I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
w
er
E
lect
ro
nics
a
nd
Driv
e
Sy
s
t
e
m
(
I
J
P
E
DS
)
Vo
l.
8
,
No
.
2
,
J
u
n
e
2
0
1
7
,
p
p
.
900
~
9
0
6
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
p
ed
s
.
v8
i
2
.
pp
9
0
0
-
906
๏ฒ
900
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JP
E
DS
The Lin
ea
r Mo
de
l of a P
V
m
o
duel
M
o
ha
m
ed
Ab
d
-
El
-
H
a
k
ee
m
M
o
ha
m
ed
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
,
El
e
c
tri
c
En
g
.
,
A
l
-
Az
h
a
r
Un
iv
e
rsit
y
,
Qe
n
a
,
Eg
y
p
t
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
8
,
2
0
1
7
R
ev
i
s
ed
Mar
8
,
2
0
1
7
A
cc
ep
ted
Mar
22
,
2
0
1
7
T
h
is
p
a
p
e
r
p
r
o
p
o
se
s
a
n
e
w
a
p
p
ro
a
c
h
t
o
d
e
term
in
e
a
li
n
e
a
r
m
a
th
e
m
a
ti
c
a
l
m
o
d
e
l
o
f
a
P
V
m
o
d
u
e
l
b
a
se
d
o
n
a
n
a
c
c
u
ra
te
n
o
n
li
n
e
a
r
m
o
d
e
l
.
In
t
h
is
stu
d
y
,
e
lec
tri
c
a
l
p
a
ra
m
e
ters
a
t
o
n
l
y
o
n
e
o
p
e
ra
ti
n
g
c
o
n
d
it
io
n
a
re
c
a
lcu
late
d
b
a
se
d
o
n
an
a
c
c
u
ra
te
m
o
d
e
l.
T
h
e
n
,
f
irst
-
o
rd
e
r
T
a
y
lo
r
se
ries
a
p
p
ro
x
im
a
ti
o
n
s
a
p
p
ly
o
n
th
e
n
o
n
li
n
e
a
r
m
o
d
e
l
to
e
stim
a
t
e
th
e
p
ro
p
o
se
d
m
o
d
e
l
a
t
a
n
y
o
p
e
ra
ti
n
g
c
o
n
d
i
ti
o
n
ts.
T
h
e
p
ro
p
o
se
d
m
e
th
o
d
d
e
term
in
e
s
th
e
n
u
m
b
e
r
o
f
it
e
ra
ti
o
n
ti
m
e
s.
T
h
is
d
e
c
re
a
se
s
c
a
lcu
latio
n
ti
m
e
a
n
d
t
h
e
sp
e
e
d
o
f
n
u
m
e
rica
l
c
o
n
v
e
r
g
e
n
c
e
w
il
l
b
e
in
c
re
a
se
d
.
A
n
d
,
it
is
o
b
se
rv
e
d
th
a
t
o
w
in
g
to
th
is
m
e
th
o
d
,
t
h
e
sy
ste
m
c
o
n
v
e
rg
e
d
a
n
d
th
e
p
r
o
b
lem
o
f
f
a
il
in
g
to
so
lv
e
th
e
s
y
ste
m
b
e
c
a
u
se
o
f
in
a
p
p
r
o
p
r
iate
in
it
ial
v
a
lu
e
s
is
e
li
m
in
a
ted
.
T
h
e
p
ro
p
o
se
d
m
o
d
e
l
is
r
e
q
u
e
ste
d
i
n
o
rd
e
r
to
a
ll
o
w
p
h
o
t
o
v
o
lt
a
ic
p
lan
ts
sim
u
lati
o
n
s
u
sin
g
lo
w
-
c
o
st
c
o
m
p
u
ter
p
latf
o
rm
s.
T
h
e
e
ff
e
c
ti
v
e
n
e
ss
o
f
th
e
p
r
o
p
o
se
d
m
o
d
e
l
is
d
e
m
o
n
stra
ted
f
o
r
d
if
fe
re
n
t
tem
p
e
ra
tu
re
a
n
d
irrad
ian
c
e
v
a
lu
e
s
th
ro
u
g
h
c
o
n
d
u
c
ti
n
g
a
c
o
m
p
a
riso
n
b
e
tw
e
e
n
re
su
lt
o
f
th
e
p
ro
p
o
se
d
m
o
d
e
l
a
n
d
e
x
p
e
rim
e
n
tal
re
su
lt
s
o
b
t
a
in
e
d
f
ro
m
th
e
m
o
d
u
le d
a
ta
-
sh
e
e
t
i
n
f
o
rm
a
ti
o
n
.
K
ey
w
o
r
d
:
L
i
n
ea
r
izatio
n
Mo
d
elin
g
P
h
o
to
v
o
ltaic
Co
p
y
rig
h
t
ยฉ
201
7
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Mo
h
a
m
ed
A
b
d
-
El
-
Ha
k
ee
m
M
o
h
a
m
ed
,
Dep
ar
t
m
en
t o
f
E
lectr
ical
E
n
g
i
n
ee
r
in
g
,
Al
-
A
z
h
ar
Un
iv
er
s
it
y
,
Facu
lt
y
o
f
E
n
g
i
n
ee
r
i
n
g
,
E
lectr
ic
E
n
g
.
,
Qe
n
a,
E
g
y
p
t
.
E
m
ail:
m
o
h
7
3
1
4
1
1
@
y
ah
o
o
.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
cu
r
r
en
t
-
v
o
lta
g
e
ch
ar
ac
ter
i
s
tics
o
f
p
h
o
to
v
o
ltaic
is
an
i
m
p
o
r
tan
t
r
o
le
in
s
o
lar
in
d
u
s
tr
y
b
ec
au
s
e
it
ex
ac
tl
y
r
e
f
lec
ts
t
h
e
m
o
d
u
le
p
er
f
o
r
m
an
ce
[
1
]
.
T
h
e
o
n
e
-
d
io
d
e
m
o
d
el
p
ar
a
m
eter
s
o
f
P
V
p
an
els
f
r
o
m
a
s
i
n
g
le
I
-
V
cu
r
v
e
i
s
id
en
t
if
ied
in
[
2
]
b
y
c
o
n
v
er
ti
n
g
n
o
n
lin
ea
r
f
it
tin
g
to
a
lin
ea
r
s
y
s
te
m
id
en
ti
f
icatio
n
.
P
ap
er
[
3
]
p
r
esen
ts
an
al
y
tical
s
o
lu
t
io
n
s
f
o
r
th
e
p
ar
a
m
eter
s
o
f
a
f
i
ve
-
p
ar
a
m
ete
r
d
o
u
b
le
-
d
io
d
e
m
o
d
el
o
f
P
V
ce
lls
an
d
m
o
d
u
le
s
w
h
ic
h
o
n
l
y
r
eq
u
ir
e
th
e
co
o
r
d
in
ates
o
f
t
h
r
ee
k
e
y
p
o
in
ts
o
f
t
h
e
I
โ
V
cu
r
v
es,
i.e
.
