I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
w
er
E
lect
ro
nics
a
nd
Driv
e
Sy
s
t
e
m
(
I
J
P
E
DS
)
Vo
l.
7
,
No
.
4
,
Dec
em
b
er
2
0
1
6
,
p
p
.
1
0
3
8
~
1
0
4
8
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
p
ed
s
.
v7
i
4
.
pp
1
0
3
8
-
1048
1038
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JP
E
DS
M
ini
m
i
z
a
t
io
n of S
tarting
Energ
y
L
o
ss
o
f
Three
Phas
e Induct
io
n
M
o
tors
b
a
sed o
n
Particle
Sw
a
rm
O
pti
m
i
z
a
tion a
nd
Neuro
Fu
zz
y
Ne
tw
o
rk
M
a
h
m
o
ud
M
.
E
l
k
ho
ly
,
M
o
h
a
m
ed
A.
E
lha
m
ee
d
El
e
c
tri
c
a
l
P
o
w
e
r
a
n
d
M
a
c
h
in
e
s D
e
p
a
rtme
n
t,
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
,
Zag
a
z
i
g
Un
iv
e
rsit
y
,
Zag
a
z
ig
,
Eg
y
p
t
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
y
1
8
,
2
0
1
6
R
ev
i
s
ed
Oct
2
4
,
2
0
1
6
A
cc
ep
ted
No
v
5
,
2
0
1
6
T
h
e
p
u
rp
o
se
o
f
th
is
p
a
p
e
r
is
to
m
in
i
m
ize
e
n
e
rg
y
lo
ss
e
s
c
o
n
su
m
e
d
b
y
th
re
e
p
h
a
se
in
d
u
c
ti
o
n
m
o
to
rs
d
u
ri
n
g
sta
rti
n
g
w
it
h
w
id
e
ra
n
g
e
o
f
lo
a
d
to
rq
u
e
f
ro
m
n
o
l
o
a
d
t
o
f
u
ll
lo
a
d
.
T
h
is
w
il
l
li
m
it
th
e
te
m
p
e
ra
tu
re
rise
a
n
d
a
ll
o
w
s
f
o
r
m
o
re
n
u
m
b
e
rs
o
f
sta
rti
n
g
d
u
ri
n
g
a
d
e
f
in
it
e
ti
m
e
.
S
tartin
g
e
n
e
r
g
y
lo
ss
e
s
m
in
i
m
iza
ti
o
n
is
a
c
h
iev
e
d
b
y
c
o
n
tr
o
ll
i
n
g
th
e
ra
te
o
f
in
c
re
a
sin
g
v
o
lt
a
g
e
a
n
d
f
re
q
u
e
n
c
y
to
sta
rt
in
d
u
c
ti
o
n
m
o
to
r
u
n
d
e
r
c
e
rtain
lo
a
d
to
r
q
u
e
w
it
h
in
a
d
e
f
in
it
e
sta
rti
n
g
ti
m
e
.
Op
ti
m
a
l
v
o
lt
a
g
e
a
n
d
f
r
e
q
u
e
n
c
y
a
re
o
b
tain
e
d
b
y
p
a
rti
c
l
e
sw
a
r
m
o
p
ti
m
iza
ti
o
n
(
P
S
O) t
o
o
l
a
c
c
o
rd
in
g
to
lo
a
d
to
r
q
u
e
.
T
h
e
n
,
o
u
t
p
u
ts
o
f
th
e
P
S
O
a
re
u
se
d
t
o
d
e
sig
n
a
n
e
u
r
o
-
f
u
z
z
y
c
o
n
tro
ll
e
r
to
c
o
n
tr
o
l
t
h
e
o
u
t
p
u
t
v
o
lt
a
g
e
a
n
d
f
re
q
u
e
n
c
y
o
f
th
e
in
v
e
rter
d
u
ri
n
g
sta
rti
n
g
f
o
r
e
a
c
h
l
o
a
d
t
o
rq
u
e
.
T
h
e
sta
rti
n
g
c
h
a
ra
c
teristi
c
s
u
sin
g
p
ro
p
o
se
d
m
e
th
o
d
a
re
c
o
m
p
a
re
d
to
th
a
t
o
f
d
irec
t
o
n
li
n
e
a
n
d
V
/
F
m
e
th
o
d
s.
A
c
o
m
p
lete
m
o
d
e
l
o
f
th
e
sy
ste
m
is
d
e
v
e
lo
p
e
d
u
si
n
g
S
IM
UL
INK
/M
ATLA
B.
K
ey
w
o
r
d
:
I
n
d
u
ctio
n
m
o
to
r
Neu
r
o
-
f
u
zz
y
n
et
w
o
r
k
P
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
Star
tin
g
en
er
g
y
lo
s
s
es
Co
p
y
rig
h
t
©
201
6
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ma
h
m
o
u
d
M.
E
lk
h
o
l
y
,
E
lectr
ical
P
o
w
er
a
n
d
Ma
ch
i
n
e
s
Dep
ar
t
m
en
t,
Facu
l
t
y
o
f
E
n
g
i
n
ee
r
in
g
,
Za
g
az
ig
U
n
i
v
er
s
it
y
,
P
.
O.
B
o
x
4
4
5
1
9
Z
ag
az
i
g
,
Al
B
ah
r
Stre
et
,
Z
ag
az
i
g
,
E
g
y
p
t
.
E
m
ail:
m
el
k
h
o
l
y
7
1
@
y
ah
o
o
.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
r
ee
p
h
ase
in
d
u
ctio
n
m
o
to
r
s
ar
e
u
s
ed
ex
ten
s
iv
e
l
y
in
in
d
u
s
tr
y
d
u
e
to
r
ig
id
n
es
s
,
les
s
m
ain
te
n
an
ce
an
d
f
a
u
lt
to
ler
a
n
t.
W
h
e
n
th
e
s
e
m
o
to
r
s
ar
e
co
n
n
ec
ted
d
ir
ec
tl
y
to
s
u
p
p
l
y
,
t
h
e
y
d
r
a
w
lar
g
e
c
u
r
r
en
ts
a
n
d
d
is
s
ip
ate
lar
g
e
a
m
o
u
n
t
o
f
e
n
er
g
y
.
T
h
is
r
esu
lt
s
i
n
m
o
r
e
v
o
lta
g
e
d
r
o
p
ac
r
o
s
s
th
e
n
e
t
w
o
r
k
ele
m
e
n
ts
an
d
m
o
r
e
h
ea
t
f
o
r
t
h
e
m
o
to
r
its
el
f
esp
ec
iall
y
in
m
u
lti
-
s
tar
t o
p
er
atio
n
s
[
1
]
.
Ma
n
y
r
esear
ch
e
s
d
is
c
u
s
s
ed
t
h
e
p
r
o
b
le
m
o
f
m
o
to
r
s
tar
ti
n
g
[
2
-
8
]
,
s
o
m
e
o
f
w
h
ic
h
d
is
c
u
s
s
ed
s
o
f
t
s
tar
tin
g
to
p
r
o
d
u
ce
less
cu
r
r
en
ts
an
d
n
o
s
u
d
d
en
to
r
q
u
es
[
9
,
1
0
]
,
s
o
f
t
s
tar
tin
g
m
a
y
en
h
a
n
ce
s
tar
tin
g
en
er
g
y
,
b
u
t
th
e
s
a
v
e
is
n
o
t
o
p
ti
m
u
m
.
Fo
r
ex
a
m
p
le,
i
n
[
1
1
]
th
e
s
a
v
e
is
n
o
t
m
o
r
e
th
a
n
4
%
at
lig
h
t
l
o
ad
an
d
th
er
e
is
a
n
eg
at
iv
e
s
a
v
e
w
it
h
to
r
q
u
es
g
r
ea
ter
th
an
6
0
%
o
f
f
u
l
l
lo
ad
to
r
q
u
e.
I
n
[
1
2
]
,
a
n
eu
r
o
-
f
u
zz
y
s
o
f
t
s
tar
ter
is
u
s
ed
to
r
ed
u
ce
en
er
g
y
lo
s
s
e
s
b
y
ad
j
u
s
tin
g
th
e
f
ir
i
n
g
an
g
les
o
f
t
h
e
th
y
r
is
to
r
s
o
f
a
n
AC
v
o
lta
g
e
co
n
tr
o
ller
,
b
u
t
o
p
tim
a
l
co
n
d
itio
n
s
a
n
d
ef
f
ec
t
o
f
f
r
eq
u
en
c
y
v
ar
iatio
n
ar
e
n
o
t
d
is
cu
s
s
ed
.
I
n
[
1
3
]
,
g
en
etic
al
g
o
r
ith
m
is
u
s
ed
to
o
p
tim
ize
th
e
en
er
g
y
o
f
s
tar
tin
g
b
y
d
ef
i
n
in
g
t
h
e
ap
p
r
o
p
r
iate
v
o
ltag
e
r
a
m
p
d
u
r
in
g
s
tar
ti
n
g
,
t
h
e
s
a
v
e
in
en
er
g
y
r
ea
ch
e
s
2
0
%,
b
u
t
f
r
eq
u
e
n
c
y
v
ar
iatio
n
is
n
o
t
i
n
v
esti
g
ated
i
n
t
h
e
p
ap
er
.
A
d
ap
tiv
e
a
n
d
o
p
ti
m
al
c
o
n
tr
o
l
o
f
i
n
d
u
ctio
n
m
o
to
r
u
s
i
n
g
P
SO a
n
d
n
e
u
r
o
f
u
zz
y
co
n
tr
o
ller
is
p
r
o
p
o
s
ed
in
[
1
4
-
1
6
]
.
