
)
0
(
3
)
0
(
4
)
Whe
r
e:
:
d
-
ax
is stator
vo
ltag
e
.
:
q
-
ax
is stator
vo
ltag
e
.
:
d
-
ax
is stator curren
t
.
:
q
-
ax
is stator curren
t
.
:
d-a
x
is
rot
o
r c
u
rre
nt.
:
q-a
x
is
rot
o
r c
u
rre
nt.
:
d
-
ax
is co
m
p
o
n
en
t of stator
flux
link
a
g
e
.
:
q
-
ax
is co
m
p
o
n
en
t of stator
flux
link
a
g
e
.
:
d
-
ax
is co
m
p
o
n
en
t of
ro
t
o
r flux
link
a
g
e
.
:
q
-
ax
is co
m
p
o
n
en
t of
ro
t
o
r flux
link
a
g
e
.
:
Resistance of s
t
ator
winding.
:
Resistance of
rotor
wi
nd
ing
ref
e
rr
ed to
stator
.
The
fl
u
x
l
i
n
ka
ges a
r
e
defi
ned
by
:
(
5
)
(
6
)
(
7
)
(
8
)
Whe
r
e:
:
Self
indu
ctan
ce of
stator
w
i
nd
ing
.
:
Self
indu
ctan
ce of
ro
tor
w
i
ndin
g
.
:
Mutual inductance
betwee
n st
at
or a
n
d r
o
t
o
r
wi
n
d
i
n
gs.
The el
ect
r
o
m
a
gnet
i
c
t
o
r
que
e
quat
i
o
n i
s
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 4
,
Ap
r
il 2
015
:
52
0
–
52
8
52
2
(
9
)
The m
echanica
l
equation is:
(
1
0
)
Whe
r
e;
:
Ro
to
r d
i
sp
lacemen
t
:
Lo
ad
torqu
e
.
:
Mo
m
e
n
t
o
f
in
ertia Kg
.m
2
:
Ro
to
r frictio
n.
:
Nu
m
b
er
o
f
po
l
e
s.
The m
odel
o
f
t
h
ree
p
h
ase s
q
u
i
rrel
cage
i
n
du
ct
i
on m
o
t
o
r i
s
devel
ope
d
by
SIM
U
L
I
NK /
M
ATLAB
t
o
so
lv
e th
e above n
o
n
lin
ear
equ
a
tio
ns and
to
stu
d
y
th
e d
y
n
a
mic p
e
r
f
o
r
m
an
ce ch
ar
acter
istics o
f
th
e m
o
to
r
.
Th
e
SIM
U
L
I
NK
dy
nam
i
c
m
odel
o
f
t
h
e
m
o
t
o
r i
s
s
h
o
w
n i
n
Fi
g
u
r
e
1.
En
erg
y
lost in
t
h
e m
o
to
r is
d
e
fin
e
d
as:
(
1
1
)
3
3
(
1
2
)
(
1
3
)
Whe
r
e;
:
Mo
to
r copp
er lo
sses.
:
Mo
to
r iro
n
lo
sses.
:
Stator
phase c
u
rre
nt.
:
Rotor
phase
curre
nt re
fer
r
ed t
o
stator.
:
Stator
phase
voltage.
:
Core
loss
resis
t
ance.
Th
e ratio
o
f
voltag
e
to
frequ
en
cy
m
u
st b
e
li
mited
to
prev
en
t m
o
to
r saturatio
n
.
Fi
gu
re
2 s
h
ows
t
h
e S
I
M
U
LI
N
K
m
odel
wi
t
h
t
h
ese
vari
a
b
l
e
v
o
l
t
a
ge a
n
d
f
r
e
q
uency
.
Fi
gu
re
1.
Si
m
u
l
i
nk M
odel
of
t
h
ree
p
h
ase i
n
d
u
ct
i
o
n
m
o
t
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Braki
n
g
of
T
h
r
ee Ph
ase
I
n
d
u
c
t
i
on M
o
t
o
r
s
by
C
ont
r
o
l
l
i
ng
Ap
pl
i
e
d V
o
l
t
a
ge
a
nd…
(
M
ah
m
o
u
d
M
.
El
kh
ol
y)
52
3
The
pr
o
p
o
s
ed
m
e
t
hod t
o
opt
i
m
i
ze braki
n
g
e
n
er
gy
l
o
s
s
es
de
pen
d
s
o
n
c
h
a
n
gi
n
g
m
o
t
o
r i
n
p
u
t
v
o
l
t
a
ge
and freque
ncy
according t
o
the equations:
(
1
4
)
(
1
5
)
Whe
r
e; K
f1
, K
f2
and
K
v
are
constants.
