Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
5, N
o
. 3
,
Febr
u
a
r
y
201
5,
pp
. 34
4
~
35
4
I
S
SN
: 208
8-8
6
9
4
3
44
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Modelling and Analysis of I
nduction Motor using LabVIEW
E.
R
a
mpra
sath,
P.
Ma
no
jkuma
r
Departmentof
Electr
i
cal and Elect
ronics
Engineer
ing, K
.
S.Rangas
a
m
y
Co
lleg
e
of
Techno
log
y
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 4, 2014
Rev
i
sed
D
ec 22
, 20
14
Accepte
d
Ja
n 13, 2015
Induction m
o
tor
chara
c
t
e
risti
c
s becam
e
com
p
lex
to stud
y
,
afte
r th
e inven
tio
n
of drives
where
the m
o
tor incorp
orated
with pow
er el
ectron
i
c s
w
i
t
ches
s
u
ch
as th
y
r
istor
,
diod
es, GTO, and MOSF
ET. Induction motor characteristics can
be studied
and modelled with s
o
ftware
s
u
ch as
F
i
nite E
l
em
ent
Anal
y
s
is
an
d
Laborator
y
Vir
t
ual Instrument Engin
eer
ing Workbench. Finite Element
Analy
s
is is used
to stud
y
and mode
l the motor
might be complex and th
e
time tak
e
n to
compute was unreliable.
In th
is
paper indu
ction
m
o
tor was
modeled with th
e help of LabVI
E
W soft
ware this allows us to
m
odel and
sim
u
late th
e m
o
t
o
r in ord
e
r to
an
al
yz
e th
e p
e
rfor
m
ance.
The
indu
ction m
o
tor
modelled h
e
re was based
on th
e m
a
them
atic
al
eq
uations
.
Keyword:
Characteristics
I
ndu
ctio
n Mo
t
o
r
LabVIE
W
M
odel
l
i
n
g
Si
m
u
latio
n
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
E.Ram
p
rasath,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
K.S.Rangasamy College
of T
echn
o
l
o
gy
,
K.S
.
R
Kal
v
i
N
a
gar
,
Ti
r
u
c
h
en
go
de,
Nam
a
kk
al
-
63
7
2
1
5
,
Ta
m
i
l
Nadu,
I
n
di
a.
Em
a
il: ra
m
p
rasath
00
9@g
m
ai
l
.
co
m
1.
INTRODUCTION
Induction m
o
tor
desi
gni
ng
based
on the e
q
uation is
bit c
o
m
p
lex, becaus
e
equation whose term
s are
not
o
f
t
h
e
fi
r
s
t
de
gree a
n
d
m
o
re ove
r i
t
i
s
a st
r
o
n
g
l
y
cou
p
l
e
d
sy
st
em
. The i
n
p
u
t
an
d
out
put
v
a
ri
abl
e
rel
a
t
i
ons
hi
p i
s
alm
o
st
co
m
p
l
e
x t
hus si
m
u
l
a
t
i
on o
f
i
n
d
u
c
t
i
on m
o
t
o
r ph
y
s
i
cal
l
y
i
s
hard. M
o
st
c
o
m
m
onl
y
e
m
ployed soft
ware a
r
e PSpice, Fi
n
ite Ele
m
en
t An
alysis, Matrix
Lab
o
ratory and
Labo
ratory Vi
rtu
a
l
Inst
rum
e
nt
Engi
nee
r
i
n
g
Wor
kbe
nc
h ot
he
r soft
ware rat
h
e
r
t
h
an i
s
, are
creat
ed base
d o
n
t
h
e t
e
xt
l
i
n
es.
Lab
V
IE
W s
o
ftware
is ba
sed
on
the
g
r
ap
hic
a
l pr
o
g
ra
m
m
i
n
g e
nvi
ro
nm
ent
.
Lab
V
I
E
W so
f
t
ware
has
a
dy
nam
i
c
n
a
ture wh
ich
co
n
t
ribu
tes to
this d
y
n
a
m
i
c
track
ing
of pr
oce
ssing t
h
e data.
The cha
n
ges in this data can
be can
be o
b
ser
v
e
d
cont
i
n
u
o
u
s
l
y
. Dy
nam
i
c anal
y
z
i
ng i
s
est
a
bl
i
s
hed
base
d on
bot
h t
h
e m
a
t
h
em
at
i
cal and p
h
y
s
i
cal
m
odel
.
Norm
all
y
equi
val
e
nt
c
i
rcui
t
of i
n
d
u
ct
i
on m
o
t
o
r rese
m
b
l
e
s
t
h
e equi
val
e
nt
ci
rc
ui
t
of t
r
ans
f
orm
e
r whe
r
e
the airga
p
bet
w
een t
h
e stator and
rot
o
r i
n
the induc
tion m
o
to
r di
ffe
rentia
te from
the tra
n
sf
orm
e
r. La
b
V
IE
W
so
ft
ware
o
f
fo
l
l
o
w
ing
qu
alities su
ch
as m
u
lti
-d
im
en
sio
n
a
l plo
t
s, x
y
g
r
aph
s
, repo
rt g
e
n
e
ratio
n
in
ex
cel,
word
makes this s
o
ft
ware
accessibl
e and
has a
uni
que
feat
ure, which
sim
p
lifies
the
sim
u
lation proces
s [1].
