Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
7, N
o
. 1
,
Mar
c
h
20
16
,
pp
. 75
~84
I
S
SN
: 208
8-8
6
9
4
75
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Devel
o
p
m
ent of Class
D Invert
er
for Acoustics Energy Transfer
Implantable Devices
Huzaimah Husin*,
Shakir Saat
*, Yusmarnita
Yusop*,
Z
a
mre Ghani*,
Sing Kiong
Nguang**
* Faculty
of
Electronics and
Co
mput
er Engin
eer
ing, Univ
ersiti Tekni
kal Malay
s
ia Melaka, Malaysia
** Departmen
t
o
f
Electr
i
cal
& C
o
mputer Engin
e
er
ing,
th
e Univ
er
s
i
t
y
of Auck
land
, New
Ze
aland
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 30, 2015
Rev
i
sed
O
c
t 12
, 20
15
Accepte
d Nov 8, 2015
The working pr
inciple of half-
b
ridge
Cl
as
s
D P
a
rall
el-Res
on
ant Inver
t
er
(PRI) as power
am
plifier
is pres
ented
in
th
is pap
e
r. Sim
u
la
tion o
f
the m
ode
l
is carried out u
s
ing Proteus. In
order
to ve
rif
y
the sim
u
lat
i
on
results, an
experimental v
e
rification is done. Th
is inverter used to excite PZT
transducers at suggested resonant
frequen
c
y
of
416 kHz with
power level
transferred
thro
ugh Acoustics
Energ
y
Transfer
(AET) con
cep
t at
about 80
mW. As experimental ou
tcome
result, th
e
s
y
s
t
e
m
m
a
naged to
tr
ans
f
er en
erg
y
of 66 mW to th
e
receiver
side.
Keyword:
Acoustics E
n
ergy Tra
n
s
f
er
Class D Parallel-in
v
e
rter
Lo
w po
wer
ap
pl
i
cat
i
ons
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Huzai
m
a
h H
u
s
i
n,
Faculty of Elec
tronics and C
o
m
puter Enginnering,
Un
i
v
ersiti Tekn
ik
al Malaysia Melak
a
,
H
a
ng
Tu
ah
Jay
a
, 761
00
Du
r
i
an
Tun
g
g
a
l, Melak
a
, Malaysia.
Em
a
il: h
u
zai
mah
@
u
t
em
.ed
u
.
my
1.
INTRODUCTION
Im
pl
ant
a
bl
e m
e
di
cal
de
vi
ces
are bei
n
g ad
de
d t
o
t
h
e m
a
rket
every
y
e
a
r
e
n
orm
ousl
y
i
n
or
der t
o
assi
st
and se
rve a be
t
t
e
r heal
t
h
care of h
u
m
a
n bei
n
g
.
Thos
e de
vices are designed to be in
sert
ed
in
to
th
e p
a
t
i
en
t’s
body
for m
onitoring a
n
d/or thera
p
e
u
tic purposes such as
p
acem
akers, defibrillators, heart-assists de
vices or
im
pl
ant
e
d i
n
s
u
l
i
n
p
u
m
p
s. Al
l
of t
h
ese
de
vi
ces re
qui
re
p
o
w
er su
pp
ly in
o
r
der to
fu
n
c
tion
effectiv
ely. Maj
o
rity
o
f
m
o
d
e
rn
im
p
l
an
ted
d
e
v
i
ces
co
nsu
m
e lo
w po
wer (i
n
rang
e
o
f
hu
nd
red
s
o
f
m
W
) [1
], bu
t th
en
still req
u
i
red
up
to
10
W
of
pow
er
i
n
so
m
e
sp
ecif
i
c cases.
Th
e co
n
tinuo
us sup
p
l
y of
stab
le and
r
e
liab
l
e p
o
w
e
r
sour
ces is th
e
key problem
in de
veloping t
h
ose im
plantable de
vices
[1],
[2], [3] a
n
d [4].
Recently, va
ri
ous
technologies for
po
we
ri
n
g
im
pl
ant
a
bl
e de
vi
ces have bee
n
de
vel
o
ped
whet
h
e
r wi
t
h
a con
n
ect
i
on cabl
e
t
o
t
h
e devi
ce or
base
d
on
pe
net
r
at
i
on
of e
n
er
gy
t
h
r
o
ug
h t
h
e t
i
ssue
wi
t
h
o
u
t
any
co
nnect
i
o
ns
or
w
i
rel
e
ssl
y
.
The hi
st
ory
of i
m
plant
a
bl
e
devices
was c
o
m
p
rehensively
elaborated i
n
[5]. Meanwhile
in
[1
] -
[4
] and [
6
] ind
i
cat
ed t
h
at the c
u
rrent
trend
of
po
we
ri
n
g
i
m
pl
ant
a
bl
e devi
ces are t
o
wa
rd t
o
wi
rel
e
ssl
y
or t
e
l
e
m
e
t
r
y
m
e
t
hod. T
h
i
s
i
s
due t
o
t
h
e n
eeds
o
f
r
e
du
cing
or
elimin
atin
g
th
e ted
i
ou
s pr
ocesses o
f
ch
ang
i
ng
t
h
e batteries that
m
a
y occur s
u
ch as tra
u
m
a
to the
pat
i
e
nt
d
u
e
t
o
ope
n su
rge
r
y
.
2.
ACOUSTICS
ENERGY T
R
ANSFER (AE
T
) CONCEPT
Im
practicality
the use
of bat
t
ery
an
d ph
ysically wired
for th
e im
p
l
antable de
vices inspires t
h
i
s
researc
h
t
o
be carried out.