Figure
2. SIM
U
LINK system
schem
e
3-
OPTI
MU
M
VOLT
AGE
AN
D F
R
EQ
U
E
NC
Y
VA
RI
ATIO
N
USI
N
G PS
O
In th
is
p
a
rt PSO is
u
s
ed
t
o
determin
e th
e co
n
s
tan
t
s
K
v
, K
f1
and
K
f2
in Eq
u
a
tion (1
4)
an
d (15
)
. The
o
b
j
ectiv
e
fu
n
c
tio
n
is t
o
m
i
n
i
m
i
ze Eq
u
a
tion
(11
)
at cert
a
in
brak
ing
time with
th
e
fo
llo
wi
n
g
in
equ
a
lity
co
nstrain
t
t
o
p
r
ev
en
t
satu
rati
on
in th
e m
o
to
r:
< 5
Fi
gu
re 3 sh
o
w
s t
h
e fl
ow cha
r
t
of PS
O o
p
er
at
i
on, f
o
r a certain
lo
ad
to
rq
ue
a swarm of 24 a
g
ents is
initialized, for each a
g
ent the
m
o
tor
dyna
mic
m
odel is
ope
rated, and
the objective function is e
v
a
l
uated.
Ag
en
ts are m
o
v
e
d to
t
h
eir
n
e
w
p
o
s
ition
acco
r
d
i
ng
t
o
th
eir
v
e
lo
cities, th
ei
r b
e
st po
sition
an
d th
e
b
e
st
positio
n
of
t
h
e s
w
a
r
m
.
Age
n
t
s
vel
o
ci
t
y
i
n
sw
arm
i
s
u
pdat
e
d acc
or
di
ng
t
o
t
h
e e
q
u
a
t
i
on
[
13]
:
(
1
6
)
Whe
r
e v
i
k
is
velo
city o
f
ag
en
t i at iteration
k
,
w is wei
g
h
tin
g fun
c
tio
n, c
j
is
weigh
ting
co
efficien
ts,
rand
is
ran
d
o
m
nu
m
b
er bet
w
ee
n
0 an
d 1, s
i
k
i
s
cu
rre
nt
po
si
t
i
on
of a
g
ent
i
at
i
t
e
rat
i
on
k,
pbest
i
is b
e
st po
sitio
n
of ag
en
t
i, and
g
b
e
st is
b
e
st
p
o
s
ition
of th
e swarm
.
Th
e
weigh
tin
g fu
n
c
tion
w is g
i
v
e
n b
y
:
(
1
7
)
Whe
r
e w
ma
x
is in
itial weigh
t
, w
mi
n
is fin
a
l
weigh
t
, iter
ma
x
is m
a
x
i
m
u
m
i
t
eratio
n
nu
m
b
er, and
iter is cu
rren
t
iteratio
n
nu
m
b
er.
Accord
i
n
g to
Sh
i and
Eb
erh
a
rt [14
]
,
[
15]
,
t
h
e f
o
l
l
o
wi
ng
param
e
t
e
rs
are
appropriate and the
v
a
lu
es
do
no
t
dep
e
nd
on
p
r
ob
le
m
s
:
c
i
= 2,
w
ma
x
= 0.9 a
n
d
w
mi
n
=
0
.
4
(
1
8
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 4
,
Ap
r
il 2
015
:
52
0
–
52
8
52
4
M
a
xi
m
u
m
num
ber of i
t
e
rat
i
on
i
s
i
t
e
r
ma
x
=
50
. T
h
i
s
p
r
oce
ss i
s
re
peat
ed
fo
r a
bra
k
i
n
g t
i
m
e
of 4
,
4.
5
and 5 sec at l
o
ad torque
of
0.5
N.m
.
Fi
gu
re
3.
Fl
o
w
C
h
art
o
f
P
S
O
4. RES
U
LTS AN
D DIS
C
S
S
I
ON
Sim
u
l
a
t
i
on ha
s
bee
n
car
ri
ed
out
usi
n
g
SIM
U
LI
N
K
/
M
AT
LAB
f
o
r 2
2
0
/
3
80
V
,
1
.
1
k
W
,
5
0
Hz three
ph
ase in
du
ction
m
o
to
r h
a
v
i
ng
t
h
e fo
llo
wi
n
g
p
a
rameters:
= 5.15
Ω
= 3.75
Ω
=0.
5
88
7
H
=0.588
7 H
=0
.5
568
H
=
2
In
t
h
is section
two
g
r
ou
ps of
resu
lts are
p
r
esen
ted
,
th
e
first
o
n
e
is th
e
p
e
rfo
rm
an
ce ch
aracteristics o
f
t
h
e
m
o
t
o
r w
h
i
c
h i
s
bra
k
ed
usi
ng c
o
n
v
e
n
t
i
o
n
a
l
pl
ug
gi
n
g
m
e
t
h
o
d
, by
re
ver
s
i
ng t
w
o p
h
ases
of t
h
e m
o
t
o
r. I
n
t
h
e
second case the
m
o
tor is bra
k
ed
with
the proposed m
e
thod by controlling
the applied voltage and fre
quency
to
stop
t
h
e m
o
to
r with
i
n
certai
n
tim
e with
mi
n
i
m
u
m
en
erg
y
lo
sses.