I
n
th
i
s
p
ap
er
,
p
ar
ticle
s
w
ar
m
o
p
tim
izatio
n
m
et
h
o
d
is
u
s
e
d
to
o
b
tain
th
e
r
ate
o
f
ch
a
n
g
e
o
f
b
o
th
v
o
l
tag
e
an
d
f
r
eq
u
e
n
c
y
o
v
er
th
e
f
u
ll
r
an
g
e
o
f
lo
ad
to
r
q
u
es
f
r
o
m
n
o
lo
ad
to
f
u
l
l
lo
ad
to
h
av
e
m
i
n
i
m
u
m
s
tar
tin
g
en
er
g
y
lo
s
s
e
s
.
T
h
er
e
ar
e
co
n
s
tr
ain
ts
s
u
c
h
as b
o
th
ap
p
lied
v
o
l
tag
e
an
d
f
r
eq
u
en
c
y
m
u
s
t e
q
u
al
to
th
e
r
ated
v
alu
e
s
at
th
e
e
n
d
o
f
s
tar
ti
n
g
p
er
io
d
an
d
th
e
m
o
to
r
m
u
s
t
b
e
s
tar
ted
w
it
h
i
n
a
ce
r
tai
n
s
p
ec
if
ied
ti
m
e.
T
h
e
o
u
tp
u
t
o
f
th
e
o
p
tim
izatio
n
p
r
o
ce
s
s
is
u
s
ed
t
o
d
esig
n
a
n
e
u
r
o
-
f
u
zz
y
co
n
tr
o
ller
to
co
n
tr
o
l
th
e
v
o
ltag
e
a
n
d
f
r
eq
u
en
c
y
d
u
r
i
n
g
s
tar
tin
g
d
ep
en
d
in
g
o
n
lo
ad
to
r
q
u
e
s
o
th
at
t
h
e
p
r
o
p
o
s
ed
s
y
s
te
m
is
o
p
ti
m
al
an
d
ad
ap
tiv
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
Min
imiz
a
tio
n
o
f S
ta
r
tin
g
E
n
er
g
y
Lo
s
s
o
f Th
r
ee
P
h
a
s
e
I
n
d
u
ctio
n
Mo
to
r
s
b
a
s
ed
o
n
…
(
Ma
h
mo
u
d
M.
E
lkh
o
ly
)
1039
2.
M
AT
H
E
M
AT
I
CAL M
O
DE
L
Usi
n
g
L
ap
lace
tr
an
s
f
o
r
m
atio
n
th
e
v
o
lta
g
e
eq
u
atio
n
s
o
f
t
h
r
e
e
p
h
ase
s
q
u
ir
r
el
ca
g
e
in
d
u
ctio
n
m
o
to
r
in
d
-
q
f
r
a
m
e
ar
e
[
1
7
]
:
(
)
(
1
+
)
=
(
)
+
(
)
+
̇
(
)
(
)
+
̇
(
)
(
)
(
1
)
(
)
(
1
+
)
=
(
)
+
(
)
−
̇
(
)
(
)
−
̇
(
)
(
)
(
2
)
(
)
(
1
+
)
=
(
)
+
̇
(
)
(
)
(
3
)
(
)
(
1
+
)
=
(
)
−
̇
(
)
(
)
(
4
)
W
h
er
e
=
+
2
2
,
=
−
2
,
=
an
d
=
is
th
e
d
-
ax
is
s
tato
r
v
o
ltag
e,
i
s
th
e
q
-
ax
i
s
s
tato
r
v
o
ltag
e,
is
th
e
d
-
ax
i
s
s
tato
r
cu
r
r
en
t,
th
e
q
-
ax
i
s
s
tato
r
cu
r
r
en
t,
is
d
-
ax
is
r
ef
er
r
ed
r
o
to
r
cu
r
r
en
t,
is
q
-
ax
is
r
ef
er
r
ed
r
o
to
r
cu
r
r
en
t,
is
th
e
s
elf
i
n
d
u
cta
n
ce
o
f
s
tato
r
p
h
a
s
e
w
i
n
d
in
g
,
is
t
h
e
s
el
f
i
n
d
u
cta
n
ce
o
f
r
o
to
r
p
h
ase
w
i
n
d
i
n
g
a
n
d
is
th
e
m
u
t
u
al
i
n
d
u
cta
n
ce
b
et
w
ee
n
s
tato
r
an
d
r
o
to
r
w
in
d
i
n
g
s
.
T
h
ed
-
q
f
l
u
x
li
n
k
ag
e
s
o
f
s
t
ato
r
an
d
r
o
to
r
ar
e
d
ef
in
ed
b
y
:
=
+
(
5
)
=
+
(
6
)
=
+
(
7
)
=
+
(
8
)
T
h
e
elec
tr
o
m
a
g
n
et
ic
to
r
q
u
e
eq
u
atio
n
i
s
:
=
3
2
2
(
−
)
(
9
)
T
h
e
m
o
to
r
m
ec
h
an
ical
eq
u
atio
n
is
:
−
=
(
+
)
̇
(
)
(
1
0
)
W
h
er
e;
is
th
e
n
u
m
b
er
o
f
p
o
les,
is
th
e
elec
tr
o
m
a
g
n
e
tic
to
r
q
u
e
o
f
th
e
m
o
to
r
,
is
th
e
l
o
ad
to
r
q
u
e,
is
th
e
m
o
m
e
n
t
o
f
i
n
er
tia
K
g
.
m
2
a
n
d
is
t
h
e
f
r
ictio
n
co
ef
f
icie
n
ct.
T
h
e
m
o
d
el
o
f
t
h
r
ee
p
h
a
s
e
s
q
u
ir
r
el
ca
g
e
i
n
d
u
ctio
n
m
o
to
r
is
d
ev
elo
p
ed
u
s
i
n
g
SI
MU
L
I
NK
/
M
A
T
L
A
B
to
s
o
l
v
e
ab
o
v
e
n
o
n
li
n
ea
r
eq
u
atio
n
s
an
d
to
s
t
u
d
y
t
h
e
d
y
n
a
m
ic
p
er
f
o
r
m
a
n
ce
c
h
ar
ac
ter
is
tics
o
f
th
e
m
o
to
r
d
u
r
in
g
s
tar
tin
g
.
T
h
e
SIM
UL
I
NK
d
y
n
a
m
ic
m
o
d
el
o
f
th
e
m
o
to
r
is
s
h
o
w
n
i
n
Fig
u
r
e
1
.
a.
T
h
e
s
tar
tin
g
e
n
er
g
y
lo
s
s
es
(
)
,
s
tato
r
co
p
p
er
lo
s
s
es
(
)
an
d
ir
o
n
lo
s
s
es
(
)
o
f
th
e
m
o
to
r
ar
e
d
ef
in
ed
as:
=
∫
(
+
)
0
(
1
1
)
=
3
2
+
3
2
(
1
2
)
=
3
2
(
1
3
)
W
h
er
e;
is
th
e
s
tato
r
p
h
ase
cu
r
r
en
t,
is
th
e
r
ef
er
r
ed
r
o
to
r
p
h
ase
cu
r
r
en
t,
is
th
e
s
tato
r
p
h
ase
v
o
ltag
e,
is
th
e
r
esi
s
ta
n
ce
o
f
s
tato
r
p
h
ase
w
i
n
d
i
n
g
,
is
t
h
e
r
ef
er
r
ed
r
esi
s
t
an
ce
o
f
r
o
to
r
p
h
ase
w
in
d
i
n
g
a
n
d
is
th
e
co
r
e
lo
s
s
r
esis
ta
n
ce
.
Mo
to
r
v
o
ltag
e
an
d
f
r
eq
u
e
n
c
y
ar
e
ch
a
n
g
ed
d
u
r
in
g
s
tar
tin
g
ac
co
r
d
in
g
to
t
h
e
e
q
u
atio
n
s
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
4
,
Dec
em
b
er
2
0
1
6
:
1
0
3
8
–
1
0
4
8
1040
=
1
+
2
(
1
4
)
=
1
+
2
(
1
5
)
W
h
er
e;
1
,
2
,
1
2
ar
e
co
n
s
tan
t
s
.
T
h
e
m
a
x
i
m
u
m
v
al
u
e
s
o
f
v
o
lt
ag
e
an
d
f
r
eq
u
e
n
c
y
ar
e
t
h
e
r
at
ed
v
alu
e
s
o
f
t
h
e
m
o
to
r
.
T
h
e
r
atio
o
f
v
o
lta
g
e
to
f
r
eq
u
en
c
y
m
u
s
t
b
e
li
m
ited
to
th
e
r
atio
o
f
r
ated
v
o
ltag
e
an
d
f
r
eq
u
e
n
c
y
to
p
r
ev
en
t
m
o
to
r
s
at
u
r
atio
n
an
d
o
v
er
h
ea
ti
n
g
.
Fig
u
r
e
1
.
b
s
h
o
w
s
t
h
e
SIM
U
L
I
NK
m
o
d
el
w
i
th
th
e
s
e
v
ar
iab
le
v
o
ltag
e
a
n
d
f
r
eq
u
en
c
y
.
a.
SIM
UL
I
NK
Mo
d
el
o
f
T
h
r
ee
P
h
ase
I
n
d
u
ctio
n
M
o
to
r
b
.
SIM
UL
I
NK
S
y
s
te
m
Sc
h
e
m
e
Fig
u
r
e
1
.
Dev
elo
p
ed
SIM
UL
I
NK
M
o
d
el
3.