The
application of ultrasoun
d
o
r
vi
b
r
at
i
o
n as
t
h
e m
e
di
um
of
ener
gy
t
r
a
n
sm
issi
o
n
esp
ecially in
situ
atio
n
s
wh
ere no
EM
fields are allo
wed
,
and
h
i
gh
d
i
rectio
n
a
lity
o
f
t
h
e
p
o
wer transfer in
co
m
b
in
atio
n
with
sm
al
l syste
m
d
i
men
s
io
n
s
is requ
ired
[7
]
and
[8
]. C
u
rren
tly, on
e
o
f
th
e
W
i
reless
Po
wer
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
75
–
8
4
76
Tr
ansf
er
(W
PT)
tech
no
log
i
es
k
now
n
as th
e
In
du
ctiv
e Po
wer
Tr
an
sf
er
(I
PT)
g
a
in
ed
a huge atten
tio
n
f
r
om th
e
researc
h
er
,
wi
t
h
rece
nt
pu
bl
i
cat
i
ons
on
sy
st
em
del
i
v
eri
n
g
ener
gy
u
p
t
o
2
m
at
hi
gh e
ffi
ci
ency
[9]
,
[1
0]
an
d
[1
1]
,
but
d
u
e t
o
t
h
e
m
a
gnet
i
c
co
upl
i
n
g t
e
c
h
ni
q
u
e,
IPT
i
s
no
t su
itab
l
e fo
r
tran
sferring
the po
wer acro
ss m
e
tal
ob
ject
s a
n
d
ca
n ca
use l
a
r
g
e e
ddy
c
u
r
r
e
n
t
l
o
s
s
es [
12]
,
[
13]
and
[
14]
.
I
n
o
r
de
r t
o
o
v
erc
o
m
e
t
h
ese l
i
m
itat
i
ons,
anot
her t
e
c
h
no
l
ogi
es
of
WP
T
i
s
i
nve
nt
ed
,
n
a
m
e
l
y
C
a
paci
t
i
ve P
o
wer T
r
a
n
sfer
(C
PT
) i
s
u
s
ed si
nce a
n
el
ect
ri
c
field
can
p
e
n
e
trate th
ro
ugh
an
y m
e
tal sh
iel
d
ing
env
i
ron
m
en
t. Th
e CPT
n
o
t
o
n
l
y can
tran
sm
it
th
rou
gh
m
e
tal
an
d sh
ield
ed bo
d
y
, bu
t also
h
a
s
go
od
an
ti-in
terferen
c
e abilit
y o
f
m
a
g
n
e
tic field
[8
],
[1
3
]
, [1
4
]
, and [1
5
]
.
Howe
ver, till r
ecent, CET syste
m
s have only been use
d
for very low power
delivery
a
pplications [8], [12]
,
[14
]
and
[15
]
.
CPT is used far less
o
f
ten
d
u
e
to
th
e li
m
ita
ti
o
n
of
d
i
stan
ce
th
at can
b
e
crossed
with
it. Th
is is
a
d
i
rect co
n
s
equen
ce
o
f
t
h
e inverse
p
r
o
portio
nality o
f
th
e
capacitan
ce with
t
h
e
d
i
stan
ce,
req
u
i
ring
h
i
g
h
vo
ltag
e
s
and
f
r
eq
ue
nci
e
s f
o
r t
h
e t
r
a
n
s
f
er
of a
cert
a
i
n
am
ount
o
f
po
w
e
r.
An
ot
he
r
pri
n
ci
pl
e f
o
r
WPT i
s
far
-fi
el
d
EM
or m
i
crow
a
v
e
energy tra
n
sfe
r
is seldom
used.
Instead
of
th
e non
rad
i
ative u
s
ed
i
n
i
n
ductiv
e and
cap
a
citiv
e cases, a
rad
i
ativ
e
EM field
fu
n
c
tion
s
is u
s
ed as the en
erg
y
tran
sfer m
e
d
i
u
m
. Rec
tificatio
n
of
these high-fre
quency waves
at
the
pi
ck-
u
p u
n
i
t
can
be achi
e
ve
d at
hi
g
h
efficiency of 80%
- 90%
[16].
Gene
ration
of t
h
e m
i
crowaves,
on the
ot
her han
d
,
is m
u
ch
m
o
re
di
fficult,
p
a
rticu
l
arly when
a so
lid-state RF g
e
n
e
rato
r i
s
u
s
ed.
Optical energy tra
n
s
m
ission uses s
a
m
e
principle
as far-
fi
el
d EM
a
n
d
has l
o
w
ef
fi
ci
ency
w
h
e
r
eby
4
0
% a
n
d
50%
of
ene
r
gy
i
s
l
o
st
[1
3]
a
n
d
[
1
4]
. Al
l
t
h
e
pre
v
i
o
us
descri
bed
t
ech
nol
ogi
es
d
r
i
v
e
us
t
o
i
m
pl
em
ent
Ac
o
u
st
i
c
s
Ener
gy
T
r
a
n
sf
er (
A
ET
) a
s
t
h
e m
e
di
um
of ene
r
g
y
tran
sm
issio
n
in th
is research
.
2.
1. Ac
ous
t
i
c
E
n
erg
y
T
r
a
n
s
f
er
S
y
s
t
em
C
onsi
d
ere
d
as
a new a
p
pr
oa
ch o
f
t
r
a
n
sfe
r
r
i
ng e
n
er
gy
, A
ET uses ac
o
u
s
t
i
c
waves t
o
c
a
rry
ene
r
gy
through the
propa
gation m
e
dium
s towa
rds an im
planted
receivi
ng tra
n
sduce
r
t
h
at positione
d
within the
rad
i
ation
lob
e
o
f
t
h
e tran
sm
it
tin
g
tran
sd
u
c
er. Figu
re 1 illu
strates th
e
b
a
sic stru
ct
u
r
e
of
AET th
at co
nsists of a
transm
itting side and recei
ving si
de.
At the transm
itte
r side, the power a
m
plifier produce
s
an ac
output
wave
f
o
rm
fro
m
a dc vol
t
a
g
e
su
p
p
l
y
. A
re
son
a
nt
ci
rc
ui
t
t
h
at
co
nsi
s
t
s
of
L-C
net
w
or
k
gene
rat
e
s si
gn
al
fr
om
p
a
rticu
l
ar frequ
e
n
c
y
and
as i
n
pu
t t
o
th
e tran
sm
it
tin
g
tran
sd
u
c
er. Th
e tr
an
sm
it
tin
g
tran
sd
u
c
er will
conv
erts
electrical signa
l into a
pressure wa
ve
that
propa
gate through a m
e
dium
.
A receivi
ng t
r
ansducer is
positione
d
at
a poi
nt
al
o
n
g
t
h
e pat
h
o
f
t
h
e so
u
nd
wa
ve
fo
r t
h
e i
n
vers
e pr
ocess
of c
o
n
v
e
r
t
i
ng t
h
e m
o
ti
on caus
e
d
by
t
h
e
sound
wa
ve int
o
electrical ene
r
gy. A rectifier and a ca
p
aci
t
o
r pr
ovi
de
a usa
b
l
e
st
eady
dc v
o
l
t
a
ge
t
h
at
d
r
i
v
es
a
lo
ad
. Th
e m
e
d
i
u
m
can
b
e
an
yt
h
i
ng
rang
i
n
g
fro
m
a
i
r to
h
u
m
a
n
tissu
e o
r
a solid
wall; in
p
r
in
cip
l
e, an
y m
a
terial
th
at will prop
ag
ate a
p
r
essure
wav
e
can
b
e
ap
p
lied to
act as a tran
sm
issio
n
m
e
d
i
u
m
.