,
th
e
o
p
en
-
cir
cu
it
(
0
,
Vo
c)
,
th
e
s
h
o
r
t
cir
c
u
it
(
I
s
c,
0
)
a
n
d
th
e
m
a
x
i
m
u
m
p
o
w
er
p
o
in
t
(
MP
P
)
(
I
m
,
V
m
)
.
T
h
ese
an
a
l
y
tical
s
o
l
u
t
io
n
s
ar
e
s
u
cc
e
s
s
f
u
ll
y
u
s
ed
in
Ne
w
to
n
โ
R
ap
h
s
o
n
n
u
m
er
ical
iter
atio
n
s
to
ac
h
ie
v
e
co
n
v
er
g
e
n
ce
a
n
d
o
b
tain
m
o
r
e
ac
c
u
r
ate
s
o
lu
tio
n
s
.
P
ap
er
[
4
]
p
r
esen
ts
a
n
o
v
el
ap
p
r
o
ac
h
u
s
i
n
g
th
e
s
h
u
f
f
led
f
r
o
g
leap
in
g
al
g
o
r
ith
m
(
SF
L
A
)
to
d
eter
m
i
n
e
th
e
u
n
k
n
o
w
n
p
ar
a
m
eter
s
o
f
t
h
e
s
i
n
g
le
d
io
d
e
P
V
m
o
d
el.
T
h
e
v
alid
it
y
o
f
t
h
e
p
r
o
p
o
s
ed
P
V
m
o
d
el
is
v
er
i
f
ied
b
y
th
e
s
i
m
u
la
tio
n
r
e
s
u
l
ts
w
h
ic
h
ar
e
p
er
f
o
r
m
ed
u
n
d
er
d
i
f
f
er
en
t
e
n
v
ir
o
n
m
en
ta
l
co
n
d
itio
n
s
.
Ho
w
e
v
er
,
s
o
m
e
d
is
ad
v
an
ta
g
es
ar
e
also
ex
i
s
t
ed
in
th
e
o
r
ig
in
a
l
alg
o
r
ith
m
,
s
u
ch
as
n
o
n
u
n
if
o
r
m
i
n
it
ial
p
o
p
u
latio
n
,
s
lo
w
co
n
v
er
g
e
n
t
r
ate,
li
m
itat
io
n
s
in
lo
ca
l
s
ea
r
ch
in
g
ab
ilit
y
an
d
ad
ap
tiv
e
ab
ilit
y
an
d
p
r
e
m
atu
r
e
co
n
v
er
g
e
n
ce
.
P
ap
er
[
5
]
u
s
e
p
ar
ticle
s
w
ar
m
o
p
tim
izatio
n
(
P
SO)
w
it
h
i
n
v
er
s
e
b
ar
r
ier
co
n
s
tr
ain
t
is
p
r
o
p
o
s
ed
to
d
eter
m
i
n
e
t
h
e
u
n
k
n
o
w
n
P
V
m
o
d
el
p
ar
a
m
et
er
.
Dis
ad
v
a
n
ta
g
es
o
f
th
e
b
asi
c
p
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
al
g
o
r
ith
m
th
a
t,th
e
m
et
h
o
d
ea
s
il
y
s
u
f
f
er
s
f
r
o
m
t
h
e
p
ar
tial
o
p
tim
is
m
,
w
h
ich
ca
u
s
es
th
e
le
s
s
e
x
ac
t
at
t
h
e
r
e
g
u
la
ti
o
n
o
f
it
s
s
p
ee
d
an
d
th
e
d
ir
ec
tio
n
.
Mo
r
eo
v
er
,
m
a
n
y
e
v
o
lu
tio
n
ar
y
a
n
d
s
w
ar
m
in
t
ellig
e
n
ce
o
p
ti
m
izatio
n
tech
n
i
q
u
esh
a
v
e
b
ee
n
u
s
ed
to
s
o
lv
e
th
is
p
r
o
b
le
m
s
u
ch
a
s
g
en
et
ic
alg
o
r
it
h
m
s
(
G
A
)
[
6
]
-
[
7
]
,
d
if
f
er
en
tial
e
v
o
lu
tio
n
(
DE
)
[
8
]
,
p
ar
ticle
s
w
ar
m
o
p
tim
izatio
n
(
P
SO)
[
9
]
,
s
i
m
u
lated
an
n
ea
lin
g
(
S
A
)
alg
o
r
it
h
m
[
1
0
]
,
b
ac
ter
ial
f
o
r
ag
i
n
g
(
B
F)
alg
o
r
it
h
m
[
1
1
]
,
ha
r
m
o
n
y
s
ea
r
c
h
alg
o
r
ith
m
(
HS
A
)
[
1
2
]
,
an
d
ar
tif
icial
b
ee
co
lo
n
y
(
A
B
C
)
al
g
o
r
ith
m
[
1
3
]
.
A
L
A
B
VI
E
W
s
i
m
u
lato
r
f
o
r
p
h
o
to
v
o
ltaic
(
P
V)
s
y
s
te
m
s
is
p
r
esen
ted
in
[
1
5]
-
[
16
].
T
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
๏ฒ
Th
e
Lin
ea
r
Mo
d
el
o
f a
P
V
m
o
d
u
el
(
Mo
h
a
med
A
b
d
-
El
-
Ha
ke
e
m
Mo
h
a
med
)
901
A
ll
o
f
th
e
p
r
ev
io
u
s
l
y
m
e
n
tio
n
ed
m
o
d
els
s
u
f
f
er
f
r
o
m
h
i
g
h
co
m
p
u
tatio
n
a
l
ti
m
e
d
u
e
to
t
h
eir
d
ep
e
n
d
en
c
y
o
n
co
m
p
le
x
tr
an
s
ce
n
d
e
n
tal
i
m
p
lic
it e
q
u
atio
n
s
.
I
n
t
h
is
p
ap
er
a
f
i
v
e
p
ar
a
m
eter
s
ex
tr
ac
tio
n
m
ai
n
l
y
b
ased
o
n
a
lin
ea
r
izatio
n
m
et
h
o
d
is
p
r
es
en
ted
.
T
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
esti
m
ate
t
h
e
p
ar
am
eter
o
f
a
p
v
w
it
h
o
u
t
an
y
th
e
co
n
v
er
s
io
n
p
r
o
b
le
m
.
An
d
also
,
th
e
n
u
m
b
er
o
f
iter
atio
n
ti
m
es
i
s
d
eter
m
in
ed
.
s
o
th
e
ca
lc
u
lat
io
n
ti
m
e
is
d
ec
r
esed
T
h
e
p
r
ed
icted
I
-
V
an
d
P
-
V
c
u
r
v
e
s
ar
e
co
m
p
ar
ed
w
it
h
ex
p
er
i
m
e
n
tal
d
ata
to
co
n
clu
d
e
o
n
th
e
v
alid
it
y
o
f
th
e
m
o
d
el
a
n
d
th
e
f
o
llo
w
ed
p
r
o
ce
d
u
r
e.