O
P
T
I
M
U
M
VO
L
T
AG
E
AN
D
F
RE
Q
UE
N
CY
VAR
I
AB
L
E
S US
I
N
G
P
SO
I
n
th
is
p
ar
t
P
SO
m
e
th
o
d
is
u
s
ed
to
d
eter
m
i
n
e
th
e
co
n
s
ta
n
ts
K
v1
,
K
v2
,
K
f1
an
d
K
f2
in
E
q
u
atio
n
s
(
1
4
)
an
d
(
1
5
)
.
T
h
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
i
s
E
q
u
atio
n
(
1
1
)
o
f
s
tar
ti
n
g
en
er
g
y
lo
s
s
e
s
w
it
h
t
h
e
i
n
eq
u
al
it
y
co
n
s
tr
ain
ts
o
f
:
a.
Sta
r
tin
g
time
≤
10
s
.
b.
Mo
to
r
v
o
ltag
e
an
d
f
r
eq
u
e
n
c
y
m
u
s
t e
q
u
al
r
ated
v
al
u
e
s
at
th
e
en
d
o
f
s
tar
ti
n
g
t
i
m
e.
Fig
u
r
e
2
s
h
o
w
s
t
h
e
f
lo
w
ch
ar
t
o
f
th
e
P
SO
o
p
er
atio
n
,
f
o
r
a
c
er
tain
lo
ad
to
r
q
u
e,
a
s
w
ar
m
o
f
2
4
ag
en
ts
is
i
n
itialized
,
f
o
r
ea
ch
a
g
en
t
t
h
e
m
o
to
r
d
y
n
a
m
ic
m
o
d
el
is
o
p
er
ated
an
d
th
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
is
ev
al
u
ated
.
Ne
w
p
o
s
itio
n
o
f
A
g
e
n
t
s
i
s
d
et
er
m
in
ed
ac
co
r
d
in
g
to
th
e
ir
v
e
l
o
cities,
t
h
eir
b
est
p
o
s
itio
n
an
d
th
e
b
est
p
o
s
itio
n
o
f
th
e
s
w
ar
m
.
A
g
e
n
t
's v
elo
cit
y
i
n
s
w
ar
m
is
u
p
d
ated
ac
co
r
d
in
g
to
E
q
u
atio
n
(
1
6
)
:
+
1
=
+
1
1
×
(
−
)
+
2
2
×
(
−
)
(
1
6
)
w
h
er
e
is
v
elo
cit
y
o
f
ag
e
n
t
i
a
t
iter
atio
n
k
,
is
w
eig
h
ti
n
g
f
u
n
ctio
n
,
is
w
eig
h
ti
n
g
co
ef
f
icie
n
ts
,
:
is
r
an
d
o
m
n
u
m
b
er
b
et
w
ee
n
0
an
d
1
,
is
th
e
c
u
r
r
en
t
p
o
s
itio
n
o
f
ag
en
t
i
at
iter
atio
n
k
,
is
b
est
p
o
s
itio
n
o
f
ag
en
t i,
a
n
d
:
is
b
est p
o
s
itio
n
o
f
th
e
s
w
ar
m
.
T
h
e
w
ei
g
h
tin
g
f
u
n
ctio
n
is
g
iv
e
n
b
y
:
=
−
−
×
(
1
7
)
W
h
er
e
is
in
itial
w
ei
g
h
t,
is
f
i
n
al
w
ei
g
h
t,
is
m
a
x
i
m
u
m
iter
ati
o
n
n
u
m
b
er
,
an
d
is
cu
r
r
en
t
iter
atio
n
n
u
m
b
er
.
A
cc
o
r
d
in
g
t
o
Sh
i
an
d
E
b
er
h
ar
t
[
1
8
,
1
9
]
,
th
e
f
o
llo
w
i
n
g
p
ar
a
m
eter
s
ar
e
a
p
p
r
o
p
r
iate
an
d
d
o
n
o
t d
ep
en
d
o
n
o
p
tim
izatio
n
p
r
o
b
lem
s
:
=
2
,
=
0
.
9
a
n
d
=
0
.
4
(
1
8
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
Min
imiz
a
tio
n
o
f S
ta
r
tin
g
E
n
er
g
y
Lo
s
s
o
f Th
r
ee
P
h
a
s
e
I
n
d
u
ctio
n
Mo
to
r
s
b
a
s
ed
o
n
…
(
Ma
h
mo
u
d
M.
E
lkh
o
ly
)
1041
Si
m
u
latio
n
h
as
b
ee
n
ca
r
r
ied
o
u
t
b
y
u
s
in
g
SIM
U
L
I
NK/M
A
T
L
A
B
f
o
r
2
2
0
/3
8
0
V,
1
.
1
k
W
,
5
0
Hz
th
r
ee
p
h
ase
in
d
u
ct
io
n
m
o
to
r
h
av
in
g
:
=
5
.
1
5
Ω
,
=
3
.
7
5
Ω
,
=0
.
5
8
8
7
H,
=0
.
5
8
8
7
H,
=0
.
5
5
6
8
H,
=2
an
d
J
=0
.
0
5
k
g
.
m
2
.
P
SO
ar
e
u
s
ed
to
o
b
tain
th
e
o
p
ti
m
u
m
v
o
ltag
e
a
n
d
f
r
eq
u
en
c
y
v
a
r
iab
les,
m
a
x
i
m
u
m
n
u
m
b
er
o
f
iter
atio
n
s
i
s
=
5
0
.
T
h
e
p
r
o
ce
s
s
is
r
ep
ea
ted
f
o
r
a
lo
ad
to
r
q
u
e
r
an
g
e
f
r
o
m
0
.
2
to
3
N.
m
in
a
s
tep
o
f
0
.
2
N.
m
.
Fo
r
ea
ch
lo
ad
to
r
q
u
e,
P
SO is r
u
n
f
o
r
f
i
v
e
ti
m
es a
n
d
th
e
b
est s
o
l
u
tio
n
is
r
e
co
r
d
ed
.
T
h
e
o
p
tim
al
v
alu
e
s
o
f
1
,
2
,
1
an
d
2
ar
e
lis
ted
i
n
T
ab
le
1
.
Fi
g
u
r
e
3
an
d
Fig
u
r
e
4
s
h
o
w
th
e
P
SO
f
it
n
es
s
f
u
n
ctio
n
r
esu
lt
s
at
lo
ad
to
r
q
u
e
o
f
1
a
n
d
2
N.
m
r
esp
ec
ti
v
el
y
.
T
h
e
o
p
tim
u
m
v
a
lu
e
s
o
f
m
o
to
r
v
o
ltag
e
an
d
f
r
eq
u
en
c
y
o
b
tain
ed
b
y
P
SO
ar
e
s
h
o
w
n
in
F
ig
u
r
e
5
a
n
d
Fi
g
u
r
e
6
.
T
h
e
o
p
ti
m
u
m
v
al
u
es
o
f
v
o
lta
g
e
an
d
f
r
eq
u
en
c
y
ar
e
v
ar
i
ed
w
it
h
d
if
f
er
en
t
v
al
u
es
o
f
lo
ad
to
r
q
u
e,
th
er
ef
o
r
e
a
n
eu
r
o
-
f
u
zz
y
tec
h
n
iq
u
e
is
u
s
ed
to
ad
ap
t
th
eseo
p
ti
m
u
m
w
it
h
lo
ad
to
r
q
u
e.
T
ab
le
1
.
Op
tim
al
Mo
to
r
Vo
ltag
e
a
n
d
Fre
q
u
e
n
c
y
P
ar
a
m
eter
s
TL
(
N
.
m)
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
1
.
4
1
.
6
1
.
8
2
2
.
2
2
.
4
2
.
6
2
.
8
3
1
1
6
.
1
5
3
1
5
.
8
7
3
1
5
.
0
6
1
4
.
5
7
4
1
4
.
1
7
7
6
1
4
.
1
2
3
1
3
.
9
8
1
3
.
8
2
7
1
3
.
4
8
3
1
3
.
1
7
3
1
2
.
5
1
7
1
2
.
2
7
9
1
1
.
4
0
7
1
1
.
2
7
4
1
1
.
2
6
6
2
5
8
.
7
0
2
6
1
.
5
9
5
6
9
.
6
2
7
7
5
.
4
1
1
7
9
.
8
0
6
8
3
.
2
5
3
8
7
.
3
1
1
9
1
.
5
5
6
9
2
.
1
1
9
6
.
9
5
8
1
0
0
.
3
6
8
1
0
7
.
5
5
2
1
1
4
.
3
3
6
1
1
5
.
3
5
9
1
2
0
.
0
3
4
1
5
.
2
3
2
5
.
0
1
5
4
.
8
5
4
4
.
6
9
4
.
4
9
4
.
3
3
3
4
.
1
7
4
.
0
1
9
3
.
8
0
8
3
.
6
4
5
3
.
4
1
6
3
.
2
8
1
3
.
0
4
1
2
.
8
8
4
2
.
7
3
5
2
1
1
.
7
4
1
1
2
.
3
2
1
3
.
9
2
5
1
5
.
0
8
2
1
5
.
9
6
1
1
6
.
6
5
1
1
7
.
4
7
1
8
.
3
1
7
1
8
.
4
2
3
1
9
.
3
9
2
2
0
.
1
3
5
2
1
.
5
1
3
2
2
.
8
9
8
2
3
.
0
9
5
2
4
.