All resu
lts are tak
e
n
at lo
ad to
rq
u
e
o
f
0.5 N.m
an
d
th
e
m
o
to
r run
s
in
m
o
to
rin
g
m
o
de with
rated
vol
t
a
ge
an
d
fr
e
que
ncy
fr
om
0 sec t
o
6 sec
,
a
f
t
e
r t
h
at
t
h
e m
o
t
o
r
i
s
i
n
b
r
aki
n
g
m
ode.
4.
1. Pl
ug
gi
n
g
Met
h
o
d
Th
e
b
r
ak
i
n
g time w
ith
p
l
ug
gin
g
is 5 sec as show
n in
Figu
r
e
4. Th
e
d
e
v
e
lop
e
d tor
q
u
e
is
reve
rse
d
d
u
r
i
n
g pl
u
ggi
ng a
n
d re
d
u
ci
n
g
t
h
e
m
o
t
o
r s
p
ee
d i
n
t
h
e sam
e
di
r
ect
i
on
of l
o
ad
t
o
r
que
as s
h
o
w
n i
n
Fi
gu
re
5. T
h
e
r
ef
ore
,
t
h
e s
p
e
e
d i
s
dec
r
ease
d
f
r
om
l
o
ad s
p
eed t
o
ze
ro
and t
o
pre
v
en
t
rot
a
t
i
o
n
i
n
r
e
ver
s
e
d
i
rection
th
e ap
p
lied vo
ltag
e
is rem
o
v
e
d
.
The m
o
t
o
r cu
r
r
ent
d
u
r
i
n
g pl
u
ggi
ng i
s
hi
g
h
er
t
h
an t
h
e st
a
r
t
i
ng c
u
r
r
e
n
t
as sho
w
n i
n
Fi
gu
r
e
6 beca
use
th
e m
o
to
r slip du
ring
p
l
ugg
in
g is h
i
g
h
e
r than
1
and
h
e
n
c
e th
e m
o
to
r i
m
p
e
d
a
n
ce is lo
wer th
an
t
h
at du
ri
ng
st
at
i
ng.
So
t
h
e
m
o
t
o
r l
o
sses
d
u
ri
ng
pl
ug
gi
n
g
are
hi
g
h
er
t
h
a
n
t
h
at
d
u
ri
ng
st
art
i
n
g
as s
h
ow
n i
n
Fi
g
u
r
e
7.
Fi
gu
re 8 s
h
o
w
s t
h
e vari
at
i
o
n
of i
n
put
an
d
out
put
p
o
w
ers
wi
t
h
t
i
m
e
. The
m
o
t
o
r d
r
aws
po
wer f
r
o
m
sup
p
l
y
d
u
ri
n
g
m
o
t
o
ri
n
g
an
d
pl
ug
gi
n
g
m
odes. T
h
e o
u
t
p
ut
po
we
r d
u
ri
ng
pl
u
ggi
n
g
i
s
rever
s
ed
due
t
o
t
h
e
reve
rse o
f
t
o
r
que
di
rect
i
o
n.
Duri
ng m
o
t
o
ri
n
g
m
ode t
h
e
di
ffere
nce be
t
w
een i
n
put
a
nd
out
put
p
o
w
ers i
s
con
v
e
r
t
e
d i
n
t
o
l
o
sses b
u
t
d
u
r
i
ng
pl
u
ggi
ng
b
o
t
h
of i
n
p
u
t
p
o
we
r an
d
out
p
u
t
p
o
we
r are c
o
n
v
e
r
t
e
d i
n
t
o
l
o
sses.
There
f
ore t
h
e
pl
u
ggi
ng
l
o
sse
s are
hi
g
h
.
Fi
gu
re
9 s
h
o
w
s t
h
e va
ri
at
i
on
of e
n
er
gy
l
o
s
s
e
s
d
u
ri
n
g
o
n
e c
y
cl
e of o
p
e
r
at
i
on
o
f
st
art
i
n
g,
ru
n
n
i
n
g an
d
bra
k
i
n
g.
The e
n
er
gy
l
o
sses
d
u
ri
ng
b
r
aki
ng
wi
t
h
pl
u
ggi
ng
are 1
4
5
4
8
J
o
ul
e wi
t
h
i
n
b
r
aki
ng t
i
m
e of 5
s
ec a
n
d
this ene
r
gy l
o
s
s
es ar
e
convert
e
d int
o
heat.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Braki
n
g
of
T
h
r
ee Ph
ase
I
n
d
u
c
t
i
on M
o
t
o
r
s
by
C
ont
r
o
l
l
i
ng
Ap
pl
i
e
d V
o
l
t
a
ge
a
nd…
(
M
ah
m
o
u
d
M
.