2.
NO
N
L
I
N
E
AR
M
O
DE
L
O
F
P
H
O
T
O
VO
L
T
A
I
C
M
O
DU
LE
Fig
u
r
e
1
.
s
h
o
w
s
t
h
e
eq
u
i
v
ale
n
t
cir
cu
it f
o
r
a
P
V
ce
ll.
T
h
e
o
u
tp
u
t c
u
r
r
en
t o
f
t
h
e
eq
u
i
v
alen
t c
ir
cu
it,
,
ca
n
b
e
ex
p
r
ess
ed
as a
f
u
n
ctio
n
o
f
th
e
P
V
ce
llโs v
o
lta
g
e,
[
1
]
:
Fig
u
r
e
1
.
E
q
u
iv
alen
t
cir
cu
it o
f
a
p
h
o
to
v
o
ltaic
ce
l
l u
s
in
g
T
h
e
s
in
g
le
ex
p
o
n
e
n
tial
m
o
d
u
le
(
)
(
1
)
I
n
th
e
ab
o
v
e
eq
u
atio
n
,
Vt
i
s
t
h
e
j
u
n
ctio
n
t
h
er
m
al
v
o
ltag
e
:
(
2
)
W
h
er
e
k
is
th
e
B
o
ltz
m
an
n
co
n
s
tan
t (
1
.
3
8
x
1
0
-
2
3
J
K
-
1
)
,
q
is
th
e
elec
tr
o
n
ic
ch
ar
g
e
(
1
.
6
0
2
x
1
0
-
19
C
)
,
T
is
th
e
ce
ll
te
m
p
er
atu
r
e
(
K)
;
A
is
t
h
e
d
io
d
e
id
ea
lity
f
ac
to
r
,
th
e
s
er
ie
s
r
esis
ta
n
ce
(
ฮฉ
)
an
d
is
th
e
s
h
u
n
t
r
esis
ta
n
ce
(
ฮฉ
)
.
n
s
is
t
h
e
n
u
m
b
er
o
f
ce
l
ls
co
n
n
ec
ted
i
n
s
er
ies.
E
q
u
at
io
n
(
1
)
ca
n
b
e
w
r
i
tten
f
o
r
t
h
e
t
h
r
e
e
k
e
y
-
p
o
in
ts
o
f
t
h
e
V
-
I
ch
ar
ac
ter
is
tic:
=
(
3
)
(
4
)
=
(
5
)
An
ad
d
itio
n
al
eq
u
atio
n
ca
n
b
e
d
er
iv
ed
u
s
i
n
g
t
h
e
f
ac
t th
a
t is o
n
th
e
P
-
V
c
h
ar
ac
ter
is
tic
o
f
th
e
p
an
el,
at
th
e
MP
P
,
th
e
d
er
iv
ati
v
e
o
f
p
o
w
er
w
i
th
v
o
ltag
e
is
ze
r
o
.
|
(
)
(
)
(
6
)
T
h
e
f
if
t
h
eq
u
atio
n
ca
n
b
e
d
er
iv
ed
u
s
i
n
g
th
e
f
ac
t t
h
at
is
o
n
th
e
P
-
I
ch
ar
ac
ter
is
tics
o
f
a
P
V
s
y
s
te
m
at
t
h
e
m
ax
i
m
u
m
p
o
w
er
p
o
in
t,
t
h
e
d
er
iv
ati
v
e
o
f
p
o
w
er
w
it
h
r
esp
ec
t
to
cu
r
r
en
t is ze
r
o
.
Evaluation Warning : The document was created with Spire.PDF for Python.
๏ฒ
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
2
,
J
u
n
e
2
0
1
7
:
900
โ
9
0
6
902
|
(
)
(
)
(
)
E
q
u
atio
n
s
.
(
3
)
a
n
d
(
5
)
ca
n
b
e
i
n
s
er
ted
in
to
E
q
u
at
io
n
(
4
)
,
w
h
i
ch
w
ill ta
k
e
th
e
f
o
r
m
(
)
(
8
)
T
h
e
f
ir
s
t e
q
u
atio
n
s
w
h
en
co
n
s
t
r
u
ctin
g
t
h
e
m
o
d
el
ar
e
th
e
e
x
p
r
ess
io
n
s
o
f
I
o
f
r
o
m
E
q
u
atio
n
(
3
)
an
d
I
p
h
f
r
o
m
E
q
u
atio
n
(
5
)
,
in
ST
C
F5
=I
o
-
(
)
(
9
)
(
1
0
)
T
h
e
ef
f
ec
ts
o
f
th
e
e
n
v
ir
o
n
m
e
n
t,
e.
g
.
te
m
p
er
at
u
r
e
an
d
ir
r
ad
ian
ce
o
n
th
e
v
al
u
es
o
f
(
I
s
c,
Vo
c,
I
m
,
an
d
V
m
)
ar
e
in
cl
u
d
e
w
ith
d
i
f
f
er
en
m
eth
o
d
s
[
13
]
-
[
14
].
3.
L
I
N
E
AR
M
O
DE
L
O
F
P
H
O
T
O
VO
L
T
AIC M
O
DULE
T
h
e
m
ain
o
b
j
ec
tiv
e
o
f
li
n
ea
r
i
za
tio
n
is
to
tr
an
s
f
o
r
m
a
n
d
el
e
m
ai
n
te
t
h
e
n
o
n
li
n
ea
r
it
y
m
o
d
el
o
f
a
p
v
m
o
d
u
el
in
to
a
s
i
m
p
le
eq
u
i
v
alen
t
m
o
d
el
.
T
h
e
lin
ea
r
ized
s
y
s
te
m
o
f
a
p
v
m
o
d
u
el
ca
n
b
e
w
r
itte
n
co
r
r
esp
o
n
d
in
g
to
eq
u
atio
n
s
(
1
,
6
-
1
0
)
r
esp
ec
tiv
el
y
as
f
o
llo
w
(
)
W
h
er
e
[
]
(
)
(
)
(
13
)
[
]
(
)
(
)
(
15
)
[
]
(
)
(
)
(
17
)
T
h
e
Gau
s
s
โ
J
o
r
d
an
eli
m
in
at
io
n
m
et
h
o
d
is
a
s
u
i
tab
le
tec
h
n
iq
u
e
f
o
r
s
o
lv
i
n
g
s
y
s
te
m
s
o
f
lin
ea
r
eq
u
atio
n
s
o
f
an
y
s
ize.
T
h
is
m
et
h
o
d
in
v
o
lv
es
a
s
eq
u
e
n
ce
o
f
o
p
er
atio
n
s
o
n
a
s
y
s
te
m
o
f
lin
ea
r
eq
u
atio
n
s
to
o
b
tain
at
ea
ch
s
tag
e
a
n
eq
u
i
v
ale
n
t
s
y
s
te
m
t
h
a
t
is
,
a
s
y
s
te
m
h
a
v
i
n
g
th
e
s
a
m
e
s
o
lu
tio
n
a
s
t
h
e
o
r
ig
i
n
al
s
y
s
te
m
.