Fi
gu
re
1.
Ac
o
u
s
t
i
c
s Ener
gy
T
r
ansfe
r
Sy
st
em
[4]
2.2. Power Amplifier
Circuit
Th
e
p
o
w
e
r cond
itio
n
i
ng
ph
ase o
f
an
A
ET syste
m
is
o
n
e
of th
e im
p
o
r
tan
t
asp
ects th
at
determin
e th
e
ove
rall efficie
n
cy of an
AE
T. The
m
o
st desira
ble feature is to
dri
v
e
the de
vice at the exact
operating
fre
que
ncy without exciting ha
rm
onic
m
odes at the transm
i
t
t
e
r side. On the
receiver im
planted unit, the c
i
rcuit
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt
of Class
D Inver
ter for Ac
ous
tics Ene
r
gy
Tr
ansfer
Implantable Devices
(
H
uzai
ma
h H
u
si
n
)
77
sh
ou
l
d
in
terface with
th
e transd
ucer so
as to ex
tr
act
m
a
xim
u
m
powe
r
. T
h
e po
we
r co
n
d
i
t
i
oni
n
g
ci
rc
ui
t
on t
h
e
bot
h si
des m
u
s
t
have e
ffi
ci
en
cy
great
er
t
h
an 80% as they a
ffect the
overa
ll efficiency of the ene
r
gy tra
n
sfe
r
.
Th
is p
a
p
e
r
will fo
cus on
p
e
rform
a
n
ce o
f
the tran
sm
it
ter p
o
w
er am
p
lifier circu
it, n
a
m
e
l
y
Class D Parallel-
R
e
sona
nt
I
n
ver
t
er t
o
p
r
od
uce
a fre
que
ncy
of
41
6
kHz
use
d
t
o
exci
t
e
t
h
e
PZ
T t
r
ans
d
ucer s
o
t
h
at
t
h
e
p
r
o
p
o
se
d
80
m
W
po
we
r
can
be t
r
a
n
s
f
er
red
t
o
t
h
e re
cei
ver
i
m
pl
ant
e
d uni
t
.
The C
l
ass
D i
nve
rt
er i
s
o
n
e
of
t
h
e
hi
gh
-f
req
u
e
n
cy
an
d
hi
g
h
-e
ffi
ci
ency
res
ona
nt
po
w
e
r s
o
u
r
ces
,
whi
c
h has bee
n
ap
pl
i
e
d t
o
dc
/
d
c reso
na
nt
co
nve
rt
ers
,
radi
o t
r
ansm
i
t
t
e
rs, and el
ect
r
oni
c b
a
l
l
a
st
s for fl
u
o
r
e
scent
l
a
m
p
s [17]
,
[1
8]
, [1
9]
an
d [
2
0]
. It
s hi
g
h
dc/
ac po
wer c
o
n
v
e
rsi
o
n effi
ci
e
n
cy
i
s
achi
e
ved
by
t
h
e zero
-
c
u
r
r
ent
swi
t
c
hi
n
g
(
Z
C
S
),
whi
c
h e
n
a
b
l
e
s i
t
s
ope
rat
i
on at
fre
que
nc
y
of se
veral
h
u
n
d
r
ed
ki
l
o
her
t
z [2
1]
. Fu
rt
he
rm
ore,
th
is reso
nan
t
i
n
v
e
rter with sinu
so
i
d
al wav
e
form
s ach
iev
e
s l
o
w switch
i
n
g
lo
sses
du
e to the ph
ase
d
i
sp
lace
m
e
n
t
bet
w
ee
n t
h
e
v
o
l
t
a
ge a
nd c
u
r
r
ent
t
h
ro
u
gh t
h
e t
r
a
n
si
st
or
s
[2
2
]
. Th
e
fu
ll
work
i
n
g
of Class D th
at
u
s
ed
in
the
researc
h
i
s
ext
e
nsi
v
el
y
expl
ai
ned i
n
[
2
3]
, In
or
der t
o
de
si
g
n
t
h
e t
r
ansm
it
t
e
r
si
de, whi
c
h fo
cuses o
n
hal
f
-b
ri
d
g
e
Class D
parallel-res
ona
nce i
n
verter, t
h
e the
o
retical valu
e
of each com
p
one
n
ts is
obt
ai
ned through
calcul
a
tion.
The eq
uat
i
o
ns
rel
a
t
e
d wer
e
expl
ai
ne
d i
n
det
a
i
l
s
i
n
[23]
. T
h
e cal
cul
a
t
i
on b
a
sed o
n
t
h
e st
anda
r
d
ci
rcui
t
sho
w
n
in
Figur
e
2
.
Fi
gu
re
2.
The
s
t
anda
rd
m
odel
of
hal
f
-
b
ri
d
g
e
C
l
ass D
paral
l
e
l
reso
na
nt
i
n
ve
rt
er[
2
3]
Ass
u
m
e
a typical value
of the
inve
rter e
ffici
ency
η
1
=
9
5
%,
som
e
rel
e
vant
equat
i
o
ns
as
be
l
o
w:
Th
e
DC sup
p
l
y
po
wer
o
f
th
e circu
it is
W
(
1
)
Thus, t
h
e
DC s
u
pply curre
nt i
s
A
(
2
)
Ass
u
m
i
ng
f
=
f
r
= 4
1
6
kHz
at
ful
l
po
wer
,
the
corner freque
ncy is
√
H
z
(
3
)
The AC
loa
d
resistance
Ω
(
4
)
The c
h
ara
c
t
e
ri
s
t
i
c
im
pedance
of
t
h
e ci
rc
ui
t
c
a
n
be
obt
ai
n
e
d
as
Ω
(
5
)
Thus, t
h
e elements
of
res
ona
nt circuits are
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
75
–
8
4
78
H
e
n
r
y
(
6
)
and
F
a
r
a
d
(
7
)
Th
e m
a
x
i
m
u
m
v
a
lu
e
of th
e switch
p
e
ak
cu
rren
t is
A
(8)
The
voltage stresses on t
h
e
re
sonant c
o
m
ponents are
,
(
9
)
As the lo
ad
is i
n
p
a
rallel with
reson
a
n
t
cap
acito
r as
shown in
Fi
g
u
re
2
,
th
e
o
u
t
p
u
t
vo
ltag
e
at th
e lo
ad
can
b
e
obt
ai
ne
d a
s
V
(
1
0
)
As th
e aim o
f
th
is p
a
p
e
r is to
produ
ce ou
tp
u
t
power at
Ri
, th
e eq
u
a
tion
b
e
low use to
calcu
late th
e o
u
t
put
po
we
r re
q
u
ire
d
.