El
kh
ol
y)
52
5
Fig
u
re
4
.
Variatio
n
o
f
m
o
to
r sp
eed with tim
e
(pl
u
g
g
i
n
g m
e
t
hod
)
Fi
gu
re
5.
Va
ri
at
i
on
of
de
vel
o
p
e
d t
o
r
que
wi
t
h
t
i
m
e
(pl
u
g
g
i
n
g m
e
t
hod
)
Fig
u
re
6
.
Variatio
n
o
f
m
o
to
r ph
ase cu
rren
t wi
th
ti
m
e
(pl
u
g
g
i
n
g m
e
t
hod
)
Fig
u
re
7
.
Variatio
n
o
f
to
tal mo
tor lo
sses
with
tim
e
(pl
u
g
g
i
n
g m
e
t
hod
)
Fi
gu
re 8.
Va
ri
at
i
on of
i
n
put
a
n
d out
put
p
o
we
r
s
wi
t
h
ti
m
e
(p
lu
gg
ing m
e
th
o
d
)
Fi
gu
re
9.
Va
ri
at
i
on
of
ene
r
gy
l
o
sses
wi
t
h
t
i
m
e
(pl
u
g
g
i
n
g m
e
t
hod
)
4.
2. Pro
p
ose
d
Met
h
o
d
The
perform
a
n
ce c
h
aracte
r
istics of t
h
ree
phase i
n
du
ctio
n m
o
to
r
with
th
e pro
p
o
s
ed
m
e
th
o
d
of
co
n
t
ro
lling
bo
th
app
lied
vo
ltag
e
and
frequ
e
n
c
y to
h
a
v
e
min
i
m
u
m
b
r
ak
ing
en
erg
y
lo
sses at certain
b
r
ak
i
ng
ti
m
e
with
PSO are sh
own
i
n
Fi
g
u
re
10
to 17
.
Figu
re 10 sho
w
s th
e v
a
riatio
n
o
f
m
o
to
r sp
eed
with
ti
m
e
at
di
ffe
re
nt
bra
k
i
ng t
i
m
e of 4,
4.
5 an
d 5 sec
usi
n
g t
h
e p
r
o
p
o
se
d m
e
t
hod
. The b
r
aki
ng
d
e
vel
o
ped t
o
r
q
u
e
wi
t
h
0
1
2
3
4
5
6
7
8
9
10
11
12
0
50
0
10
00
15
00
20
00
25
00
30
00
Ti
m
e
(
S
e
c
)
M
o
t
o
r
Sp
e
e
d (
r
pm
)
Br
a
k
i
n
g
Mo
d
e
Mo
t
o
r
i
n
g
Mo
d
e
0
1
2
3
4
5
6
7
8
9
10
11
12
-2
0
-1
5
-1
0
-5
0
5
10
15
20
Ti
m
e
(
S
ec
)
D
e
v
e
l
o
pe
d To
r
que
(
N
.m
)
Br
a
k
i
n
g
Mo
d
e
Mot
o
r
i
n
g
Mo
d
e
0
1
2
3
4
5
6
7
8
9
10
11
12
-2
0
-1
5
-1
0
-5
0
5
10
15
20
Ti
m
e
(
S
ec)
M
o
t
o
r P
h
a
s
e C
u
rr
en
t
(
A
)
B
r
ak
i
n
g M
o
d
e
M
o
to
ri
ng
M
o
de
0
1
2
3
4
5
6
7
8
9
10
11
12
0
500
1000
1500
2000
2500
3000
3500
4000
T
i
m
e
(
S
ec)
T
o
ta
l
m
o
t
o
r l
o
s
s
es (W
a
tt)
Br
aki
n
g M
o
d
e
Mo
t
o
r
i
n
g
Mo
d
e
0
1
2
3
4
5
6
7
8
9
10
11
12
-2
00
0
-1
50
0
-1
00
0
-50
0
0
50
0
10
00
15
00
20
00
25
00
30
00
35
00
40
00
Ti
m
e
(
S
ec
)
I
n
put
a
n
d O
u
t
p
ut
P
o
w
e
r
s
(
W
a
t
t
)
Br
ak
i
n
g
Mo
d
e
Mo
t
o
r
i
n
g
Mo
d
e
I
n
p
u
t
P
owe
r
I
n
p
u
t
P
owe
r
O
u
t
p
u
t
P
owe
r
Ou
t
p
u
t
P
o
w
e
r
0
1
2
3
4
5
6
7
8
9
10
11
12
0
0.
5
1
1.
5
2
2.