T
h
e
r
ed
u
ctio
n
i
s
co
m
p
lete
w
h
en
th
e
o
r
ig
i
n
al
s
y
s
te
m
h
as
b
ee
n
tr
a
n
s
f
o
r
m
ed
s
o
th
at
it
is
in
a
ce
r
tai
n
s
tan
d
ar
d
f
o
r
m
f
r
o
m
w
h
ic
h
th
e
s
o
l
u
tio
n
ca
n
b
e
ea
s
il
y
r
ea
d
as f
o
llo
w
.
(
)
T
h
e
co
n
s
tan
ts
C
I
,
C
G
,
C
T
ar
e
d
ef
in
ed
i
n
th
e
ap
p
en
d
i
x
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
๏ฒ
Th
e
Lin
ea
r
Mo
d
el
o
f a
P
V
m
o
d
u
el
(
Mo
h
a
med
A
b
d
-
El
-
Ha
ke
e
m
Mo
h
a
med
)
903
4.
L
I
N
E
AR
M
O
DE
L
E
ST
I
M
A
T
I
O
N
A
L
G
O
R
I
T
H
M
O
F
A
P
V
P
ANEL
T
h
e
esti
m
atio
n
al
g
o
r
ith
m
o
f
l
in
ea
r
m
o
d
el
o
f
a
p
v
m
o
d
u
el
f
o
r
v
ar
io
u
s
te
m
p
er
at
u
r
e
an
d
ir
r
ad
ian
ce
co
n
d
itio
n
s
,
ar
e
d
e
s
cr
ib
ed
in
th
e
f
o
llo
w
in
g
s
tep
s
:
a.
Step
1:
T
h
is
s
tep
is
ex
ec
u
te
d
o
n
e
ti
m
e
o
n
l
y
to
d
eter
m
in
e
th
e
f
ir
s
t
o
p
er
atin
g
p
o
in
t
a
s
d
is
cu
s
s
ed
in
[
1
7
]
.
Ne
w
to
n
-
R
ap
h
s
o
n
m
eth
o
d
is
u
s
ed
to
ca
lcu
late
t
h
e
th
r
ee
u
n
k
n
o
w
n
p
ar
a
m
e
ter
s
(
R
s
,
A,
an
d
R
s
h
)
o
f
P
V
p
a
n
el
m
o
d
el
u
s
i
n
g
E
q
u
atio
n
s
.
(
6
)
,
(
7
)
an
d
(
8
)
th
e
o
th
er
p
ar
am
eter
s
(
)
ar
e
ca
lcu
la
ted
d
ir
ec
tl
y
f
r
o
m
E
q
u
at
io
n
s
(
9
-
1
0
)
r
esp
ec
tiv
el
y
.
b.
Step
2
:
th
e
n
u
m
b
er
o
f
iter
atio
n
s
is
d
eter
m
in
ed
e
x
ac
tl
y
a
s
f
o
llo
w
(
)
(
)
(
1
9
)
W
h
er
e
ar
e
ch
o
s
en
ac
co
r
d
in
g
to
ac
cu
r
ac
y
r
eq
u
ir
e
m
e
n
t
c.
Step
3
:
th
e
p
ar
am
e
ter
s
o
f
a
p
v
m
o
d
el
ar
e
ca
lcu
lated
b
ased
o
n
eq
u
atio
n
s
(
17
)
as f
o
llo
w
(
)
(
20
)
T
h
is
s
tep
is
r
ep
ea
ted
b
asen
o
n
:
th
e
n
u
m
b
er
o
f
i
ter
atio
n
s
w
h
i
ch
ar
e
ca
lcu
lated
in
s
tep
2
d.
Step
4
:
T
h
e
E
q
u
atio
n
1
8
is
u
s
ed
f
o
r
esti
m
atio
n
o
f
I
-
V
cu
r
v
e
s
o
f
p
h
o
to
v
o
ltaic
(
P
V)
at
v
ar
io
u
s
en
v
ir
o
n
e
m
e
n
t c
o
n
d
it
io
n
s
w
h
er
e.
(
)
(
)
5.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
ON
I
n
th
i
s
s
t
u
d
y
,
K
C
2
0
0
GT
(
m
u
lt
icr
y
s
tal)
s
o
lar
m
o
d
u
le
is
u
s
ed
to
en
s
u
r
e
t
h
e
e
f
f
ec
t
iv
e
n
es
s
o
f
p
r
o
p
o
s
ed
m
o
d
el.
T
h
e
t
y
p
ical
e
lectr
ical
ch
ar
ac
ter
is
tic
s
o
f
t
h
ese
P
V
m
o
d
u
les
u
n
d
er
th
e
s
tan
d
ar
d
tes
t
co
n
d
itio
n
s
(
ST
C
)
(
m
o
d
u
le
te
m
p
er
at
u
r
e,
2
5
โฆ
C
,
A
M
1
.
5
s
p
ec
tr
u
m
,
ir
r
ad
ian
ce
1
0
0
0
W
/m
2
)
ar
e
lis
ted
in
T
ab
le
1
.
T
ab
le
1
.
Sh
o
w
s
t
h
e
d
ata
o
b
tain
ed
f
r
o
m
t
h
e
d
atas
h
ee
t
f
o
r
KC
2
0
0
G
T
s
o
lar
m
o
d
u
le
at
2
5
โฆ
C
,
A
M1
.
5
,
an
d
1
0
0
0
W
/m
2
.
P
a
r
a
me
t
e
r
K
C
2
0
0
G
T
so
l
a
r
mo
d
u
l
e
M
a
x
i
m
u
mP
o
w
e
r
(
P
mp
p
)
2
0
0
W
M
a
x
i
m
u
m
P
o
w
e
r
V
o
l
t
a
g
e
(
V
mp
p
)
2
6
.
3
V
M
a
x
i
m
u
m
P
o
w
e
r
C
u
r
r
e
n
t
(
I
mp
p
)
7
.
6
1
A
O
p
e
n
C
i
r
c
u
i
t
V
o
l
t
a
g
e
(
V
o
c
)
3
2
.
9
V
S
h
o
r
t
C
i
r
c
u
i
t
C
u
r
r
e
n
t
(
I
sc)
8
.
2
1
A
T
e
mp
e
r
a
t
u
r
e
C
o
e
f
f
i
c
i
e
n
t
o
f
V
o
c
(
K
v
)
-
0
.
1
2
3
V
/
o
C
T
e
mp
e
r
a
t
u
r
e
C
o
e
f
f
i
c
i
e
n
t
o
f
I
sc
(
K
i
)
+
3
.