0
3
5
S
t
a
r
t
R
e
a
d
m
o
t
o
r
a
n
d
s
w
a
r
m
i
n
i
t
i
a
l
d
a
t
a
I
n
i
t
i
a
l
i
z
e
t
h
e
p
o
s
i
t
i
o
n
o
f
e
a
c
h
a
g
e
n
t
R
u
n
S
i
m
u
l
i
n
k
m
o
d
e
l
E
v
a
l
u
a
t
e
t
h
e
o
b
j
e
c
t
i
v
e
f
u
n
c
t
i
o
n
U
p
d
a
t
e
a
g
e
n
t
s
p
o
s
i
t
i
o
n
I
t
e
r
≤
i
t
e
r
_
m
a
x
Y
e
s
E
n
d
N
o
W
r
i
t
e
t
h
e
b
e
s
t
s
o
l
u
t
i
o
n
Fig
u
r
e
2
.
Flo
w
C
h
ar
t o
f
t
h
e
P
SO M
eth
o
d
Fig
u
r
e
3
.
Var
iatio
n
o
f
P
SO
Fit
n
es
s
Valu
e
w
i
th
Gen
er
atio
n
a
t
L
o
ad
T
o
r
q
u
e
1
N.
m
Fig
u
r
e
4
.
Var
iatio
n
o
f
P
SO
Fit
n
es
s
Valu
e
w
i
th
Gen
er
atio
n
a
t
L
o
ad
T
o
r
q
u
e
2
N.
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
4
,
Dec
em
b
er
2
0
1
6
:
1
0
3
8
–
1
0
4
8
1042
Fig
u
r
e
5
.
Var
iatio
n
o
f
Mo
to
r
Ph
ase
Vo
lta
g
e
w
it
h
T
im
e
a
t
Dif
f
er
en
t
L
o
ad
T
o
r
q
u
es
Fig
u
r
e
6
.
Var
iatio
n
o
f
Mo
to
r
Fre
q
u
en
c
y
w
i
th
T
i
m
e
a
t
Dif
f
er
en
t
L
o
ad
T
o
r
q
u
es
4.
ADAP
T
I
VE
N
E
URO
-
F
U
Z
Z
Y
CO
NT
RO
L
L
E
R
F
O
R
M
O
T
O
R
I
NV
E
RT
E
R
Su
g
en
o
f
u
zz
y
s
y
s
te
m
[
2
0
]
,
is
m
o
r
e
co
m
p
ac
t
t
h
an
Ma
m
d
an
i
s
y
s
te
m
a
n
d
is
u
s
ed
f
o
r
ad
ap
tiv
e
tech
n
iq
u
es
f
o
r
co
n
s
tr
u
ctin
g
f
u
zz
y
m
o
d
el
s
.
T
h
ese
ad
ap
tiv
e
tech
n
iq
u
e
s
ca
n
b
e
u
s
ed
to
cu
s
to
m
ize
t
h
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
s
o
th
at
th
e
f
u
zz
y
s
y
s
te
m
b
e
s
t
m
o
d
el
s
th
e
d
ata.
T
h
e
co
n
ce
p
t
o
f
ad
ap
tiv
e
n
eu
r
o
-
f
u
zz
y
in
f
er
en
ce
s
y
s
te
m
A
N
FIS
i
s
u
s
ed
to
o
b
tain
th
e
r
eq
u
ir
ed
v
o
lt
ag
e
a
n
d
f
r
eq
u
e
n
c
y
v
a
lu
e
s
.
T
h
e
o
p
ti
m
al
v
al
u
es
o
f
v
o
ltag
e
a
n
d
f
r
eq
u
en
c
y
d
ep
en
d
o
n
th
e
lo
ad
to
r
q
u
e.
A
n
eu
r
o
-
f
u
zz
y
n
et
w
o
r
k
is
tr
ain
e
d
to
p
er
f
o
r
m
th
is
ad
ap
tatio
n
.
T
h
e
in
p
u
t
to
th
is
n
et
w
o
r
k
is
lo
ad
to
r
q
u
e,
an
d
th
e
o
u
tp
u
t
s
ar
e
t
h
e
f
o
u
r
co
n
s
ta
n
t
s
o
f
v
o
lta
g
e
an
d
f
r
eq
u
e
n
c
y
eq
u
atio
n
s
.
A
n
A
N
FIS
is
b
u
ilt
f
o
r
ea
ch
co
n
s
ta
n
t
i
n
t
h
e
v
o
lta
g
e
an
d
f
r
eq
u
en
c
y
eq
u
atio
n
s
,
i.e
1
,
2
,
1
an
d
2
.
T
h
e
f
o
u
r
n
et
w
o
r
k
s
h
av
e
t
h
e
s
a
m
e
s
tr
u
ct
u
r
e
o
f
a
h
id
d
en
la
y
er
w
ith
6
n
e
u
r
o
n
s
a
n
d
ar
e
tr
ain
ed
f
o
r
1
0
0
0
ep
o
ch
s
,
T
ab
l
e
2
s
h
o
w
s
t
h
e
tr
ain
in
g
s
tat
is
tic
s
f
o
r
th
ese
n
et
w
o
r
k
s
.
Fig
u
r
e
7
s
h
o
w
s
t
h
e
tr
ain
i
n
g
p
atter
n
f
o
r
t
h
e
n
et
w
o
r
k
s
.
T
h
e
o
u
tp
u
t
o
f
th
e
ANFI
S
is
co
m
p
ar
e
d
w
i
th
th
e
o
u
tp
u
t
i
n
t
h
e
tr
ain
i
n
g
s
et
a
n
d
is
s
h
o
w
n
i
n
Fi
g
u
r
e
8.
A
Gau
s
s
i
an
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
ar
e
u
s
ed
to
f
u
zz
y
i
n
p
u
t
d
ata
an
d
a
lin
ea
r
f
u
n
ct
io
n
i
s
u
s
ed
f
o
r
th
e
o
u
tp
u
t
d
ata.
A
b
ac
k
p
r
o
p
ag
atio
n
alg
o
r
ith
m
is
u
s
ed
to
ad
ap
t
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
s
o
th
at
t
h
e
e
r
r
o
r
g
o
al
b
et
w
ee
n
tar
g
et
s
a
n
d
o
u
tp
u
ts
o
f
ANFI
S
i
s
ac
h
iev
ed
.
C
o
m
p
lete
Si
m
u
li
n
k
m
o
d
el
o
f
t
h
e
s
y
s
te
m
w
it
h
n
eu
r
o
-
f
u
zz
y
co
n
tr
o
ller
is
s
h
o
wn
in
Fig
u
r
e
9.
T
ab
le
2
.
T
r
ain
in
g
Stati
s
tic
s
o
f
A
N
FIS
Net
w
o
r
k
s
P
a
r
a
me
t
e
r
M
a
x
.
e
r
r
o
r
M
e
a
n
e
r
r
o
r
S
t
a
n
d
a
r
d
D
e
v
i
a
t
i
o
n
K
v1
3
.
1
4
2
2
×
1
0
-
4
4
.
9
6
8
7
×
1
0
-
6
1
.
6
8
8
3
×
1
0
-
4
K
v2
3
.
4
0
5
5
×
1
0
-
4
1
.
4
1
8
8
×
1
0
-
5
1
.
7
5
5
7
×
1
0
-
4
K
f1
2
×
1
0
-
3
1
.
6
8
4
3
×
1
0
-
6
1
.
3
×
1
0
-
3
K
f2
8
.
0
5
4
0
×
1
0
-
5
2
.
8
2
6
4
×
1
0
-
6
3
.
5
7
4
5
×
1
0
-
5
Fig
u
r
e
7
.
Var
iatio
n
o
f
1
,
2
,
1
an
d
2
A
N
FIS
E
r
r
o
r
w
it
h
T
r
ain
in
g
E
p
o
ch
s
Fig
u
r
e
8
.
Var
iatio
n
o
f
1
,
2
,
1
an
d
2
A
N
FIS
O
u
tp
u
t,
tar
g
et
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
Min
imiz
a
tio
n
o
f S
ta
r
tin
g
E
n
er
g
y
Lo
s
s
o
f Th
r
ee
P
h
a
s
e
I
n
d
u
ctio
n
Mo
to
r
s
b
a
s
ed
o
n
…
(
Ma
h
mo
u
d
M.
E
lkh
o
ly
)
1043
Fig
u
r
e
9
.
SIM
UL
I
NK
Mo
d
el
o
f
th
e
S
y
s
te
m
w
i
th
Ne
u
r
o
-
Fu
z
z
y
C
o
n
tr
o
ller
5.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
Si
m
u
latio
n
h
as
b
ee
n
ca
r
r
ied
o
u
t
b
y
u
s
in
g
SIM
UL
I
N
K/M
A
T
L
A
B
f
o
r
t
w
o
d
i
f
f
er
en
t
m
o
to
r
s
.
Mo
to
r
A
is
a
2
2
0
/3
8
0
V,
1
.
1
k
W
,
5
0
Hz
th
r
ee
p
h
a
s
e
in
d
u
ctio
n
m
o
t
o
r
h
av
i
n
g
t
h
e
f
o
llo
w
i
n
g
p
ar
a
m
eter
s
:
=
5
.
1
5
Ω
,
=
3
.
7
5
Ω
,
=0
.
5
8
8
7
H,
=0
.
5
8
8
7
H,
=0
.
5
5
6
8
H,
=2
an
d
J
=
0
.
0
5
k
g
.
m
2
.
Mo
to
r
B
is
a
2
2
0
/
3
8
0
V,
2
h
p
,
5
0
Hz
th
r
ee
p
h
a
s
e
i
n
d
u
ctio
n
m
o
to
r
h
a
v
i
n
g
t
h
e
f
o
ll
o
w
i
n
g
p
ar
a
m
eter
s
:
=
5
.