5
x 1
0
4
Ti
m
e
(
S
e
c
)
E
n
e
r
g
y
L
o
sse
s (
J
o
u
le
)
B
r
ak
i
n
g M
o
d
e
Mo
t
o
r
i
n
g
Mo
d
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 4
,
Ap
r
il 2
015
:
52
0
–
52
8
52
6
l
o
we
r b
r
aki
ng t
i
m
e
i
s
hi
gher t
h
an t
h
at
of
hi
g
h
er
bra
k
i
n
g t
i
m
e as show
n i
n
Fi
g
u
re
1
1
. M
o
t
o
r cu
rre
nt
i
n
bra
k
i
n
g
m
ode i
s
l
o
wer
t
h
an st
art
i
n
g
cur
r
ent
a
nd al
so l
o
wer t
h
a
n
pl
u
ggi
ng
bra
k
i
ng c
u
r
r
e
n
t
as sho
w
n i
n
Fi
gu
re 1
2
.
There
f
ore, t
h
e
m
o
t
o
r l
o
sses a
nd e
n
er
gy
l
o
ss
es are re
duce
d
com
p
ared wi
t
h
o
f
pl
ug
gi
n
g
m
e
t
hod as s
h
o
w
n i
n
Fi
gu
re 1
3
a
nd
Fi
gu
re 1
4
.
The
bra
k
i
n
g ene
r
g
y
l
o
sses are 2
8
84 J
o
ul
e wi
t
h
bra
k
i
n
g t
i
m
e o
f
5 sec
,
2
7
3
4
J
oul
e
wi
t
h
bra
k
i
n
g t
i
m
e
of
4.
5 sec
a
n
d
2
9
4
4
J
oul
e
wi
t
h
bra
k
i
n
g t
i
m
e
of
4 sec
.
W
i
t
h
t
h
e
sam
e
bra
k
i
n
g t
i
m
e of 5
sec, t
h
e b
r
a
k
i
n
g e
n
er
gy
l
o
sses wi
t
h
t
h
e
p
r
o
p
o
sed
m
e
t
hod are
ab
o
u
t
19
.8
%
o
f
bra
k
i
n
g e
n
er
gy
l
o
sses
wi
t
h
pl
u
ggi
ng
m
e
t
hod.
The
r
ef
o
r
e, t
h
e p
r
o
p
o
sed
m
e
t
h
o
d
i
s
m
o
re
use
f
ul
m
e
t
hod t
o
sav
e
ener
gy
f
o
r
m
u
lt
i
-
braki
n
g
appl
i
cat
i
o
ns.
W
i
t
h
t
h
e p
r
o
p
o
s
e
d m
e
t
hod, t
h
e
m
o
t
o
r ca
n
b
e
bra
k
e
d
with
tim
e sh
o
r
t
e
r th
an
p
l
ugg
ing
b
r
ak
ing
tim
e
with
lower
bra
k
i
n
g e
n
er
gy
l
o
sses.
In
Fi
g
u
re
15
, t
h
e
i
n
put
p
o
we
r
is the electrical power from
s
u
pply a
nd
output powe
r is the
m
echanical po
wer
.
The o
u
t
p
ut po
we
r is rev
e
rsed
in
br
ak
ing
m
o
de b
ecau
s
e t
h
e
dev
e
lop
e
d tor
que r
e
v
e
r
s
ed
.
The i
n
put
p
o
w
er du
ri
n
g
b
r
aki
ng
wi
t
h
t
h
e pr
o
pos
ed m
e
t
hod i
s
ret
u
r
n
e
d
t
o
sup
p
l
y
fr
om
m
o
t
o
r d
u
ri
ng a
part
o
f
b
r
a
k
i
n
g pe
ri
o
d
.T
he
o
p
t
i
m
u
m
val
u
es
of a
ppl
i
e
d
v
o
l
t
a
ge and
fre
q
u
ency
t
o
ha
ve
cert
a
i
n
b
r
aki
n
g t
i
m
e
wi
t
h
m
i
nim
u
m
b
r
aki
n
g
ene
r
g
y
l
o
sses a
r
e
o
b
t
ai
ned
usi
n
g
P
S
O t
e
c
hni
que
.
The
res
u
l
t
s
an
d a
r
e s
h
o
w
n i
n
Fi
g
u
re
16
an
d Fi
g
u
re
17
.