1
8
mA
/
o
C
n
u
m
b
e
r
o
f
c
e
l
l
s (n
s)
54
A
cc
o
r
d
in
g
to
th
e
alg
o
r
it
h
m
wh
ich
i
s
p
r
esen
ted
in
Sectio
n
4
,
th
e
f
ir
s
t
o
p
er
atin
g
p
o
in
t
i
s
d
eter
m
in
e
d
as
f
o
llo
w
.
T
h
ese
v
al
u
e
s
ar
e
u
s
ed
in
f
ir
s
t
t
i
m
e
o
n
l
y
.
T
h
e
v
a
lid
it
y
o
f
th
e
p
r
o
p
o
s
ed
f
o
r
th
e
P
V
m
o
d
u
les
u
n
d
er
d
if
f
er
e
n
t
e
n
v
ir
o
n
m
en
tal
co
n
d
i
tio
n
s
.
Fi
g
u
r
e
2
s
h
o
w
s
t
h
e
I
-
V
m
o
d
el
c
u
r
v
e
s
b
ased
eq
u
atio
n
(
1
8
)
,
an
d
th
e
d
ata
s
h
ee
t
o
f
t
h
e
KC
2
0
0
GT
P
V
m
o
d
u
le
u
n
d
er
d
if
f
er
e
n
t te
m
p
er
atu
r
e
co
n
d
itio
n
s
.
I
t
ca
n
b
e
d
e
m
o
n
s
tr
ated
th
at
t
h
e
I
-
V
cu
r
v
e
s
o
f
t
h
e
p
r
o
p
o
s
ed
m
o
d
el
co
in
cid
e
w
i
th
t
h
e
e
x
p
er
i
m
e
n
t
al
d
ata.
T
h
is
d
is
tin
g
u
i
s
h
es
t
h
e
h
ig
h
ac
c
u
r
ac
y
o
f
th
e
p
r
o
p
o
s
ed
P
V
m
o
d
el.
T
h
e
s
i
m
u
lat
io
n
r
es
u
lts
o
f
t
h
e
p
r
o
p
o
s
ed
m
o
d
el
an
d
th
e
e
x
p
er
i
m
e
n
tal
d
ata
o
f
t
h
i
s
P
V
m
o
d
u
le
u
n
d
er
d
if
f
er
en
t
ir
r
ad
ia
tio
n
co
n
d
itio
n
s
ar
e
in
d
icate
d
in
Fi
g
u
r
e
3
.
No
d
ev
iatio
n
s
ca
n
b
e
n
o
ticed
b
et
w
ee
n
th
e
s
i
m
u
latio
n
an
d
ex
p
er
i
m
en
t
al
r
esu
lt
s
.
T
h
is
r
ep
r
esen
ts
t
h
e
v
er
if
ica
tio
n
o
f
t
h
e
v
alid
it
y
o
f
t
h
e
lin
ea
r
P
V
m
o
d
el
Evaluation Warning : The document was created with Spire.PDF for Python.
๏ฒ
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
2
,
J
u
n
e
2
0
1
7
:
900
โ
9
0
6
904
T
ab
le
2
.
I
d
en
tif
icatio
n
o
f
f
ir
s
t
o
p
er
atin
g
p
o
in
t
P
a
r
a
me
t
e
r
V
=
V
o
c
,
I
=
0
(
a
r
b
i
t
r
y
)
T
=
a
t
2
5
โฆ
C
,
a
n
d
G
=
1
0
0
0
W
/
m2
(
a
r
b
i
t
r
y
)
A
=
1
.
5
6
1
1
R
sh
=
2
.
8
8
6
0
e
+
0
6
R
s =
2
.
5
2
4
1
e
-
01
de
t
e
r
mi
n
e
d
u
s
i
n
g
N
e
w
t
o
n
-
R
a
p
h
so
n
b
a
se
d
o
n
e
q
u
a
t
i
o
n
s(
6
-
8)
1
.
4
3
5
2
e
-
06
=
4
.
8
d
e
t
e
r
mi
n
e
d
u
s
i
n
g
e
q
u
a
t
i
o
n
s(
9
-
1
0
)
Fig
u
r
e
2
.
Vo
ltag
e
cu
r
r
en
t c
h
ar
ac
ter
is
tics
o
f
at
d
if
f
er
e
n
t
te
m
p
er
at
u
r
e
Fig
u
r
e
3
.
Vo
ltag
e
cu
r
r
en
t c
h
ar
ac
ter
is
tics
at
d
if
f
er
e
n
t
ir
r
ad
iatio
n
T
o
ev
alu
ate
ac
cu
r
ac
y
o
f
t
h
e
p
r
o
p
o
s
ed
m
o
d
el
,
th
e
co
r
r
esp
o
n
d
in
g
n
o
r
m
a
lized
r
o
o
t
m
ea
n
s
q
u
ar
e
er
r
o
r
p
er
ce
n
tag
e
[
n
R
MSE
(
%)]
ar
e
ca
lcu
lated
at
d
if
f
er
en
t
co
n
d
iti
o
n
s
a
n
d
it
co
m
p
ar
ed
w
it
h
[
n
R
MSE
(
%)
o
f
a
n
ac
cu
r
ate
w
h
ic
h
ar
e
g
i
v
e
n
i
n
[
1
8
]
-
[
1
9
]
.
T
a
b
le
3
g
iv
e
s
t
h
e
c
o
r
r
esp
o
n
d
in
g
n
o
r
m
alize
d
r
o
o
t
m
ea
n
s
q
u
ar
e
er
r
o
r
p
er
ce
n
tag
e
[
n
R
MSE
(
%)]
ca
lc
u
lated
b
y
โ
โ
(
)
โ
โ
(
)
w
h
er
e
E
i
i
s
t
h
e
e
s
ti
m
ated
v
a
l
u
e,
an
d
T
i
i
s
tr
u
e
v
a
lu
e
s
o
b
t
ain
ed
f
r
o
m
d
ata
s
h
ee
t.
T
ab
le
2
g
iv
e
s
t
h
e
e
v
al
u
ated
n
R
M
SE(
%)
f
r
o
m
R
ef
.
[
1
9
]
an
d
ev
alu
a
ted
n
R
M
SE(
%)
co
r
r
esp
o
n
d
in
g
to
th
e
th
eo
r
etica
l
1
-
5
cu
r
v
es
(
F
ig
u
r
e
2
-
3
)
it
ca
n
b
e
s
ee
n
f
r
o
m
th
i
s
tab
le
I
I
,
th
e
l
in
ea
r
m
o
d
el
h
as
p
r
esen
ted
th
e
b
est
ac
cu
r
ac
y
u
n
d
er
d
if
f
er
en
t
co
n
d
itio
n
s
.
I
n
ad
d
itio
n
al
to
,
t
h
e
n
u
m
b
er
o
f
tu
n
ab
le
p
ar
a
m
eter
s
ar
e
lo
w
er
ed
.
T
ab
le
2
.