6
Ω
,
=
4
.
9
6
5
Ω
,
=0
.
0
.
2
6
1
1
H,
=0
.
2
6
1
1
H,
=0
.
2
4
4
5
H,
=4
an
d
J
=0
.
2
k
g
.
m
2
.
5
.
1
.
Resul
t
s
o
f
M
o
t
o
r
A
I
n
th
i
s
s
ec
tio
n
t
h
r
ee
g
r
o
u
p
s
o
f
r
esu
l
ts
ar
e
p
r
esen
ted
f
o
r
m
o
to
r
A
.
T
h
e
f
ir
s
t
g
r
o
u
p
r
ep
r
esen
ts
r
es
u
lt
s
w
h
e
n
th
e
m
o
to
r
is
s
tar
ted
b
y
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
w
h
er
e
v
o
ltag
e
a
n
d
f
r
eq
u
e
n
c
y
ar
e
c
h
an
g
ed
as
g
i
v
en
i
n
E
q
u
atio
n
s
(
1
4
)
an
d
(
1
5
)
w
it
h
co
n
s
ta
n
ts
1
,
2
,
1
an
d
2
as
lis
ted
in
T
ab
le
2
.
T
h
e
s
ec
o
n
d
g
r
o
u
p
r
ep
r
esen
ts
r
esu
l
ts
o
f
DO
L
m
eth
o
d
.
T
h
e
th
ir
d
g
r
o
u
p
r
ep
r
es
en
ts
r
es
u
lts
w
h
en
t
h
e
m
o
to
r
is
s
tar
ted
w
it
h
V/
F
m
et
h
o
d
w
h
er
e
f
r
eq
u
e
n
c
y
is
i
n
cr
ea
s
ed
w
it
h
r
a
m
p
r
ate
f
r
o
m
0
Hz
to
r
ated
f
r
eq
u
en
c
y
o
f
5
0
Hz
in
1
0
s
(
th
is
i
s
th
e
f
ac
to
r
y
s
et
tin
g
o
f
E
U
R
OT
HE
R
M
DR
I
VE
S 6
0
5
Ser
ies Fr
eq
u
en
c
y
I
n
v
er
ter
)
an
d
v
o
lta
g
e
is
g
iv
e
n
as
:
=
×
5
=
4
.
4
×
5
=
22
(
1
9
)
Fig
u
r
e
1
0
.
a
s
h
o
w
s
th
e
v
ar
iati
o
n
o
f
m
o
to
r
en
er
g
y
lo
s
s
es
w
i
t
h
t
h
e
t
h
r
ee
s
tar
ti
n
g
m
et
h
o
d
s
a
t
d
if
f
er
en
t
lo
ad
to
r
q
u
es
r
an
g
es
f
r
o
m
0
.
2
N.
m
to
3
N.
m
w
i
th
a
s
tep
o
f
0
.
2
N.
m
.
I
t
'
s
s
h
o
w
n
t
h
at
th
e
p
r
o
p
o
s
ed
tech
n
iq
u
e
r
ed
u
ce
s
s
tar
ti
n
g
e
n
er
g
y
lo
s
s
es
m
u
c
h
m
o
r
e
th
a
n
DO
L
a
n
d
V/
F
s
tar
ti
n
g
.
T
h
is
r
ed
u
c
tio
n
i
n
s
t
ar
tin
g
e
n
er
g
y
lo
s
s
e
s
lead
s
to
en
er
g
y
s
av
in
g
esp
ec
ia
ll
y
i
n
m
u
lti
-
s
tar
tin
g
ap
p
licatio
n
.
T
h
e
v
ar
iatio
n
o
f
m
o
to
r
s
p
ee
d
an
d
d
ev
elo
p
ed
to
r
q
u
e
w
i
th
t
i
m
e
at
d
i
f
f
er
en
t
lo
ad
to
r
q
u
es
ar
e
s
h
o
w
n
i
n
Fig
u
r
es
1
0
.
b
an
d
1
0
.
c
r
esp
e
ctiv
el
y
.
I
n
c
ase
o
f
V/F
s
tar
ti
n
g
m
et
h
o
d
w
it
h
h
i
g
h
lo
ad
to
r
q
u
es,
an
d
at
lo
w
f
r
eq
u
en
c
y
t
h
e
d
ev
elo
p
ed
to
r
q
u
e
is
lo
w
er
t
h
an
lo
ad
to
r
q
u
e
s
o
th
at
th
e
m
o
to
r
f
ailed
to
s
t
ar
t
an
d
m
o
to
r
s
tar
ts
w
h
e
n
th
e
f
r
eq
u
en
c
y
r
ea
ch
e
s
it
s
r
ated
v
alu
e.
T
h
e
v
ar
iatio
n
o
f
s
tato
r
cu
r
r
en
t
w
it
h
ti
m
e
at
lo
ad
to
q
u
e
o
f
0
.
2
N.
m
in
ca
s
e
o
f
t
h
e
th
r
ee
m
eth
o
d
s
o
f
s
tar
tin
g
i
s
s
h
o
w
n
i
n
Fig
u
r
e
1
0
.
d
.
T
h
e
s
tar
tin
g
c
u
r
r
en
t i
n
ca
s
e
o
f
V/F
m
eth
o
d
i
s
lo
w
er
t
h
an
t
h
at
o
f
t
h
e
p
r
o
p
o
s
ed
an
d
DO
L
m
et
h
o
d
s
b
u
t
t
h
e
s
ta
r
tin
g
ti
m
e
i
s
t
h
e
h
i
g
h
est.
Star
t
in
g
e
n
er
g
y
lo
s
s
es
w
it
h
p
r
o
p
o
s
ed
m
et
h
o
d
ar
e
th
e
lo
w
es
t
o
n
e
at
all
r
an
g
e
o
f
lo
ad
to
r
q
u
es
as
s
h
o
w
n
i
n
Fi
g
u
r
e
1
1
.
T
h
e
p
er
ce
n
tag
e
s
a
v
in
g
i
n
s
t
ar
tin
g
e
n
er
g
y
lo
s
s
es
o
f
p
r
o
p
o
s
ed
m
eth
o
d
co
m
p
ar
ed
to
o
th
er
m
e
th
o
d
s
ar
e
s
h
o
w
n
i
n
T
ab
le
3
an
d
ca
lcu
lated
as:
%
Sa
ving
in
Sta
r
tin
g
E
n
e
r
g
y
l
oss
e
s
c
omp
a
r
e
d
to
DOL
=
×
100
(
2
0
)
%
Sa
ving
in
Sta
r
tin
g
E
n
e
r
g
y
l
oss
e
s
c
omp
a
r
e
d
to
(
2
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
4
,
Dec
em
b
er
2
0
1
6
:
1
0
3
8
–
1
0
4
8
1044
=
/
×
100
%
Sa
ving
in
Sta
r
tin
g
E
n
e
r
g
y
l
oss
e
s
c
omp
a
r
e
d
to
mode
f
ie
d
=
×
100
(
2
2
)
I
n
m
o
d
i
f
ied
V/F
m
et
h
o
d
th
e
v
o
ltag
e
a
n
d
f
r
eq
u
en
c
y
ar
e
b
o
o
s
ted
b
y
1
0
%
at
s
tar
ti
n
g
to
im
p
r
o
v
e
th
e
s
tar
tin
g
to
r
q
u
e
as:
=
5
+
(
50
−
5
)
10
×
=
5
+
4
.
5
,
=
22
+
(
220
−
22
)
10
×
=
22
+
19
.
8
(
2
3
)
T
ab
le
3
.
% Sav
in
g
in
S
tar
tin
g
E
n
er
g
y
L
o
s
s
es o
f
Mo
to
r
a
o
f
Pro
p
o
s
ed
Me
th
o
d
C
o
m
p
ar
ed
t
o
DOL
a
n
d
V
/
F
Me
th
o
d
s
L
o
a
d
T
o
r
q
u
e
(
N
.
m)
%
S
a
v
i
n
g
i
n
S
t
a
r
t
i
n
g
E
n
e
r
g
y
l
o
ss
e
s
c
o
mp
a
r
e
d
t
o
D
O
L
%
S
a
v
i
n
g
i
n
S
t
a
r
t
i
n
g
E
n
e
r
g
y
l
o
ss
e
s
c
o
mp
a
r
e
d
t
o
V
/
F
%
S
a
v
i
n
g
i
n
S
t
a
r
t
i
n
g
E
n
e
r
g
y
l
o
sse
s c
o
mp
a
r
e
d
t
o
mo
d
i
f
i
e
d
V
/
F
0
.
2
3
4
.
9
0
1
4
3
4
.
7
0
0
8
2
2
.
4
5
3
3
0
.
4
3
3
.
4
2
0
8
4
1
.
0
6
9
2
2
3
.
0
3
8
9
0
.
6
3
2
.
1
3
0
3
4
7
.
3
9
9
3
2
8
.
6
7
8
0
0
.
8
3
0
.
6
5
0
8
5
3
.
1
4
4
9
3
6
.
1
0
0
0
1
.
0
2
9
.
6
7
6
7
5
3
.
2
6
9
1
4
4
.
4
0
2
4
1
.
2
2
8
.
5
7
1
0
5
1
.
6
3
3
1
5
2
.
3
4
0
7
1
.
4
2
7
.
6
9
3
2
5
0
.
0
3
3
0
5
4
.
3
0
7
7
1
.
6
2
6
.
9
0
6
4
4
8
.
4
0
1
6
5
2
.