W
(
1
1
)
3.
R
E
SU
LTS AN
D ANA
LY
SIS
3.1. Simulation
of the Clas
s D
Operation with
Proteus
In
o
r
d
e
r
t
o
ve
r
i
fy
t
h
e
o
p
erat
i
o
n
of t
h
e
hal
f
-
b
ri
dge
C
l
ass
D
pa
ral
l
e
l
res
o
n
a
nt
i
n
vert
e
r
a
n
d m
a
ke t
h
e
analysis of
operation pe
rformance m
o
re con
v
e
n
i
e
nt
,
t
h
e
pa
ram
e
t
e
rs of
t
h
e i
nve
rt
er i
s
cal
cul
a
t
e
d
b
a
sed
o
n
fo
rm
ul
a descri
bed
i
n
[
23]
a
n
d si
m
u
l
a
t
e
d us
i
ng
Pr
ot
eus
.
Si
m
u
l
a
t
i
on m
ode
l
i
s
sh
o
w
n
as i
n
Fi
gu
re
3.
T
h
e m
a
i
n
data used in t
h
e sim
u
lation a
r
e as in Table
1.
Tabl
e
1. T
h
e
c
a
l
c
ul
at
ed
para
m
e
t
e
rs val
u
e
f
o
r
i
n
vert
er
Inverter Para
m
e
t
ers
Sy
m
b
ol
Value
Dc Supply
Power
P
1
84.
21
m
W
Dc Supply
Cur
r
ent
I
1
23.
4
m
A
Cor
n
er
fr
equency
f
o
453.
89
kHz
AC Load Resistan
ce
R
i
185.
28
Ω
Im
pedance Z
o
74.
11
Ω
Resonant I
nductor
L
25.
9 µH
Resonant Capacito
r
C
4.
73 nF
Switch Peak Curre
n
t
I
m(
m
a
x
)
83.
2
m
A
Voltage at resonant Capacitor
V
Cm
(
m
a
x
)
5.
73
V
Voltage at resonant I
nductor
V
Lm
(
m
ax
)
6.
17
V
Output power
gained
P
Ri
88.
6
m
W
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt
of Class
D Inver
ter for Ac
ous
tics Ene
r
gy
Tr
ansfer
Implantable Devices
(
H
uzai
ma
h H
u
si
n
)
79
Fi
gu
re
3.
The
s
i
m
u
l
a
t
i
on m
odel
of
hal
f
-
b
ri
d
g
e
C
l
ass D
pa
ral
l
e
l
reso
nant
i
n
vert
er
Th
e Pu
lse
W
i
dth
Mo
du
lation
(PW
M
) techn
i
q
u
e
is ch
o
s
en
d
u
e
t
o
cap
ab
ilities in
th
e
m
i
n
i
mizatio
n
of
h
a
rm
o
n
i
cs and switch
i
n
g
lo
sses in
t
h
e i
n
v
e
rter [24
]
and
[25
]
th
at in turns will in
crease t
h
e efficien
cy
of th
e
i
nve
rt
er i
t
s
el
f. On t
h
e ot
her
h
a
nd
, P
W
M
can
be em
pl
oy
ed i
n
or
de
r t
o
obt
a
i
n t
h
e req
u
i
r
e
d
out
put
v
o
l
t
a
ge
of t
h
e
i
nve
rt
er [2
6]
.
The
ge
nerat
i
o
n
of
P
W
M
w
a
s d
o
n
e
by
u
s
i
ng
PIC
1
6
F
8
7
7
A
wi
t
h
t
h
e
c
odi
ng
si
m
u
l
a
t
i
on
t
h
ro
u
g
h
m
i
kroC
PR
O
fo
r PIC
so
ft
w
a
re. The
gene
r
a
t
i
on o
f
5V
p
squ
a
re wa
ve i
s
pr
od
uce
d
by
Pheri
p
eral
I
n
t
e
rface
Controller
(PIC) with the
re
s
ona
nt
fre
que
nc
y of
416 kHz i
s
succes
sfully
obtaine
d a
n
d s
h
own in
Figure
4. Thi
s
is th
e stab
le
wav
e
fo
rm
th
at driv
es t
h
e turn-o
n and
turn
-o
ff
of
th
e MO
SFET I
R
F
585
2TR th
at is u
s
ed
as
a
swi
t
c
h i
n
t
h
e
desi
g
n
. The
app
r
oach i
n
u
s
i
ng P
I
C
as P
W
M
ge
nerat
o
r m
a
kes t
h
e desi
g
n
pr
oce
ss l
e
ss
com
p
licated and sim
p
ler.
Fi
gu
re
4.
Si
m
u
l
a
t
i
on wa
ve
fo
r
m
of P
W
M
A 5V
p s
qua
re
wave i
n
p
u
t
t
h
at
dri
v
e
s
t
h
e
reso
nant
ci
rc
ui
t
L
-
C
-
R
i
is connected to the gate of
S
1
meanwhile the
inve
rted
one i
s
connecte
d
t
o
the gate
of
S
2
.
Th
e i
n
v
e
rsion
i
s
do
n
e
in
ord
e
r to
fu
lfill th
e
ou
t-o
f
-
p
h
a
se co
nd
ition
b
e
tween
S
1
an
d
S
2
an
d s
h
ow
n i
n
Fi
g
u
r
e
5.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
75
–
8
4
80
Fi
gu
re
5.