E
NR
MSE
(
%)
o
f
th
e
d
if
f
er
e
n
t
P
V
m
o
d
els
f
o
r
KC
2
0
0
G
T
m
o
d
u
el
G
=
1
0
0
0
T
=
2
5
G
=
6
0
0
T
=
2
5
G
=
2
0
0
T
=
2
5
N
R
M
S
E(
%
O
F
M
O
D
EL
E
I
N
[
1
8
]
6
.
3
5
[
1
8
]
4
.
3
6
[
1
8
]
6
.
5
5
[
1
8
]
N
R
M
S
E(
%
O
F
M
O
D
EL
E
I
N
[
1
9
]
1
.
1
2
[
1
8
]
2
.
1
5
[
1
8
]
1
.
2
9
[
1
8
]
N
R
M
S
E(
%
O
F
T
H
I
S
W
O
R
K
0
.
4
7
0
.
5
7
0
.
6
6
T
ab
le
3
g
iv
es
t
h
e
ev
al
u
ated
n
R
M
SE(
%)
co
r
r
e
s
p
o
n
d
in
g
to
th
e
th
eo
r
etica
l
1
โ
5
cu
r
v
es
b
ased
lin
ea
r
m
o
d
el
a
n
d
ex
p
er
i
m
e
n
tal
d
ata
f
o
r
KC
2
0
0
GT
at
d
if
f
er
en
t
te
m
p
er
at
u
r
es
.
I
t
ca
n
b
e
o
b
s
er
v
e
d
th
at
th
e
t
h
eo
r
etica
l
1
โ
5
cu
r
v
es
ar
e
s
u
f
f
icie
n
tl
y
a
cc
u
r
ate
f
o
r
th
e
ex
p
er
i
m
e
n
tal
d
ata.
T
h
is
p
r
o
v
es
th
e
v
alid
it
y
o
f
th
e
p
r
o
p
o
s
ed
p
ar
am
eter
id
en
tific
atio
n
tec
h
n
i
q
u
e
f
o
r
P
V
m
o
d
u
les.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
๏ฒ
Th
e
Lin
ea
r
Mo
d
el
o
f a
P
V
m
o
d
u
el
(
Mo
h
a
med
A
b
d
-
El
-
Ha
ke
e
m
Mo
h
a
med
)
905
T
ab
le
2
.
NR
MSE
(
%)
o
f
th
e
li
n
ea
r
m
o
d
el
at
d
if
f
er
en
t te
m
p
er
atu
r
e
G
T
NR
MSE
(
%)
1000
25
0
.
4
7
1000
50
0
.
3
9
1000
75
0
.
6
9
6.
CO
NCLU
SI
O
N
T
h
e
tar
g
et
o
f
t
h
is
s
tu
d
y
is
to
o
b
tain
an
li
n
ea
r
P
V
m
o
d
el
w
h
ic
h
p
la
y
s
an
i
m
p
o
r
tan
t
r
o
l
e
in
li
n
ea
r
co
n
tr
o
l
ap
p
r
o
ac
h
an
d
s
im
u
lat
io
n
s
t
u
d
ies
o
f
t
h
e
P
V
p
o
w
er
s
y
s
te
m
s
.
T
h
e
m
a
th
e
m
atica
l
m
o
d
el
o
f
t
h
e
P
V
m
o
d
u
le
is
a
n
o
n
li
n
ea
r
I
-
V
c
h
ar
ac
ter
is
tic
th
at
i
n
cl
u
d
es
s
e
v
e
r
al
u
n
k
n
o
w
n
p
ar
a
m
eter
s
b
ec
a
u
s
e
o
f
t
h
e
li
m
ited
in
f
o
r
m
atio
n
p
r
o
v
id
ed
b
y
t
h
e
P
V
m
a
n
u
f
ac
t
u
r
er
s
.
So
,
a
lin
ea
r
m
o
d
el
o
f
p
h
o
to
v
o
lta
i
c
p
a
n
els
h
as
b
ee
n
d
e
v
elo
p
ed
an
d
i
m
p
le
m
en
ted
.
Fro
m
th
e
p
r
esen
t a
n
al
y
s
i
s
,
o
n
e
ca
n
d
r
a
w
t
h
e
f
o
llo
w
i
n
g
m
ai
n
co
n
cl
u
s
io
n
s
:
1.
T
h
e
p
r
o
p
o
s
ed
m
eth
o
d
esti
m
at
e
th
e
p
ar
a
m
eter
o
f
a
p
v
w
it
h
o
u
t a
n
y
t
h
e
co
n
v
er
s
io
n
p
r
o
b
le
m
.
2.
T
h
e
ca
lcu
lated
(
I
-
V)
c
u
r
v
e
s
b
ased
o
n
p
r
o
p
o
s
ed
m
o
d
el
ar
e
in
g
o
o
d
ag
r
ee
m
e
n
t
w
i
th
th
e
ex
p
er
im
e
n
ta
l
d
ata
o
f
KC
2
0
0
G
T
m
o
d
u
le
f
o
r
d
if
f
er
en
t
e
f
f
ec
t
s
o
f
t
h
e
en
v
ir
o
n
m
en
t
(
te
m
p
er
atu
r
e
an
d
i
r
r
ad
ian
ce
)
.
A
l
s
o
,
th
e
m
ax
i
m
u
m
v
alu
e
o
f
co
r
r
esp
o
n
d
in
g
n
o
r
m
alize
d
r
o
o
t
m
ea
n
s
q
u
ar
e
er
r
o
r
p
er
ce
n
tag
e
[
n
R
MSE
(
%)]
less
t
h
an
1
%
3.
Th
e
p
r
o
p
o
s
ed
m
o
d
el
ca
n
b
e
u
s
ed
f
o
r
li
n
ea
r
co
n
tr
o
l
ap
p
r
o
ac
h
a
n
d
s
i
m
u
late
lar
g
e
-
s
ca
le
P
V
s
y
s
te
m
s
w
it
h
lo
w
-
co
s
t c
o
m
p
u
ter
p
latf
o
r
m
s
AP
P
E
NDI
X
By
s
i
m
p
li
f
ica
tio
n
o
f
eq
u
a
tio
n
s
(
1
3
-
1
7
)
,
C
I
,
C
G
,
C
T
ca
n
b
e
d
ef
i
n
ed
as f
o
llo
w
C
I
=
C
T
=
w
h
er
e
(
)
,
c4
=
,
(
)
,
(
(
)
)
(
)
(
(
)
)
(
)
(
)
,
(
)
+
(
)
(
)
+
+
(
)
C
13=
(
)
,C
14=
(
)
(
(
)
(
)
)
Evaluation Warning : The document was created with Spire.PDF for Python.
๏ฒ
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
2
,
J
u
n
e
2
0
1
7
:
900
โ
9
0
6
906
(
)
(
(
)
)
(
(
)
)
RE
F
E
R
E
NC
E
S
[1
]
J.
S
.
C.
M
.
Ra
j
a
n
d
A
.
E.