8
7
4
6
1
.
8
2
7
.
7
9
1
9
4
7
.
8
7
9
2
5
2
.
3
5
4
4
2
.
0
2
7
.
7
6
4
3
4
6
.
6
3
5
0
5
1
.
0
6
2
2
2
.
2
2
8
.
5
3
3
5
4
5
.
9
0
7
7
5
0
.
1
6
2
9
2
.
4
2
9
.
0
1
8
2
4
4
.
8
9
6
6
4
8
.
9
6
5
9
2
.
6
3
0
.
4
3
3
0
4
4
.
5
3
3
1
4
8
.
3
3
1
0
2
.
8
3
4
.
4
4
7
2
4
6
.
2
1
8
8
4
9
.
5
6
7
1
3
.
0
3
8
.
8
2
0
2
4
8
.
1
9
9
5
5
1
.
0
3
2
7
Fig
u
r
e
1
0
.
a
Var
iatio
n
o
f
Mo
to
r
E
n
er
g
y
L
o
s
s
es
w
it
h
T
im
e
at
Di
f
f
er
en
t
L
o
ad
T
o
r
q
u
es (
m
o
to
r
A
)
Fig
u
r
e
1
0
.
b
.
Var
iatio
n
o
f
Sp
ee
d
w
it
h
T
im
e
a
t D
if
f
er
en
t
L
o
ad
T
o
r
q
u
es
(
m
o
to
r
A
)
Fig
u
r
e
1
0
.
c
Var
iatio
n
o
f
D
ev
e
lo
p
ed
T
o
r
q
u
e
w
it
h
T
im
e
a
t D
i
f
f
er
en
t
L
o
ad
T
o
r
q
u
es
(
m
o
to
r
A
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
Min
imiz
a
tio
n
o
f S
ta
r
tin
g
E
n
er
g
y
Lo
s
s
o
f Th
r
ee
P
h
a
s
e
I
n
d
u
ctio
n
Mo
to
r
s
b
a
s
ed
o
n
…
(
Ma
h
mo
u
d
M.
E
lkh
o
ly
)
1045
Fig
u
r
e
1
0
.
d
Var
iatio
n
o
f
Stato
r
P
h
ase
C
u
r
r
en
t
w
i
th
T
i
m
e
a
t
L
o
ad
T
o
r
q
u
e
o
f
0
.
2
N.
m
(
m
o
t
o
r
A
)
Fig
u
r
e
1
1
.
Var
iatio
n
o
f
Star
tin
g
E
n
er
g
y
L
o
s
s
e
s
w
it
h
T
i
m
e
a
t D
if
f
er
en
t
L
o
ad
T
o
r
q
u
es (
m
o
to
r
A
)
5
.
2
.
Resul
t
s
o
f
M
o
t
o
r
B
I
n
th
i
s
s
ec
tio
n
t
h
e
s
a
m
e
r
es
u
lt
s
ar
e
r
ep
ea
ted
f
o
r
m
o
to
r
B
.
T
h
e
v
ar
iatio
n
o
f
m
o
to
r
e
n
er
g
y
lo
s
s
es,
s
p
ee
d
an
d
m
o
to
r
to
r
q
u
e
ar
e
s
h
o
w
n
i
n
F
ig
u
r
e
s
1
2
.
a
to
1
2
.
c
r
esp
ec
t
iv
el
y
.
I
t
’
s
s
h
o
w
n
th
at
t
h
e
m
o
t
o
r
en
er
g
y
lo
s
s
es
o
f
p
r
o
p
o
s
ed
m
et
h
o
d
ar
e
th
e
s
m
allest.
I
n
V/F
m
et
h
o
d
,
th
e
m
o
to
r
f
ails
to
s
tar
t
w
h
en
lo
ad
e
d
b
y
a
lo
ad
to
r
q
u
e
eq
u
als
o
r
g
r
ea
ter
th
a
n
5
N.
m
w
h
ic
h
is
5
0
%
f
u
ll
lo
ad
u
p
to
th
e
m
o
to
r
v
o
lta
g
e
an
d
f
r
eq
u
e
n
c
y
ar
e
i
n
cr
ea
s
ed
to
r
ated
v
alu
e
s
.
T
h
er
ef
o
r
e,
th
e
m
o
to
r
en
er
g
y
lo
s
s
e
s
o
f
V/F
m
et
h
o
d
ar
e
th
e
h
i
g
h
est.T
h
e
v
ar
iati
o
n
o
f
m
o
to
r
cu
r
r
e
n
t
w
it
h
ti
m
e
at
n
o
lo
ad
to
r
q
u
e
is
s
h
o
w
n
i
n
Fi
g
u
r
e
1
2
.
d
.
T
h
e
s
ta
r
tin
g
c
u
r
r
en
t
o
f
V/
F
m
et
h
o
d
is
th
e
lo
w
e
s
t
o
n
e
b
u
t
th
e
d
ev
elo
p
ed
to
r
q
u
e
is
s
m
all
s
o
th
at
t
h
e
m
o
to
r
s
tar
tin
g
ti
m
e
is
h
i
g
h
an
d
t
h
e
co
r
r
esp
o
n
d
in
g
e
n
er
g
y
lo
s
s
es
i
s
th
e
h
i
g
h
e
s
t
o
n
e
as
s
h
o
w
n
in
F
ig
u
r
e
13.
T
h
e
o
p
tim
a
l
v
alu
e
s
o
f
co
n
s
tan
t
s
1
,
2
,
1
an
d
2
o
f
th
is
m
o
to
r
f
r
o
m
t
h
e
P
SO
as
li
s
ted
in
T
ab
le
4
.
T
h
e
p
er
ce
n
tag
e
s
a
v
in
g
in
s
tar
ti
n
g
en
er
g
y
lo
s
s
es
o
f
m
o
to
r
B
o
f
p
r
o
p
o
s
ed
m
et
h
o
d
co
m
p
ar
ed
to
o
th
er
m
et
h
o
d
s
ar
e
s
h
o
w
n
i
n
T
ab
le
5
.
Fig
u
r
e
1
2
.
a.
Var
iatio
n
o
f
Mo
to
r
E
n
er
g
y
L
o
s
s
e
s
w
it
h
T
im
e
a
t D
i
f
f
er
en
t
L
o
ad
T
o
r
q
u
es
(
m
o
to
r
B
)
Fig
u
r
e
1
2
.
b
.
Var
iatio
n
o
f
Sp
ee
d
w
it
h
T
im
e
a
t
Dif
f
er
en
t
L
o
ad
T
o
r
q
u
es
(
m
o
to
r
B
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
4
,
Dec
em
b
er
2
0
1
6
:
1
0
3
8
–
1
0
4
8
1046
Fig
u
r
e
1
2
.
c.
Var
iatio
n
o
f
Dev
e
lo
p
ed
T
o
r
q
u
e
w
i
t
h
T
im
e
a
t D
if
f
er
en
t
L
o
ad
T
o
r
q
u
es
(
m
o
to
r
B
)
Fig
u
r
e
1
2
.
d
.
Var
iatio
n
o
f
Stato
r
P
h
ase
C
u
r
r
en
t
w
i
th
T
im
e
a
t N
o
L
o
ad
to
r
q
u
e
(
m
o
t
o
r
B
)
Fig
u
r
e
1
3
.
Var
iatio
n
o
f
Star
tin
g
E
n
er
g
y
L
o
s
s
e
s
w
it
h
T
i
m
e
at
Dif
f
er
en
t
L
o
ad
T
o
r
q
u
es (
m
o
to
r
B
)
T
ab
le
4
.
Op
tim
al
Mo
to
r
Vo
ltag
e
an
d
Fre
q
u
e
n
c
y
P
ar
a
m
eter
s
o
f
M
o
to
r
B
TL
(
N
.
m)
0
2
.
5
5
7
.
5
10
1
1
3
.
5
7
3
1
0
.
1
2
3
4
8
.
0
9
1
5
9
.
9
0
0
1
9
.
3
7
6
8
2
8
4
.
2
7
1
1
2
8
.
0
3
0
4
1
4
8
.
0
6
6
5
2
0
8
.
2
9
6
4
2
0
8
.
7
8
6
7
1
5
.
2
7
1
8
4
.
2
5
7
3
3
.
5
1
5
2
2
.
1
5
7
9
1
.
8
4
5
9
2
1
6
.
8
5
5
9
2
5
.
6
0
6
1
2
9
.
7
3
0
3
4
1
.
6
6
1
5
4
1
.
7
9
8
9
T
ab
le
5
.
% Sav
in
g
in
S
tar
tin
g
E
n
er
g
y
L
o
s
s
es o
f
M
o
to
r
B
o
f
P
r
o
p
o
s
ed
M
eth
o
d
C
o
m
p
ar
ed
to
DOL
an
d
V/F
M
eth
o
d
s
L
o
a
d
T
o
r
q
u
e
(
N
.
m)
%
S
a
v
i
n
g
i
n
S
t
a
r
t
i
n
g
E
n
e
r
g
y
l
o
ss
e
s
c
o
mp
a
r
e
d
t
o
D
O
L
%
S
a
v
i
n
g
i
n
S
t
a
r
t
i
n
g
E
n
e
r
g
y
l
o
ss
e
s
c
o
mp
a
r
e
d
t
o
V
/
F
%
S
a
v
i
n
g
i
n
S
t
a
r
t
i
n
g
E
n
e
r
g
y
l
o
ss
e
s
c
o
mp
a
r
e
d
t
o
mo
d
i
f
i
e
d
V
/
F
0
1
9
.
2
4
6
2
2
4
.