Fig
u
re 10
. Vari
atio
n
o
f
m
o
to
r sp
eed
with
time
(Pr
o
pose
d
m
e
t
h
o
d
)
Fi
gu
re 1
1
. Vari
at
i
on of
de
vel
o
ped
t
o
rq
ue wi
t
h
t
i
m
e
(Pr
o
pose
d
m
e
t
h
o
d
)
Fi
gu
re 1
2
. Vari
at
i
on of
m
o
t
o
r pha
se
c
u
r
r
ent
wi
t
h
t
i
m
e
(Pro
po
sed
m
e
t
hod
)
Fig
u
re 13
. Vari
atio
n
o
f
to
tal
mo
tor
lo
sses with
tim
e
(Pr
o
pose
d
m
e
t
h
o
d
)
0
1
2
3
4
5
6
7
8
9
10
11
12
0
50
0
10
00
15
00
20
00
25
00
30
00
Ti
m
e
(
S
e
c
)
M
o
t
o
r S
p
eed
(
r
p
m
)
Mo
t
o
r
i
n
g
Mo
d
e
tb
=
5
S
e
c
t
b
=
4
.5
S
e
c
tb
=
4
S
e
c
Br
a
k
i
n
g
Mo
d
e
0
1
2
3
4
5
6
7
8
9
10
11
12
-20
-15
-10
-5
0
5
10
15
20
T
i
m
e
(
S
ec)
De
ve
l
o
pe
d To
r
q
u
e
(
N
.
m
)
Br
aki
n
g
Mo
d
e
tb
=
5
S
e
c
tb
=
4
S
e
c
t
b
=4
.5
S
e
c
Mo
t
o
r
i
n
g
Mo
d
e
0
1
2
3
4
5
6
7
8
9
10
11
12
-2
0
-1
5
-1
0
-5
0
5
10
15
20
Ti
m
e
(
S
ec
)
Mo
t
o
r P
h
a
s
e
C
u
rren
t
(
A
)
Mo
t
o
r
i
n
g
Mo
d
e
t
b
=4
.5
S
e
c
B
r
ak
i
n
g M
o
d
e
tb
=
4
S
e
c
tb
=
5
S
e
c
0
1
2
3
4
5
6
7
8
9
10
11
12
0
500
1000
1500
2000
2500
3000
3500
4000
Ti
m
e
(
S
e
c
)
To
ta
l m
o
t
o
r
lo
s
s
e
s
(
W
a
t
t
)
B
r
aki
n
g M
o
d
e
Mo
t
o
r
i
n
g
Mo
d
e
tb
=
5
S
e
c
tb
=
4
S
e
c
tb
=
4
.
5
S
e
c
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Braki
n
g
of
T
h
r
ee Ph
ase
I
n
d
u
c
t
i
on M
o
t
o
r
s
by
C
ont
r
o
l
l
i
ng
Ap
pl
i
e
d V
o
l
t
a
ge
a
nd…
(
M
ah
m
o
u
d
M
.
El
kh
ol
y)
52
7
Fig
u
re 14
. Vari
atio
n
o
f
en
erg
y
lo
sses with
time
(Pr
o
pose
d
m
e
t
h
o
d
)
Fi
gu
re 1
5
. Vari
at
i
on of
i
n
put
a
n
d
o
u
t
p
ut
po
w
e
rs wi
t
h
t
i
m
e
(Pro
po
sed
m
e
t
hod
)
Fi
gu
re 1
6
. Vari
at
i
on of
o
p
t
i
m
um
val
u
es of st
at
or
fre
que
ncy
wi
t
h
t
i
m
e
(Pro
p
o
se
d m
e
t
hod
)
Fi
gu
re 1
7
. Vari
at
i
on of
o
p
t
i
m
um
val
u
es of m
o
t
o
r
pha
se
vol
t
a
ge
wi
t
h
t
i
m
e (Pro
pos
ed
m
e
t
hod)
5. CO
N
C
L
U
S
I
ON
Usi
n
g t
h
e p
r
op
ose
d
bra
k
i
n
g
m
e
t
hod, t
h
ree
pha
se i
n
d
u
ct
i
o
n m
o
t
o
rs can b
e
bra
k
ed at
a g
i
ven b
r
a
k
i
n
g
t
i
m
e
wi
t
h
m
i
nim
u
m
braki
n
g
ener
gy
l
o
sses.
The p
r
o
p
o
se
d m
e
t
hod det
e
rm
i
n
es t
h
e o
p
t
i
m
u
m
val
u
es of a
ppl
i
e
d
v
o
ltag
e
and
freq
u
e
n
c
y to
stop th
e m
o
to
r with
in
certai
n
ti
me with
m
i
n
i
m
u
m b
r
ak
i
n
g
en
erg
y
lo
sses
b
y
particle
swarm
optimization technique. T
h
e br
aki
ng e
n
ergy los
s
es with the pr
opo
sed
m
e
th
od
ar
e ab
ou
t 20
% of
pluggi
ng
braki
ng e
n
e
r
gy s
o
that the
propos
ed m
e
thod is
m
o
re
useful for m
u
lti braking applications
without
any exce
ssive
ove
rhea
tin
g fo
r th
e m
o
to
r.