Si
m
u
l
a
t
i
on wa
ve
fo
r
m
for M
O
S
F
E
T
gat
e
si
gnal
The o
u
t
put
si
m
u
l
a
t
i
on
wave
f
o
rm
of t
h
e i
nve
r
t
er ex
pect
ed t
o
be p
u
re si
nu
so
i
d
al
and s
h
ow
n
i
n
Fi
g
u
re
6. As t
h
e s
w
i
t
c
hi
n
g
fre
q
u
enc
y
i
s
416 kHz
,
t
hus t
h
e cy
cl
e i
s
2.4 µS. F
r
o
m
t
h
e graph
,
t
h
e sim
u
l
a
t
e
d out
p
u
t
p
o
w
e
r
th
at is
measu
r
ed
at
t
h
e poi
nt
of
AC
l
o
ad resi
st
or,
R
i
is V
o
=V
Cm
=5
.
6
V wh
ich
is slig
h
tly d
i
fferen
t
fro
m
th
e calcu
l
ated
v
a
lu
e sho
w
n
i
n
Tab
l
e
1
.
The d
i
fferen
ce is d
u
e
to
so
m
e
p
a
rasitic resist
an
ce in
th
e si
m
u
lat
i
o
n
soft
ware set
t
i
ngs. Usi
n
g equa
t
i
on
, t
h
i
s
desi
gn o
b
t
a
i
n
ed 8
4
.
63 m
W
as o
u
t
put
p
o
wer c
o
m
p
ared t
o
88.
6 m
W
as i
n
t
h
e cal
c
ul
ati
on.
Fi
gu
re
6.
Si
m
u
l
a
t
i
on o
u
t
p
ut
w
a
vef
o
rm
fo
r i
n
vert
er
3.
2. E
x
peri
me
nt
and
A
n
al
ys
i
s
B
a
sed o
n
t
h
e
sim
u
l
a
t
i
on
m
odel
as i
n
Fi
gu
re 2, a
n
ex
per
i
m
e
nt
al
set
up i
s
sho
w
n i
n
Fi
gu
re 7
wi
t
h
co
m
p
lete tran
smit
tin
g
and
receiv
i
n
g
tran
sdu
cer sectio
n
s
. Th
e PIC
1
6
F
8
77A is u
s
ed sin
ce th
e ab
i
lity
to
gene
rat
e
P
W
M
wi
t
h
t
h
e c
o
di
n
g
si
m
u
l
a
t
i
on t
h
ro
u
gh m
i
kroC
PR
O f
o
r
PIC
s
o
ft
ware.
The
P
ZT t
r
ans
d
ucer
s
are
appl
i
e
d as t
r
a
n
sm
i
t
t
i
ng an
d re
cei
vi
ng t
r
a
n
s
d
ucer i
n
t
h
e
AE
T syste
m
. In this experim
e
nt, the PZT trans
d
ucers
u
s
ed
m
a
n
u
f
act
u
r
ed
b
y
Mu
ltico
m
p
with
p
a
rt nu
m
b
er
MCUSD11
A
40
0B1
1
R
S. Th
e t
r
an
sdu
cers are lo
ssly
cou
p
l
e
d
f
o
r t
h
i
s
part
i
c
ul
ar
w
o
r
k
. T
h
e
po
we
r del
i
v
e
r
ed ca
n be a
ffect
e
d
by
t
h
e m
e
di
um
of p
r
o
p
a
g
at
i
on a
n
d
di
st
ance,
r
o
t
a
t
i
onal
a
n
gl
e b
e
t
w
een
t
h
e t
r
ans
duce
r
.
H
o
weve
r, t
hose
sc
opes
are
not
c
o
vere
d i
n
t
h
i
s
resear
ch.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt
of Class
D Inver
ter for Ac
ous
tics Ene
r
gy
Tr
ansfer
Implantable Devices
(
H
uzai
ma
h H
u
si
n
)
81
Fi
gu
re
7.
Ex
pe
ri
m
e
nt
al
set
up
Th
e
g
a
te sign
al
fo
r
M
O
SFET
I
R
F585
2TR is
co
n
t
r
o
lled b
y
PW
M sign
al as
sh
own
in Fi
g
u
re 8
.
Th
er
e
i
s
a dea
d
t
i
m
e in t
h
e
wa
ve
fo
r
m
and can
be
e
ffect
i
v
el
y
a
voi
ded
by
set
t
i
ng
a g
u
ar
d
peri
od
so t
h
at
t
h
e M
O
SFET
will tu
rn
o
n
at
th
e d
i
fferen
t
ti
me.
Fi
gu
re 8.
Gat
e
si
gnal
fo
r
M
O
SFET
As th
e m
a
in
o
b
j
ective of th
is research
, th
e t
r
an
sf
err
i
ng
pow
er
thro
ugh
aco
u
s
tics techno
lo
g
y
for
low
po
we
r im
pl
ant
a
bl
e de
vi
ces i
s
feasi
b
l
e
an
d c
a
n be s
h
ow
n i
n
Fi
gu
re 9
.
The
abo
v
e
wave
fo
r
m
i
s
m
easured
at
t
h
e
transm
itting trans
duce
r
m
ean
while the bel
o
w wa
veform
is
m
easured at the receivi
ng trans
duce
r
. T
h
e syste
m
success
f
ully maintained
th
e switching
freque
ncy at 416
kHz as
re
qui
red. T
h
e output power t
h
rough
expe
ri
m
e
nt
al
set
up i
s
cal
cul
a
t
e
d usi
ng t
h
e sa
m
e
form
ul
a as
i
n
Sect
i
on
3(a
)
and
obt
ai
ne
d
as 66
.1
1 m
W
at
t
h
e
tran
sm
it
tin
g
tran
du
cer. Th
e p
e
rform
a
n
ce efficiency
of transm
itter unit is
78.2%
obtained
by com
p
aring t
h
e
val
u
e
o
f
out
pu
t
po
we
r f
r
o
m
transm
i
t
t
i
ng t
r
a
n
sd
uce
r
i
n
t
h
e
expe
ri
m
e
nt
(6
6.
11
m
W
)
t
o
t
h
e si
m
u
l
a
t
i
on
(8
4.