Je
y
a
k
u
m
a
r
,
โ
A
n
o
v
e
l
m
a
x
i
m
u
m
p
o
w
e
r
p
o
i
n
t
trac
k
in
g
tec
h
n
iq
u
e
f
o
r
p
h
o
t
o
v
o
lt
a
ic
m
o
d
u
le
b
a
se
d
o
n
p
o
w
e
r
p
lan
e
a
n
a
ly
si
s
o
f
I
-
V
c
h
a
ra
c
teristics
,
โ
IEE
E
T
ra
n
s.
I
n
d
.
El
e
c
tro
n
.
,
v
o
l.
6
1
,
n
o
.
9
,
p
p
.
4
7
3
4
โ
4
7
4
5
,
2
0
1
4
.
[2
]
L
i
Ho
n
g
Id
ris
L
i
m
,
Zh
e
n
Ye
,
Jia
y
in
g
Ye
,
Da
z
h
i
Ya
n
g
,
a
n
d
Hu
i
Du
โ
A
L
in
e
a
r
Id
e
n
ti
f
ica
ti
o
n
o
f
Dio
d
e
M
o
d
e
ls
f
ro
m
S
in
g
le I
-
V Ch
a
ra
c
teristics
o
f
P
V
P
a
n
e
ls,
โ
I
EE
E
T
r
a
n
s.
In
d
.
El
e
c
tro
n
.
,
v
o
l
.
6
2
,
n
o
.
7
,
p
p
.
4
1
8
1
โ
4
1
9
3
,
2
0
1
5
.
[3
]
M
o
h
a
m
m
a
d
He
jri
,
Ho
ss
e
in
M
o
k
h
tari,
M
o
h
a
m
m
a
d
Re
z
a
Az
izia
n
,
M
e
h
rd
a
d
G
h
a
n
d
h
a
ri,
a
n
d
L
e
n
n
a
rt
S
ยจo
d
โ
On
t
h
e
P
a
ra
m
e
ter
E
x
trac
ti
o
n
o
f
a
F
iv
e
-
P
a
ra
m
e
ter
Do
u
b
le
-
Dio
d
e
M
o
d
e
l
o
f
P
h
o
to
v
o
lt
a
ic
Ce
ll
s
a
n
d
M
o
d
u
les
,
โ
IEE
E
J
OU
RNA
L
OF
PHOTOVOL
T
AIC
S
,
V
OL
.
4
,
NO
.
3
,
M
A
Y 2
0
1
5
[4
]
Ha
n
y
M
.
Ha
s
a
n
ien
โ
A
S
h
u
ffled
F
ro
g
L
e
a
p
in
g
A
l
g
o
rit
h
m
f
o
r
P
h
o
to
v
o
lt
a
ic
M
o
d
e
l
Id
e
n
ti
f
ica
ti
o
n
โ
IEE
E
T
RA
NS
AC
T
IO
NS
ON
S
US
T
AINA
BL
E
ENE
RG
Y
.
,
v
o
l
.
6
,
n
o
.
2
,
p
p
.
5
0
9
-
5
1
5
,
2
0
1
5
.
[5
]
J.
J.
S
o
o
n
a
n
d
K.
-
S
.
L
o
w
,
โ
P
h
o
t
o
v
o
lt
a
ic
m
o
d
e
l
id
e
n
ti
f
ica
ti
o
n
u
sin
g
p
a
rti
c
le
s
wa
r
m
o
p
ti
m
i
z
a
ti
o
n
w
it
h
in
v
e
rse
b
a
rrier
c
o
n
stra
in
t,
โ
I
EE
E
T
r
a
n
s.
Po
we
r E
lec
tro
n
.
,
v
o
l
.
2
7
,
n
o
.
9
,
p
p
.
3
9
7
5
โ
3
9
8
3
,
S
e
p
.
2
0
1
2
.
[6
]
M
.
Diz
q
a
h
,
A
.
M
.
Kris
h
n
a
,
a
n
d
K.
Bu
sa
w
o
n
,
โ
A
n
a
c
c
u
ra
te
m
e
t
h
o
d
f
o
r
th
e
P
V
m
o
d
e
l
id
e
n
ti
f
ica
ti
o
n
b
a
se
d
o
n
a
g
e
n
e
ti
c
a
lg
o
rit
h
m
a
n
d
th
e
in
terio
r
p
o
i
n
t
m
e
th
o
d
,
โ
Re
n
e
w.
En
e
rg
y
,
v
o
l.
7
2
,
p
p
.
2
1
2
โ
2
2
2
,
De
c
.
2
0
1
4
.
[7
]
Is
m
a
il
,
M
.
S
.
,
M
.
M
o
g
h
a
v
v
e
m
i,
a
n
d
T
.
M
.
I
.
M
a
h
li
a
.
โ
Ch
a
ra
c
teriz
a
ti
o
n
o
f
P
V
p
a
n
e
l
a
n
d
g
lo
b
a
l
o
p
ti
m
iz
a
ti
o
n
o
f
it
s
m
o
d
e
l
p
a
ra
m
e
ters
u
sin
g
g
e
n
e
ti
c
a
lg
o
rit
h
m
,
โ
En
e
rg
y
Co
n
v
e
rs
.
M
a
n
a
g
e
.
,
v
o
l.
7
3
,
p
p
.
1
0
โ
2
5
,
S
e
p
.
2
0
1
3
.
[8
]
W
.
G
o
n
g
a
n
d
Z.
Ca
i,
โ
P
a
ra
m
e
ter
e
x
trac
ti
o
n
o
f
so
lar
c
e
ll
m
o
d
e
ls
u
sin
g
re
p
a
ired
a
d
a
p
ti
v
e
d
iffer
e
n
ti
a
l
e
v
o
lu
ti
o
n
,
โ
S
o
l.
En
e
rg
y
,
v
o
l.
9
4
,
p
p
.
2
0
9
โ
2
2
0
,
A
u
g
.
2
0
1
3
.
[9
]
K.
M
.
El
-
Na
g
g
a
r,
M
.
R.
A
lras
h
id
i,
M
.
F
.
A
lh
a
jri
,
a
n
d
A
.
K.
A
l
-
Oth
m
a
n
,
โ
S
im
u
late
d
a
n
n
e
a
li
n
g
a
lg
o
rit
h
m
f
o
r
p
h
o
to
v
o
lt
a
ic
p
a
ra
m
e
ters
id
e
n
ti
f
ic
a
ti
o
n
,
โ
S
o
l
.
En
e
r
g
y
,
v
o
l.
8
6
,
n
o
.
1
,
p
p
.
2
6
6
โ
2
7
4
,
Ja
n
.
2
0
1
2
.
[1
0
]
N.
Ra
jas
e
k
a
r,
N.
K.
Ku
m
a
r,
a
n
d
R.
V
e
n
u
g
o
p
a
lan
,
โ
Ba
c
teria
l
f
o
ra
g
in
g
a
l
g
o
rit
h
m
b
a
se
d
so
la
r
P
V
p
a
ra
m
e
t
e
r
e
sti
m
a
ti
o
n
,
โ
S
o
l.