REFERE
NC
ES
[1]
Marko Hinkkan
e
n, JormaLuomi. Brak
ing
Sch
e
me for Vector-
C
ontrolled
Indu
c
tion Moto
r Drives Equipp
ed
With
Diode Rectif
ier
Without Brak
ing
Resistor.
IEEE Transactions
on
Industry Applica
tions
. 2006
; 42(5
)
: 1257-1263.
[2]
PL Rongmei, Shimi SL, Dr S
Chatterji, Vinod K
Sharma
. A
Novel Fast Braking S
y
stem for Induction Motor
.
International Jo
urnal of
Engineer
ing and Innova
t
ive Technolog
y (
I
JEIT)
. 2012; 1(
6): 65-69.
[3]
MukulRastogi,
Peter W Ha
mmond. Dual-Frequency
Br
aking
in AC Drives
.
IEEE Transactions on
Pow
e
r
Electronics
. 200
2; 17(6): 1032-1
040.
[4]
Bilal Abdullah
Nasir. Brak
ing
Methods of Indu
c
tion Motor
Fed
From A Current- Source
Inverter.
E
l
s
evi
er
, Ener
gy
Pr
ocedia
.
2012
;
14:
1819-1824.
[5]
Hairik, HA
Thejel, RH
Kadh
em
WA. Proposed scheme for plugg
i
ng three-phase induction motor.
MELECON 2010
15th IEEE Mediterranean El
ec
tr
otechn
i
cal
Confe
r
ence
, Valletta.
2010; 1-5.
[6]
Laab
idi M
R
e
bh
i, B
Kourd
a
, F
Elleu
c
h, M
Ghodbani L. Brak
in
g of indu
ction
motor with
the
technique of d
i
screte
frequency
con
t
ro
l.
S
y
stems Signa
l
s
and Devi
ces (
S
SD)
,
7th Internat
ional Mu
lti-Con
f
erence
. Amman. 2010; 1-6
.
[7]
Sowilam GMA,
Korfly
MI
, Hassan AA.
Braking methods
of induction
motor
using direct
tor
que control.
Po
wer
Systems Conference, MEPCON 2
006, El
eventh
In
ternational Midd
le
East
. 2006; 1
:
35-40.
0
1
2
3
4
5
6
7
8
9
10
11
12
0
20
00
40
00
60
00
80
00
10
00
0
12
00
0
T
i
m
e
(
S
ec)
Ene
r
gy Los
s
e
s
(
Joul
e
)
Br
a
k
i
n
g M
o
d
e
tb
=
4
S
e
c
tb
=
5
S
e
c
t
b
=4
.5
S
e
c
Mo
t
o
r
i
n
g
Mo
d
e
0
1
2
3
4
5
6
7
8
9
10
11
12
-
300
0
-
250
0
-
200
0
-
150
0
-
100
0
-5
0
0
0
50
0
100
0
150
0
200
0
250
0
300
0
350
0
400
0
Ti
m
e
(
S
e
c
)
I
nput
and O
u
t
p
ut
P
o
we
r
s
(
W
a
t
t
)
Br
aki
n
g
Mo
d
e
Mo
t
o
r
i
n
g
Mo
d
e
Out
p
ut
P
o
w
e
r
I
nput
P
o
w
e
r
In
p
u
t
P
o
w
e
r
tb
=
4
S
e
c
tb
=
5
S
e
c
Ou
t
p
u
t
P
o
w
e
r
t
b
=
4
.5
S
e
c
0
1
2
3
4
5
6
7
8
9
10
11
12
0
5
10
15
20
25
30
35
40
45
50
55
T
i
m
e
(
S
ec)
O
p
t
i
m
u
m
St
a
t
o
r
F
r
e
que
nc
y
(
H
z
)
M
o
t
o
r
i
ng
M
o
de
Br
aki
n
g M
o
d
e
tb
=
5
S
e
c
tb
=
4
.
5
S
e
c
tb
=
4
S
e
c
0
1
2
3
4
5
6
7
8
9
10
11
12
0
20
40
60
80
10
0
12
0
14
0
16
0
18
0
20
0
22
0
Ti
m
e
(
S
e
c
)
O
p
ti
m
u
m
M
o
to
r
Ph
a
s
e
V
o
l
t
a
g
e
(V
/
p
h
)
tb
=
5
S
e
c
t
b
=
4
.5
S
e
c
tb
=
4
S
e
c
Br
a
k
i
n
g M
o
d
e
Mo
t
o
r
i
n
g
Mo
d
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 4
,
Ap
r
il 2
015
:
52
0
–
52
8
52
8
[8]
Amin A
M
A,
El Korfally
MI,
Say
e
d AA,
Hegazy
OTM.
E
ffi
cie
n
c
y
Optim
i
zat
io
n of
Two-Asy
mmetrical-Windin
g
Induction
Motor
Based on
Swar
m Intelligence.