6
3
m
W
). Meanwhile, the efficiency of
t
r
ans
f
er
r
e
d p
o
we
r i
s
53
.1%
,
gai
n
e
d
f
r
o
m c
o
mp
a
r
i
n
g
t
h
e output power at
the recei
ving t
r
ansducer to
t
h
e transm
itting transduce
r
. The low efficien
c
y
of tra
n
sfe
rre
d
powe
r is
due
to t
h
e
cou
p
l
i
n
g t
ech
n
i
que a
n
d m
e
dium
perm
eabi
l
i
t
y
effect
s as st
at
ed
by
[4]
,
[7
]
and [2
7]
. T
h
ose criterias a
r
e not
P
Z
T
tr
an
sd
u
c
er
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
75
–
8
4
82
tak
e
n
i
n
to
co
n
s
id
eration
wh
ile d
o
i
n
g
th
is research. Practi
cally, it is essen
t
i
a
l to
add
an
am
p
l
ifier circu
i
t
at the
receiver si
de in orde
r to amplify th
e powe
r accordi
ng t
o
the actual load
requirem
ent. The wa
ve
form at the
transm
itter and receiver side is not pure square and
si
nus
oi
dal wave
form
respectively due to the presence of
h
a
rm
o
n
i
cs. Th
i
s
prob
lem
can
b
e
o
v
erco
m
e
d
b
y
in
trod
u
c
i
n
g activ
e
filter that su
itab
l
e
with
the inv
e
rter so
urce
t
o
p
o
l
o
gy
as s
u
gge
st
ed i
n
[
2
6]
i
n
t
h
e
ne
xt
st
a
g
e.
Figu
re
9.
P
o
we
r tra
n
sfe
r
wa
ve
fo
rm
s
4.
CO
NCL
USI
O
N
Th
e m
a
in
stu
d
y
in
th
is research
is to
d
e
v
e
lop
th
e Class D p
a
rallel
reson
a
n
t
in
v
e
rter as p
o
wer
am
pl
i
f
i
e
r i
n
an
AET sy
st
em
.
The res
u
l
t
s
obt
ai
ned f
r
om
calcul
a
t
e
d, si
m
u
l
a
t
e
d and e
xpe
ri
m
e
nt
ed set
up s
h
o
w
n
th
at th
e inv
e
rter can
b
e
u
s
ed to
ex
cite th
e PZT transdu
cer
s at
t
h
e
s
u
g
g
est
e
d
r
e
so
na
nt
f
r
eq
uency
o
f
41
6 k
H
z. It
is feasib
le to
tran
sm
it p
o
w
er wirelessly fo
r low
p
o
wer i
m
p
l
an
tab
l
e d
e
v
i
ces
u
s
ing
an
Acou
stics En
erg
y
Tran
sfe
r
t
ech
n
o
l
o
gy
. The m
odel
de
vel
o
ped
i
s
very
use
f
ul
fo
r g
u
i
d
i
ng t
h
e fut
u
re
AET
sy
st
em
anal
y
s
is and
desi
g
n
.
In t
h
e
upc
om
i
ng rese
arch
fo
r t
h
i
s
p
a
rt
i
c
ul
ar w
o
r
k
,
t
h
e com
p
ari
s
o
n
st
u
d
y
of
usi
n
g di
f
f
ere
n
t
m
a
teri
al
s
su
ch
as t
h
rou
g
h
wall, m
e
tal a
n
d liv
ing
tissu
es as
a m
e
d
i
u
m
o
f
prop
ag
atio
n
will b
e
carried
o
u
t
.
ACKNOWLE
DGE
M
ENTS
The a
u
t
h
or a
n
d t
eam
woul
d
l
i
k
e t
o
ex
pres
s
hi
g
h
l
y
ap
preciatio
n
to
Malaysia Min
i
stry
o
f
Edu
catio
n
f
o
r
fu
nd
ing
an
d
sup
por
tin
g th
is r
e
sear
ch w
o
r
k
un
d
e
r
RA
G
S
/
1
/201
4
/
TK0
3
/
FK
EK
K/B0
00
62
gr
an
t and
U
n
i
v
ersiti Tekn
ik
al Malaysia Melak
a
u
n
d
e
r U
T
eM/PJP/
2
01
4
/
FK
EK
K
(2A
)
/S0
1299
g
r
an
t.
REFERE
NC
ES
[1]
X. W
e
i and
J
.
Liu, “
P
ower s
o
u
r
ces
and
el
ectr
i
c
a
l r
echarg
i
ng s
t
r
a
teg
i
es
for
im
plantab
l
e m
e
di
cal
devic
e
s
”
,
Front.
Energy Power Eng.
China
, vo
l. 2
,
no
. 1
,
pp
. 1–13
, 2008.
[2]
X.
Liu,
F.
Zhang,
S.
A.
Hackworth,
R.
Sc
la
ba
ssi,
a
nd M. Sun, “Wire
le
ss Pow
e
r Transfe
r
S
y
s
t
e
m
De
sign for
Implanted and Wom
Devices”, pp.
1–2
.
[3]
A. Denisov and E. Yeatman,
“
U
ltras
onic vs
. Indu
ctiv
e P
o
wer Deliver
y for M
i
nia
t
ure Biom
edica
l
Im
plants
”,
2010
Int. Con
f
. Body
Sens. Networks
,
pp. 84–89
, Jun.
2010.
[4]
S
.
Ozeri
and
D. S
h
m
ilovitz
,
“
U
ltras
onic t
r
ans
c
utan
eous
e
n
erg
y
tr
ans
f
er
for powering i
m
p
lanted d
e
vic
e
s
”
,
Ultrasonics
, vol. 50, no. 6, pp. 55
6–66, May
2010
.
[5]
M.D. Eisen
,
“Histor
y
of
Implantable H
earing
Devices”,
IEEE
En
gineer
ing In Medicin
e
and B
i
olog
y
,
pp. 39
–41,
1991.
[6]
A. Sanni, G.S. Mem
b
er, A. Vilches,
and C. To
um
azou, “Inductive and Ultraso
n
ic Multi-T
i
er I
n
terface for Lo
w-
Power , Deeply
I
m
plantable Medical Devi
ces”, vo
l. 6
,
no
. 4
,
pp
. 29
7–308, 2012
.
[7]
M.G.L. Roes
, S. Member, J.L.
Duar
te, M.A
.
M. Hendrix, E.A.
Lomonova,
and
S. Member, “Acoustic En
erg
y
Trans
f
er
: A Rev
i
ew”, vol. 60
, no
. 1
,
pp
. 242–248
, 2013.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt
of Class
D Inver
ter for Ac
ous
tics Ene
r
gy
Tr
ansfer
Implantable Devices
(
H
uzai
ma
h H
u
si
n
)
83
[8]
T
.
Za
id,
S.
Sa
at, Y.