E
n
e
rg
y
,
v
o
l
.
9
7
,
p
p
.
2
5
5
โ
2
6
5
,
N
o
v
.
2
0
1
3
.
[1
1
]
A
s
k
a
rz
a
d
e
h
a
n
d
A
.
Re
z
a
z
a
d
e
h
,
โ
P
a
ra
m
e
ter
id
e
n
ti
f
ica
ti
o
n
f
o
r
so
lar
c
e
ll
m
o
d
e
ls
u
sin
g
h
a
r
m
o
n
y
se
a
rc
h
-
b
a
se
d
a
lg
o
rit
h
m
s,โ
S
o
l.
E
n
e
rg
y
,
v
o
l.
8
6
,
n
o
.
1
2
,
p
p
.
3
2
4
1
โ
3
2
4
9
,
No
v
.
2
0
1
2
.
[1
2
]
Oliv
a
,
Die
g
o
,
Eri
k
Cu
e
v
a
s,
a
n
d
G
o
n
z
a
lo
P
a
jare
s.
"
P
a
ra
m
e
ter
id
e
n
ti
f
ica
ti
o
n
o
f
so
lar
c
e
ll
s
u
si
n
g
a
rt
if
icia
l
b
e
e
c
o
lo
n
y
o
p
ti
m
iza
ti
o
n
.
"
En
e
rg
y
7
2
(
2
0
1
4
)
:
9
3
-
1
0
2
.
[1
3
]
Zh
o
u
,
W
e
i,
Ho
n
g
x
in
g
Ya
n
g
,
a
n
d
Zh
a
o
h
o
n
g
F
a
n
g
.
"
A
n
o
v
e
l
m
o
d
e
l
f
o
r
p
h
o
to
v
o
lt
a
ic
a
rra
y
p
e
r
f
o
r
m
a
n
c
e
p
re
d
ictio
n
.
"
Ap
p
li
e
d
e
n
e
rg
y
8
4
.
1
2
(2
0
0
7
):
1
1
8
7
-
1
1
9
8
[1
4
]
R
Kh
e
z
z
a
r,
M
Zere
g
,
โ
Co
m
p
a
ra
ti
v
e
S
tu
d
y
o
f
M
a
th
e
m
a
ti
c
a
l
M
e
th
o
d
s
f
o
r
P
a
ra
m
e
ters
Ca
lcu
latio
n
o
f
Cu
rre
n
t
-
V
o
l
tag
e
Ch
a
ra
c
teris
ti
c
o
f
P
h
o
to
v
o
lt
a
ic M
o
d
u
leโ
,
i
n
Pro
c
.
In
t
.
Co
n
f.
El
e
c
t.
El
e
c
tro
n
.
E
n
g
.
,
No
v
.
2
0
0
9
,
p
p
.
I
-
24
โ
I
-
2
8
.
[1
5
]
A
b
d
u
lk
a
d
ir,
M
u
sa
,
A
.
S
.
S
a
m
o
sir
,
a
n
d
A
.
H.
M
.
Ya
ti
m
.
"
M
o
d
e
li
n
g
a
n
d
sim
u
latio
n
o
f
a
so
larp
h
o
to
v
o
lt
a
ic
s
y
ste
m
,
it
s
d
y
n
a
m
ics
a
n
d
tran
sie
n
t
c
h
a
ra
c
teristics
in
L
A
B
V
IEW
.
"
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
P
o
we
r
El
e
c
tro
n
ics
a
n
d
Dr
ive
S
y
ste
ms
3
.
2
(
2
0
1
3
):
1
8
5
.
[1
6
]
G
u
e
n
o
u
n
o
u
,
A
b
d
e
rre
z
a
k
,
e
t
a
l.
"
L
a
b
V
IEW
In
terf
a
c
e
f
o
r
Co
n
tr
o
ll
in
g
a
T
e
st
Be
n
c
h
f
o
r
P
h
o
t
o
v
o
lt
a
ic
M
o
d
u
les
a
n
d
Ex
t
ra
c
ti
o
n
o
f
V
a
rio
u
s
P
a
ra
m
e
ter
s."
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Po
w
e
r
El
e
c
tro
n
ics
a
n
d
Dr
ive
S
y
ste
ms
(
I
J
PE
DS
)
6
.
3
(2
0
1
5
):
4
9
8
-
5
0
8
.
[1
7
]
M
o
h
a
m
e
d
A
b
d
-
El
-
Ha
k
e
e
m
,
,
M
o
h
a
m
e
d
H.
Os
m
a
n
.
"
Ev
a
lu
a
ti
o
n
o
f
a
P
V
M
o
d
e
l
Ba
se
d
o
n
a
N
o
v
e
l
P
a
ra
m
e
te
r
Esti
m
a
ti
o
n
P
ro
c
e
d
u
re
f
o
r
Dif
f
e
r
e
n
t
M
a
n
u
f
a
c
tu
re
rs
M
o
d
u
les
.
"
J
o
u
rn
a
l
o
f
Al
-
Azh
a
r
Un
ive
rs
it
y
En
g
in
e
e
rin
g
se
c
to
r
(
J
AUES
),
.
Vo
l.
9
.
N
o
.
3
3
,
2
0
1
4
.
[1
8
]
He
jri
,
M
o
h
a
m
m
a
d
,
M
o
h
a
m
m
a
d
Re
z
a
A
z
izia
n
,
M
e
h
rd
a
d
G
h
a
n
d
h
a
ri,
a
n
d
L
e
n
n
a
rt
S
ยจ
o
d
e
r.
"
On
th
e
p
a
ra
m
e
ter
e
x
trac
ti
o
n
o
f
a
f
i
v
e
-
p
a
ra
m
e
ter
d
o
u
b
le
-
d
io
d
e
m
o
d
e
l
o
f
p
h
o
t
o
v
o
lt
a
ic
c
e
ll
s
a
n
d
m
o
d
u
les
.
"
P
h
o
to
v
o
lt
a
ic
s,
IEE
E
J
o
u
r
n
a
l
of
P
h
o
t
o
v
o
lt
a
ic
,
v
o
l.
4
,
n
o
.
3
,
9
1
5
-
9
2
3
.
m
a
y
2
0
1
4
.
[1
9
]
J.
A
.
G
o
w
a
n
d
C.
D.
M
a
n
n
in
g
,
โ
De
v
e
lo
p
m
e
n
t
o
f
a
p
h
o
to
v
o
lt
a
ic
a
rra
y
m
o
d
e
l
f
o
r
u
se
in
p
o
w
e
r
e
lec
tr
o
n
ics
sim
u
latio
n
stu
d
ies
,
โ
IEE
E
Pro
c
.
,
El
e
c
tr.
Po
w
e
r A
p
p
l.
,
v
o
l.
1
4
6
,
n
o
.
2
,
p
p
.
1
9
3
โ
2
0
0
,
M
a
r.
1
9
9
9
.
Evaluation Warning : The document was created with Spire.PDF for Python.