Energy
Con
version,
IEEE Transactions
. 200924(1
)
: 12-20.
[9]
Ping Guo,
Da
gui Hua
ng,
D
a
iwe
i
Fe
ng,
We
nz
he
ng Yu
a
nd
Hailong Zha
ng.
Optimiz
e
d
de
sign of induc
tion motor
param
e
ters base
d on PSO
(Particle Swarm
Optim
ization)
.
Mech
atronics and Automation (
I
CM
A)
, Internationa
l
Confer
enc
e
, Chengdu. 2012; 837
-842.
[10]
Tofighi
EM,
Mahdizad
eh A,
Feyzi MR. On
l
i
ne
e
s
tim
ation
of
ind
u
ction
m
o
tor pa
r
a
meters using a
m
odified particle
swarm optimization techn
i
que.
I
ndustrial Electr
onics Soc
iety, IECON 2013 - 39th Annual Confer
ence of
the IEEE
.
2013; 3645-365
0.
[11]
Wei Hu,
Gui Liu,
Li Fu,
Hongmei Zhang
.
Research of
motor
f
a
u
lt diagnosis based
on PSO algorithm.
Control
and
Decision Conf
er
ence (CCDC), 2
013 25
th
Ch
inese, Guiy
ang
.
2013
.
[12]
John Chiasson.
Modelling
and h
i
gh perform
an
ce contro
l of
el
ectr
ic m
ach
ine. John
Wiley
& Sons, I
n
c., 2005.
[13]
Xin She Yang. Natural Inspir
ed Metah
e
uristic algor
ith
m, Luniver Press,
Univer
sity
of
Cambrodge, United
Kingdom, secon
d
edition. 2010.
[14]
Shi Y,
E
b
e
r
ha
rt R.
A modifi
e
d
particl
e
swarm optimizer.
P
r
oceed
ings
of I
EEE In
tern
ation
a
l Confer
enc
e
on
Evolution
a
r
y
Co
mputation (IC
EC’98),
Anchor
ag
e, I
E
EE Press. 1
998: 69–73.
[15]
Shi Y, Eberhart
R.
Parameter se
lec
tion in partic
l
e
swarm optimization.
Proceedin
g
s of the 1998 Annual Conferen
ce
on Evolu
tionar
y
Programming,
San Diego
,
MIT P
r
ess, 1998.
BIOGRAP
HI
ES OF
AUTH
ORS
Mahmoud Elkholy
r
eceived B
a
chelor of Eng
i
ne
ering (B.E) degr
ee (with honor)
from Zagazig
University
, Eg
ypt in 1994
un
der th
e speciali
zation of
Electrical Mach
ines
and Power
Engineering, Master of Sc
ience degree from
Zagazig Univ
er
sity
, Eg
y
p
t 199
8 under the
specialization
of
Electr
i
cal Mach
ines and
Doctor
of Philosoph
y
(
P
h.d) in
the
y
e
ar 2001 from
Zaga
zig
Univ
ersit
y
, Eg
ypt in
the
Dept.
of Ele
c
tr
ic
al power
and M
a
chines
Eng
i
ne
eri
ng. He h
a
s
18
y
ears
of exp
e
rien
ce in ac
ade
m
ia and res
earc
h
at differen
t
pos
itions
. Curren
t
l
y
h
e
is
an
Assista
n
t Profe
ssor,
Fa
c
u
lty
of
Engineering, Zagazig Univ
ersi
t
y
, Eg
yp
t.His in
te
rest inc
l
udes
control
the
s
t
e
a
d
y
s
t
at
e
and d
y
nam
i
c
per
f
orm
a
nce
of
ele
c
tr
ic
al m
ach
ines
an
d art
i
fic
i
a
l
intel
ligen
ce
.
Mohammed A. Elhameedr
e
ceiv
ed
the B.E. d
e
g
r
ee (with honor
s)
from Zagazig
University
-
faculty
o
f
Engin
eering
,
Zag
a
zig,
Eg
y
p
t in elec
trical power and machines engin
eer
ing in 1996,
Master degree i
n
2000 in the field of electri
cal
p
o
wer sy
st
em
from
the sam
e
institute, and the
Ph. D. degree fr
om Zagazig University
, Eg
y
p
t, in
2004, in the field of electr
i
cal
power s
y
stem.
He has
b
een
as
s
i
s
t
ant prof
es
s
o
r, F
acu
lt
y
of En
gineer
ing,
Zag
a
zig Univ
ers
i
t
y
,
Eg
y
p
t.
His
current int
e
rest i
n
cludes el
ectr
i
c
a
l
m
achines m
o
delling and con
t
r
o
l, arti
fic
i
al in
te
lligen
ce and
FACT
S de
vic
e
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.