Yusop,
and
N. J
a
m
a
l, “
C
ont
act
les
s
energ
y
tr
ans
f
er us
ing a
c
o
u
s
tic appro
ach -
A review”
,
2014
Int. Con
f
. Comput. Commun. Co
ntrol Techno
l.
, n
o
. I4ct, pp. 376–
381, Sep
.
2014
.
[9]
A. Karalis, J
.
D.
Joannopoulos, and M. Solja
č
i
ć
,
“
E
fficien
t
wir
e
le
s
s
non-radiat
ive
m
i
d-range energ
y
trans
f
er
”,
Ann
.
Phys
. (
N
.
Y
)
.
, vo
l. 323
, pp
. 34–48
, 2008
.
[10]
A. Kurs, A. Karalis, R
.
Moffatt, J.D.
Joannop
oulos, P. Fisher, and M. So
ljacic, “Wireless po
wer transfer via
strongly
coup
led
magne
tic r
e
sonances”,
Scien
c
e
, v
o
l. 317
, no
. July
,
pp. 83–86, 2007
.
[11]
Norezm
i J
a
m
a
l,
S
.
S
aat, Y. Y
u
s
m
arnita, T
.
Zaid
, and A. I
s
a, “
I
nves
tigat
i
ons
on Capacit
o
r Com
p
ens
a
tion
Topologies
Effects of Diff
erent I
nduc
tiv
e Coupling Links Config
urations”,
Int
.
J.
Power
El
ec
tr
on.
Dr
ive S
y
s
t
.
, vol.
6, no
. 2
,
2014
.
[12]
M.P. Theodorid
is, “Effective
cap
acitive power
tr
ansfer”,
IEEE Trans. Power Electron.
, vo
l. 27
,
no. 12, pp
. 4906
–
4913, 2012
.
[13]
C. Liu
,
A.P. Hu, and M.
Budhia, “A generalized
coupling m
odel
fo
r Capacitiv
e Power Transfer s
y
stem
s”,
IE
C
O
N
Proc. (
I
ndustrial Electron
.
Conf.
, pp. 274–279, 20
10.
[14]
C.Y. Xia
,
C.W
.
Li,
and J. Zh
ang,
“
A
nal
y
sis of power tran
sfer
char
act
eristi
c of c
a
pa
citiv
e power tr
an
sfer s
y
stem
and
inductiv
ely
cou
p
led power tran
sfer sy
stem”,
Proc. 2011 Int. Conf. Mecha
t
ron.
Sci. Electr. En
g. Comput. MEC
2011
, pp
. 1281–
1285, 2011
.
[15]
M. Kline, I
.
Iz
yu
m
i
n, B. Boser, a
nd S. Sanders,
“
C
apac
itiv
e powe
r
transfer for co
ntac
tless charg
i
n
g
”,
Conf. Proc. -
IEEE
Appl
.
Pow
e
r El
ectron
.
Con
f
.
Expo
. -
AP
EC
, pp. 1398–1404,
2011.
[16]
J
.
O. M
c
S
p
adden
and J
.
C. M
a
nk
ins
,
“
S
pace s
o
la
r power
progra
m
s
and m
i
crowave wire
les
s
power trans
m
is
s
i
on
techno
log
y
”,
IEEE M
i
crow. Ma
g.
, vol. 3, no. December, 2002.
[17]
B.
K.
L.
B.
K.
Lee, B.
S.
S.
B.
S.
Suh, and D.
S.
H.
D.
S. Hy
un,
“Design consideration fo
r the improved Class-D inverter
topolog
y
”
,
I
EEE Trans. Ind.
Electron.
, vo
l. 45, no
. 2
,
pp
. 217–227
, 1998.
[18]
D.C. Hamill, “C
lass DE inverter
s a
nd rectif
iers f
o
r DC-DC conversion”,
PESC
R
ec.
- IE
EE
Annu
. Pow
e
r El
ectro
n.
Spec. Conf.
, vol. 1, no. June, pp.
854–860, 1996
.
[19]
A. Ekbote and
D.S. Zinger
,
“C
omparison of class e and half bridge i
nver
t
ers for use in electron
i
c ballasts”,
Con
f
.
Rec
.
-
IAS
Annu
.
Mee
t
.
(
I
EEE
In
d. App
l
.
Soc
.
, vo
l. 5
,
no
.
c, pp. 21
98–2201, 2006
.
[20]
H. Koizumi, K.
Kurokawa, a
nd
S. Mori, “Analysis of Cla
ss D Inverter With
Irreg
u
lar”, vol. 53, n
o
. 3, pp
. 677–68
7,
2006.
[21]
M.K. Kazimierczuk and
W. Szaraniec, “Class-D zero-vo
ltag
e
-switching
inv
e
rter
with only
on
e s
hunt capacitor
”
,
IEE Proc.
B
El
e
c
tr. Power Appl.
, vol. 139
, no
. 5
,
p. 449
, 1992
.
[22]
C. Brañ
as, F.J
.
Azcondo,
and R
.
Casanu
eva, “A gener
a
li
zed
stu
d
y
of
m
u
ltiph
a
se par
a
ll
el
reson
a
nt
invert
ers for
high-power app
l
ications”,
IEEE Trans.
Circuits
S
y
s
t
. I
R
e
gul
. Pap
.
, vol. 55, no. 7,
pp. 2128–2138
,
2008.
[23]
M
a
rian K. Ka
zi
m
i
erczuk, “
C
l
a
s
s
D
Parallel-R
e
sonant Inverter”, in
Resonant Power Converter
s
, 2nd ed., New
Jersey
: John Wiley
& Sons, 2010
, pp
. 193–225
.
[24]
M. Saravanan
,
R. Nandakumar
, a
nd G. Veerabal
a
ji, “
E
ffe
ctua
l S
V
P
W
M
Techniqu
es and Implementation of FPGA
Based Induction
Motor Drive”,
In
t. J.
Reconfigur
able Embed.
Syst.
, vol. 1
,
no
. 1
,
pp
. 11–18
, 2012
.
[25]
V. Stephen and
L.P. Suresh, “I
nve
stigation of
FPGA
Based PWM Cont
rol Technique for AC
Motors”,
Int. J.
Power Electron.
Drive Syst.
, vol.
3, no
. 2
,
pp
. 193
–199, 2013
.
[26]
M. Tam
ilvan
i,
K. Nith
ya
, M. Srinivasan
, and S
.