3
3
2
9
2
1
.
2
7
2
9
2
.
5
1
0
.
2
5
5
3
3
4
.
8
4
8
0
2
9
.
0
1
3
1
5
5
.
1
8
9
3
4
2
.
7
6
9
7
4
4
.
1
7
5
8
7
.
5
5
.
4
8
4
8
3
7
.
9
9
5
4
4
3
.
3
0
4
4
10
7
.
2
2
0
2
3
3
.
3
0
6
3
3
8
.
4
9
5
2
6
.
CO
NCLU
SI
O
NS
I
n
t
h
is
p
ap
er
m
i
n
i
m
izatio
n
o
f
s
tar
tin
g
e
n
er
g
y
lo
s
s
es
o
f
th
r
ee
p
h
ase
s
q
u
ir
r
el
ca
g
e
i
n
d
u
c
tio
n
m
o
to
r
i
s
ac
h
iev
ed
b
y
co
n
tr
o
lli
n
g
th
e
r
ate
o
f
c
h
an
g
e
o
f
ap
p
lied
v
o
lt
ag
e
an
d
f
r
eq
u
e
n
c
y
d
u
r
in
g
s
ta
r
tin
g
.
T
h
e
o
p
ti
m
u
m
v
alu
e
s
o
f
v
o
ltag
e
a
n
d
f
r
eq
u
e
n
c
y
r
ates
ar
e
o
b
tain
ed
b
y
p
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
(
P
SO
)
to
h
av
e
m
in
i
m
u
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
Min
imiz
a
tio
n
o
f S
ta
r
tin
g
E
n
er
g
y
Lo
s
s
o
f Th
r
ee
P
h
a
s
e
I
n
d
u
ctio
n
Mo
to
r
s
b
a
s
ed
o
n
…
(
Ma
h
mo
u
d
M.
E
lkh
o
ly
)
1047
s
tar
tin
g
e
n
er
g
y
lo
s
s
e
s
w
i
th
co
n
s
tr
ai
n
ts
o
f
k
ee
p
i
n
g
t
h
e
r
ated
V/F
r
atio
,
r
ea
c
h
in
g
r
ated
v
o
lta
g
e
a
n
d
f
r
eq
u
en
c
y
at
s
tead
y
s
ta
te
an
d
li
m
iti
n
g
s
tar
tin
g
ti
m
e
to
1
0
s
ec
.
T
h
e
s
u
it
ab
le
v
alu
e
s
o
f
v
o
lta
g
e
a
n
d
f
r
eq
u
en
c
y
ar
e
v
ar
ied
ac
co
r
d
in
g
to
lo
ad
to
r
q
u
e
d
u
r
in
g
s
tar
tin
g
.
T
h
er
ef
o
r
e,
o
p
tim
u
m
v
al
u
es
ar
e
o
b
tain
ed
o
v
er
a
w
id
e
r
an
g
e
o
f
lo
ad
to
r
q
u
e
f
r
o
m
n
o
-
lo
ad
to
f
u
ll
lo
ad
,
a
n
eu
r
o
-
f
u
zz
y
co
n
tr
o
ller
is
d
esig
n
ed
to
ad
ap
t
th
e
r
ate
o
f
ch
a
n
g
e
o
f
v
o
ltag
e
an
d
f
r
eq
u
en
c
y
.
T
o
v
ali
d
ate
th
e
p
r
o
p
o
s
ed
m
eth
o
d
,
it
is
ap
p
lied
to
tw
o
th
r
ee
p
h
ase
i
n
d
u
ct
i
o
n
m
o
to
r
s
,
s
tar
tin
g
en
er
g
y
lo
s
s
es
i
n
b
o
th
ca
s
es
a
r
e
lo
w
er
t
h
an
th
a
t
o
f
d
ir
ec
t
o
n
li
n
e
m
et
h
o
d
an
d
co
n
v
en
t
io
n
al
V/
F
m
et
h
o
d
at
d
if
f
er
e
n
t lo
ad
to
r
q
u
es
.
RE
F
E
R
E
NC
E
S
[1
]
M.
M
o
h
a
m
m
a
d
i,
A
.
M
o
h
a
m
m
a
d
i
Ro
z
b
a
h
a
n
i
,
S
.
A
b
a
si
Ga
ra
v
a
n
d
,
M
.
M
o
n
taz
e
ri,
H.
M
e
m
a
rin
e
z
h
a
d
.
F
u
z
z
y
Ba
n
g
-
Ba
n
g
Co
n
tro
l
S
c
h
e
m
e
o
f
USS
C
fo
r
Vo
lt
a
g
e
S
a
g
M
it
ig
a
ti
o
n
d
u
e
t
o
S
h
o
rt
Circ
u
it
s
a
n
d
I
n
d
u
c
ti
o
n
M
o
to
r
S
tarti
n
g
in
Distrib
u
ti
o
n
S
y
ste
m
.
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
P
o
we
r E
lec
tro
n
ics
a
n
d
Dr
ive
S
y
ste
m (
IJ
PE
DS
).
2
0
1
4
;
4
(4
):
4
5
1
-
4
6
0
[2
]
Zh
o
u
Jin
g
-
h
u
a
,
Ch
e
n
C
h
e
n
g
,
Z
h
a
n
g
X
iao
-
w
e
i
a
n
d
Ch
e
n
Ya
-
a
i.
Red
u
c
in
g
Vo
lt
a
g
e
E
n
e
rg
y
-
sa
v
in
g
Co
n
tro
l
M
e
th
o
d
o
f
In
d
u
c
ti
o
n
M
o
to
r
.
In
ter
n
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
El
e
c
tri
c
a
l
M
a
c
h
in
e
s a
n
d
S
y
ste
m
s
,
Bu
sa
n
,
Ko
re
a
,
2
0
1
3
;
2
1
5
9
-
2
1
6
2
.
[3
]
A
le
x
e
i
V
.
Ud
o
v
ich
e
n
k
o
.
Ne
w
En
e
rg
y
S
a
v
in
g
M
u
lt
izo
n
e
Al
ter
n
a
ti
n
g
-
Vo
l
ta
g
e
S
o
ft
S
t
a
rte
rs
o
f
In
d
u
c
t
io
n
M
a
c
h
i
n
e
s
.
M
icro
/Na
n
o
tec
h
n
o
lo
g
ies
a
n
d
El
e
c
tro
n
De
v
ice
s
(EDM
),
2
0
1
1
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
a
n
d
S
e
m
in
a
r
o
f
Yo
u
n
g
S
p
e
c
ialists,
Erl
a
g
o
l;
2
0
1
1
:
4
1
5
-
4
1
9
.
[4
]
Na
fe
e
sa
K
a
n
d
S
a
l
y
G
e
o
rg
e
.
Op
ti
m
iz
a
ti
o
n
o
f
S
tartin
g
P
e
rf
o
rm
a
n
c
e
o
f
T
h
y
risto
rize
d
S
tatic
S
w
it
c
h
F
e
d
T
h
re
e
P
h
a
se
In
d
u
c
ti
o
n
M
o
to
r.
P
o
w
e
r
El
e
c
tro
n
ics
,
Dr
ive
s
a
n
d
E
n
e
rg
y
S
y
ste
ms
(
PE
DES
)
&
2
0
1
0
Po
we
r
In
d
ia
,
2
0
1
0
J
o
in
t
In
ter
n
a
t
io
n
a
l
C
o
n
fer
e
n
c
e
;
2
0
1
0
:
1
-
5.
[5
]
V
lad
,
I.
Ca
m
p
e
a
n
u
,
A
.
En
a
c
h
e
,
S
.
En
a
c
h
e
a
n
d
M
.
A
.
En
e
rg
y
.
As
p
e
c
ts
a
n
d
mo
n
it
o
ri
n
g
o
f
a
sy
n
c
h
ro
n
o
u
s
mo
to
rs
sta
rtin
g
.
Op
ti
m
iza
ti
o
n
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ic
E
q
u
i
p
m
e
n
t
(OP
T
IM
)
2
0
1
4
In
ter
n
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
,
Bra
n
;
2
0
1
4
:
306
-
3
1
.
[6
]
Ru
sn
o
k
,
S
.
S
o
b
o
ta,
P
.
M
a
c
h
,
V.
Ka
c
o
r,
a
n
d
P
.
M
isa
k
.
P
o
ss
ib
il
it
ies
o
f
p
ro
g
ra
m
EM
T
P
-
AT
P
to
a
n
a
ly
z
e
th
e
st
a
rti
n
g
c
u
rre
n
t
o
f
in
d
u
c
ti
o
n
m
o
to
r
in
f
re
q
u
e
n
t
sw
it
c
h
in
g
.
El
e
c
tric
Po
we
r
En
g
i
n
e
e
rin
g
(
EP
E),
1
6
th
In
ter
n
a
t
io
n
a
l
S
c
ien
ti
f
ic
Co
n
fer
e
n
c
e
,
Ko
u
ty
n
a
d
De
sn
o
u
;
2
0
1
5
:
6
1
4
–
6
1
9
.
[7
]
Da
n
a
n
g
W
ij
a
y
a
,
F
.
Ku
su
m
a
w
a
n
a
n
d
S
.
A
.
P
ra
b
o
w
o
,
H.
Re
d
u
c
i
n
g
in
d
u
c
ti
o
n
m
o
to
r
sta
rti
n
g
c
u
rre
n
t
u
sin
g
m
a
g
n
e
ti
c
e
n
e
rg
y
r
e
c
o
v
e
r
y
s
w
it
c
h
(M
ERS
).