U. Pr
abha, “Harmonic Reduction in
Variab
le Frequency
Driv
es
Using Active
Power Filt
er”
,
B
u
ll
.
El
ectr
.
Eng
.
In
f
o
rmatics
, vol. 3
,
no. 2
,
pp
. 119–1
26, 2014
.
[27]
J.L.
Mill
er,
“
W
i
reless power
for
t
i
n
y
m
e
dic
a
l
im
pl
ants”,
Ph
ys. T
o
d
a
y
, vo
l. 67, pp. 1
2–14, 2014
.
BIOGRAP
HI
ES OF
AUTH
ORS
Siti Huza
im
ah Husin receiv
e
d
the B.Eng (200
0) from
Multim
edia Univ
ersit
y
,
M.Eng (2005)
from
Kolej Universiti
Tun Hussein Onn, Malay
s
ia
respect
i
vel
y
. First
appoint
ed as
Engineering
Instructor (2001)
at Kolej Univer
siti Teknik
a
l Mala
y
s
ia Mel
a
ka an
d prom
oted as Lectur
er (2005)
and Senior Lecturer (2008) in the Department of
Industrial Electr
onics, Faculty
of
Electronic
and
Com
puter Engi
neering
at Univ
ersiti
Teknik
a
l
Malay
s
ia Melak
a
. Since Sept
em
ber 2014, she
pursuing PhD in
Advanced Con
t
r
o
l Technolog
y
that fo
cused on
acoustics
energ
y
transfer.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
75
–
8
4
84
Shakir Saat was
born in Kedah,
Malay
s
ia
in 198
1.
He obtained h
i
s bachelor degr
ee in
Electrical
Engineering fro
m
Universiti Teknologi Malay
s
i
a
a
nd Master in
Electri
cal
Engin
eering from
the
same university
in 2002 and 200
6,
respectiv
ely
.
Furthermore,
he
obtain
e
d his PhD in Electr
ical
Engineering fro
m The University
of Auckland in
the field of no
nlinear contro
l theor
y
in 2013.
He started
his c
a
rrier
as a l
ectur
e
r
at Univ
ers
iti
T
e
knika
l Mal
a
y
s
i
a
Melak
a
in
200
4 and he
is now
a senior lectur
er and Head of
Department of
Industrial
Electronic Dep
a
rtment, Facu
lty
of
Electronic
and C
o
mputer Engin
e
er
ing
at the same university
.
His research
in
terest
is on no
nline
a
r s
y
s
t
em
s contro
l th
eor
y
and wir
e
less
power transfer
techno
logies. H
e
has pub
lished
one monograph
(published
b
y
s
p
ringer v
e
rlag)
on poly
nomial
control s
y
s
t
ems and man
y
journals
and mostly
pu
blished in th
e high quality
journ
a
l such as Th
e
Journal of
the F
r
anklin
Institu
te, Intern
ation
a
l
Journal of
Robust and
Nonlinear
Control
,
IE
T
Control
and etc.
More than
20
co
nference p
a
pers
have
also b
een
p
ublished
and most of th
em are
in the fr
amework of nonlinear co
ntrol th
eor
y
and
wi
reless power transfer technolo
g
ies. He is
also
appointed as
a
reviewer
for IE
EE Tr
ansaction
journals
, Th
e journal of s
y
stem science, Th
e
Journal of the Franklin Institute,
International
Journal of Robust and Nonlinear Co
ntrol, Cir
c
uit,
s
y
stems and sign
al pro
cessing
an
d man
y
more.
Yusmarnita Yusop was born in
Melaka, Malay
s
ia
in 1979. She received th
e B.Eng in Electrical
Engineering (M
echatronic)
fro
m University
o
f
Techno
log
y
,
Malay
s
ia, in 20
01, the M.Eng
degree in
Electrical
Engin
eer
ing
from Tun Hussein Onn Univ
ersity
of Malay
s
ia,
in 2004. From
2005 to 2014, she was a Lectu
r
er in the Faculty
of Electronics and Computer
Engineer
ing
,
Universiti
Tekn
i
k
al Mal
a
y
s
ia Melak
a
. Sin
c
e that
tim
e, she h
a
s
been
involved
i
n
teaching
for
m
a
n
y
s
ubje
c
ts
s
u
ch as
P
o
wer El
ectron
i
cs
, Adva
nced P
o
wer E
l
ec
tronics
,
El
ectron
i
c S
y
s
t
em
s
an
d
Manufactur
ing Automation. She is currently
wo
rking toward the P
h
D. Degree. Her ar
ea of
res
earch
int
e
res
t
s
includ
e e
l
e
c
tronic s
y
s
t
em
des
i
gn, wir
e
les
s
power trans
f
er and powe
r
ele
c
troni
cs
.
Zamre Abd. Ghani receiv
ed his
B.Sc degr
ee fro
m
Univ. of the Pacif
i
c, California, USA in 1987,
M.Eng degr
ee
from
Universiti
Teknolog
i Malay
s
i
a
in 200
7 and Ph.D fr
om
Universiti
Kebangsaan M
a
lay
s
ia in 2014
.
He is a senior
lect
ur
er
at
the Dept. of Industr
ial Eng
i
neer
ing,
F
acult
y o
f
E
l
ec
t
r
onics
and
Com
puter
Engine
er
ing, Universiti
Teknikal
Ma
lay
s
ia
Me
la
ka.
Hi
s
research
in
terest
is in pho
tovoltaic pow
er
conver
t
er con
t
rol s
y
stems.
Sing Kiong Nguang receiv
ed
his BE (with f
i
rst class honors) and PhD degree from th
e
Department of
Electrical
and Co
m
puter Engin
eer
ing of th
e Univ
ersity
of Newcastle, Australia, in
1992 and 1995, respectively
.
He is a Chair Professo
r of
Department of El
ectrical and Computer
Engineering, Th
e University
of
Auckland, Ne
w
Zealand. He has
published
over
350 ref
e
reed
journal and conf
erence papers o
n
nonlinear con
t
rol design, nonlinear contro
l s
y
stems, nonlinear
tim
e-del
a
y
s
y
st
em
s, nonlinear
sam
p
led-data
s
y
ste
m
s,
biome
d
ic
al s
y
stems modeling, fuzzy
modeling and control, biolog
ic
al s
y
stems mod
e
ling and cont
r
o
l, and food and bio product
processing.
Evaluation Warning : The document was created with Spire.PDF for Python.