In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
l
o
g
y
a
n
d
El
e
c
trica
l
En
g
in
e
e
rin
g
(
ICIT
EE
),
2
0
1
4
6
th
In
ter
n
a
t
io
n
a
l
C
o
n
fer
e
n
c
e
,
Yo
g
y
a
k
a
rta;
2
0
1
4
:
1
–
6.
[8
]
P
ia
o
Ru
n
-
h
a
o
,
Zh
a
o
Ha
ise
n
,
Z
h
a
n
g
Do
n
g
d
o
n
g
a
n
d
L
i
Jia
x
u
a
n
.
An
a
lytica
l
me
th
o
d
f
o
r
sta
rtin
g
p
e
rfo
rm
a
n
ce
c
a
lcu
la
t
io
n
o
f
in
d
u
c
ti
o
n
mo
to
rs
c
o
n
sid
e
rin
g
sk
in
e
ff
e
c
t
a
n
d
le
a
k
a
g
e
fl
u
x
sa
tu
r
a
ti
o
n
.
El
e
c
tri
c
a
l
M
a
c
h
in
e
s
a
n
d
S
y
st
e
m
s (ICE
M
S
),
1
7
th
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
,
Ha
n
g
z
h
o
u
;
2
0
1
4
:
1
3
5
–
1
3
8
.
[9
]
L
i
S
h
u
e
a
n
d
F
u
e
C
h
a
o
.
De
sig
n
a
n
d
S
imu
la
ti
o
n
o
f
T
h
re
e
Ph
a
se
A
C
M
o
to
r
S
o
f
t
S
ta
rte
r
.
I
n
telli
g
e
n
t
S
y
st
e
m
De
sig
n
a
n
d
E
n
g
in
e
e
rin
g
A
p
p
li
c
a
ti
o
n
s
(I
S
DEA
),
3
rd
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
In
tel
li
g
e
n
t
S
y
ste
m
De
sig
n
a
n
d
E
n
g
in
e
e
rin
g
A
p
p
li
c
a
ti
o
n
s
;
2
0
1
3
:
5
5
4
-
5
5
7
.
[1
0
]
L
i
Ka
i,
Ch
e
n
X
in
g
L
in
a
n
d
T
a
n
g
Qia
n
g
.
Dy
n
a
mic
Id
e
n
ti
fi
c
a
ti
o
n
a
n
d
Co
n
tro
l
o
f
IM
S
o
ft
-
S
t
a
r
t
Us
in
g
ANN
.
In
d
u
strial
T
e
c
h
n
o
l
o
g
y
,
2
0
0
8
.
ICI
T
2
0
0
8
.
IEE
E
In
ter
n
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
;
2
0
0
8
:
1
-
6.
[1
1
]
F
re
d
e
Blaa
b
jerg
e
,
Jo
h
n
e
K
.
P
e
d
e
r
so
n
,
S
o
re
n
Rise
a
n
d
Ha
n
s
He
n
rik
Ha
n
se
n
.
A
Co
mp
a
r
a
ti
v
e
S
tu
d
y
o
f
En
e
rg
y
S
a
v
i
n
g
Ben
e
fi
ts
in
S
o
f
t
sta
rte
rs
fo
r
T
h
re
e
Ph
a
se
In
d
u
c
ti
o
n
M
o
to
rs
.
I
n
d
u
str
y
A
p
p
li
c
a
ti
o
n
s
Co
n
f
e
re
n
c
e
,
1
9
9
5
.
T
h
irt
ieth
IA
S
A
n
n
u
a
l
M
e
e
ti
n
g
,
IA
S
'
9
5
,
C
o
n
f
e
re
n
c
e
Re
c
o
rd
o
f
th
e
1
9
9
5
IE
E
E
;
1
9
9
5
:
3
6
7
-
3
7
4
.
[1
2
]
S
y
e
d
A
b
d
u
l
Ra
h
m
a
n
Ka
sh
i
fa
a
n
d
M
u
h
a
m
m
a
d
As
g
h
a
r
S
a
q
ib
a
.
A
N
e
u
ro
F
u
z
z
y
A
p
p
li
c
a
ti
o
n
:
S
o
f
t
S
tartin
g
o
f
In
d
u
c
ti
o
n
M
o
to
rs
w
it
h
Re
d
u
c
e
d
En
e
rg
y
L
o
ss
e
s.
El
e
c
tric
Po
we
r
Co
mp
o
n
e
n
ts
a
n
d
S
y
ste
ms
.
2
0
1
2
;
4
0
(1
2
):
1
3
3
9
-
1
3
5
0
.
[1
3
]
I.
Ya
.
Bra
sla
v
sk
y
,
A
.
V
.
Ko
sty
lev
a
n
d
D.
P
.
S
tep
a
n
u
k
.
E
n
e
rg
y
c
o
n
su
m
p
ti
o
n
o
p
ti
m
iza
ti
o
n
d
u
rin
g
sta
r
ti
n
g
o
f
th
y
rist
o
r
v
o
lt
a
g
e
c
o
n
v
e
rter
in
d
u
c
ti
o
n
m
o
to
r
sy
st
e
m
.
In
ter
n
a
ti
o
n
a
l
S
y
mp
o
siu
m
o
n
P
o
we
r
El
e
c
tro
n
ics
,
El
e
c
trica
l
Dr
ive
s,
Au
to
m
a
ti
o
n
a
n
d
M
o
ti
o
n
,
S
P
EE
D
AM
.
2
0
0
6
:
1
1
-
1
4
.
[1
4
]
S
a
k
u
n
tala
M
a
h
a
p
a
tra,
Ra
j
u
Da
n
i
e
l,
De
e
p
Na
ra
y
a
n
De
y
a
n
d
S
a
n
ta
n
u
K
u
m
a
r
Na
y
a
k
.
In
d
u
c
ti
o
n
mo
t
o
r
c
o
n
tro
l
u
s
i
n
g
PS
O
-
ANF
IS
.
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
Co
m
p
u
ter,
Co
m
m
u
n
ica
ti
o
n
a
n
d
Co
n
v
e
rg
e
n
c
e
(ICCC
2
0
1
5
).
2
0
1
5
:
753
–
7
6
8
.
[1
5
]
X
in
S
h
e
Ya
n
g
.
Na
tu
ra
l
In
sp
ire
d
M
e
tah
e
u
risti
c
a
lg
o
rit
h
m
.
L
u
n
iv
e
r
P
re
ss
,
Un
iv
e
rsit
y
o
f
Ca
m
b
ro
d
g
e
,
Un
it
e
d
Kin
g
d
o
m
,
se
c
o
n
d
e
d
i
ti
o
n
,
2
0
1
0
.
[1
6
]
M
a
h
m
o
u
d
M
.
El
k
h
o
ly
,
M
o
h
a
m
m
e
d
A
.
El
h
a
m
e
e
d
.
Bra
k
in
g
o
f
T
h
re
e
P
h
a
se
In
d
u
c
ti
o
n
M
o
to
rs
b
y
Co
n
tro
ll
in
g
A
p
p
li
e
d
V
o
lt
a
g
e
a
n
d
F
re
q
u
e
n
c
y
Ba
se
d
o
n
P
a
rti
c
le
S
w
a
rm
Op
ti
m
iza
ti
o
n
T
e
c
h
n
iq
u
e
.
I
n
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Po
we
r
El
e
c
tro
n
ics
a
n
d
Dr
ive
S
y
ste
m (
IJ
PE
DS
)
.
2
0
1
5
;
5
(4
)
:
5
2
0
-
5
2
8
.
[1
7
]
Jo
h
n
Ch
ias
so
n
.
M
o
d
e
ll
i
n
g
a
n
d
h
i
g
h
p
e
rf
o
rm
a
n
c
e
c
o
n
tro
l
o
f
e
lec
tri
c
m
a
c
h
in
e
s.
Jo
h
n
W
il
e
y
&
S
o
n
s,
I
n
c
.
,
2
0
0
5
[1
8
]
S
h
i
Y
a
n
d
E
b
e
rh
a
rt
R.
A
mo
d
if
i
e
d
p
a
rticle
swa
rm
o
p
t
imize
r
.
P
r
o
c
e
e
d
in
g
s
o
f
IEE
E
In
ter
n
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
Ev
o
lu
ti
o
n
a
ry
Co
m
p
u
tatio
n
(ICEC
’9
8
)
,
A
n
c
h
o
ra
g
e
,
IEE
E
P
re
ss
.
1
9
9
8
:
6
9
–
7
3
.
[1
9
]
S
h
i
Y
a
n
d
Eb
e
rh
a
rt
R.
Pa
r
a
me
ter
se
le
c
ti
o
n
in
p
a
rticle
swa
rm
o
p
ti
miz
a
ti
o
n
.
P
r
o
c
e
e
d
in
g
s
o
f
th
e
1
9
9
8
A
n
n
u
a
l
Co
n
f
e
re
n
c
e
o
n
Ev
o
l
u
ti
o
n
a
ry
P
ro
g
ra
m
m
in
g
,
S
a
n
Die
g
o
,
M
IT
P
re
ss
,
1
9
9
8
.
[2
0
]
Ja
n
g
,
J.S
.
R.
A
NFIS
:
A
d
a
p
ti
v
e
-
N
e
tw
o
rk
-
b
a
s
e
d
F
u
z
z
y
In
f
e
r
e
n
c
e
S
y
ste
m
s.
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
S
y
s
tem
s
,
M
a
n
a
n
d
C
y
b
e
rn
e
ti
c
s.
1
9
9
3
;
2
3
(3
):
6
6
5
-
6
8
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.