The dy
nam
i
c and st
ea
dy
st
at
e anal
y
s
i
s
of i
n
duct
i
o
n m
o
t
o
r
are di
f
f
i
c
ul
t
t
o
com
put
e so m
odel
l
i
ng a
m
o
to
r u
s
ing
math
e
m
atica
l
m
o
d
e
l h
e
lp
s t
o
elimin
ate
t
h
e fu
rt
he
r c
o
n
s
eque
nces
. S
o
t
h
e det
e
rm
i
n
ati
on
of
p
a
ram
e
ters m
u
st b
e
accu
r
ate
fo
r carrying
ou
t m
u
lt
ip
le
analysis. Machine
perform
a
nce change
s as the coupl
e
d
syste
m
in
ertia ch
ang
e
s it also con
t
ribu
tes t
o
th
e ch
an
g
e
in th
e l
o
ad torque. Mo
t
o
r con
s
t
a
n
c
y ch
ang
e
s if the
m
o
to
r in
ertia an
d
lo
ad
torqu
e
o
f
th
at m
o
to
r ch
ang
e
s.
Id
en
tifyin
g
fau
lts in
elect
ric
m
o
tor usin
g Lab
V
IE
W
is
gr
owi
n
g resea
r
ch a
r
ea
w
h
er
e m
a
ny
researchers
gi
vi
n
g
t
h
ei
r
val
u
a
b
l
e
cont
ri
b
u
t
i
o
n
t
o
fi
nd
o
u
t
fa
ul
t
s
i
n
m
o
t
o
r.El
ect
ri
c m
o
t
o
r com
p
ri
ses o
f
num
ero
u
s
m
o
t
o
r w
h
i
c
h
are
de
vel
o
ped
an
d i
m
pro
v
ed
day
by
day
i
n
t
h
a
t
Indu
ctio
n
m
o
to
r m
o
n
itoring
an
d fau
lts d
i
agn
o
s
is is
a f
eat
ure ric
h
area
be
cause induction m
o
tor is the
widely
use
d
m
o
t
o
r w
h
i
c
h occ
upi
es
nearl
y
75
% o
f
d
r
i
v
es
i
n
i
n
du
str
i
es so
on
ly th
ey’
r
e
w
i
d
e
ly k
now
n as the wo
rk
ho
rse
o
f
a
n
in
d
u
stry
[2
-3]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
l
i
ng a
n
d
An
al
ysi
s
of
In
d
u
ct
i
o
n
M
o
t
o
r u
s
i
n
g
La
bV
IEW
(
E
.Ra
m
pr
as
at
h
)
34
5
2.
PR
ELIMINAR
Y EQUIVALEN
T C
I
RCU
IT &
MA
THEMA
T
ICAL EX
PR
ESSION
In
d
u
ct
i
on m
o
t
o
r i
s
c
o
m
m
onl
y
kn
ow
n as t
h
e wo
r
k
h
o
r
s
e
of a
n
i
n
d
u
st
ry
owi
ng t
o
t
h
e
r
o
b
u
st
nat
u
re
,
r
ugg
ed
con
s
tructio
n
an
d r
e
liab
l
e op
er
a
tio
n.
Wh
en
an
altern
atin
g curren
t
is p
r
ov
id
ed
to th
e seco
nd
ary
wind
ing
ci
rcui
t
of t
h
e i
n
d
u
ct
i
o
n m
o
t
o
r i
t
pro
duces t
h
e rev
o
l
v
i
n
g m
a
gnet
i
c
fl
ux
aro
u
nd t
h
e st
at
or
. Ai
r ga
p act
as t
h
e
di
el
ect
ri
c
m
e
di
um
whi
c
h separat
e
s t
h
e
rot
o
r
fr
om
t
h
e stat
or wi
t
h
o
u
t
h
a
vi
n
g
any
phy
si
cal
cont
act
.
Thi
s
revo
lv
i
n
g
m
a
g
n
e
tic flu
x
cu
ts th
e ro
t
o
r
wind
in
g
s
ax
ially as
a resu
lt it p
r
odu
ces an
indu
ced
electro
m
o
tiv
e fo
rce
in
th
e
ro
t
o
r
which
is sinu
so
idal in
n
a
ture.
In a squ
i
rrel cage in
du
ction
m
o
to
r th
e end
ring
s are sh
ort circu
ited
,
wh
ich
prov
id
es th
e p
a
th
for t
h
e ind
u
c
ed
cu
rren
t to
flow
across t
h
e rotor
windings.
T
h
e
current induce
d in the
rot
o
r starts t
o
circulate which produces a
magnetic fiel
d in
a d
i
rection o
ppo
site to
the cau
se.
Pro
ductio
n
of
to
rq
u
e
is owing
to
th
e fu
nd
amen
tal in
teractio
n
b
e
t
w
ee
n t
h
ese t
w
o co
u
n
t
e
r bal
a
nci
ng m
a
gnet
i
c
fi
el
ds
d
u
e t
o
the applied vol
t
age to
t
h
e stat
or [4].
Fi
gu
re 1.
Eq
ui
val
e
nt
C
i
rc
ui
t
Param
e
t
e
rs
of an In
d
u
ct
i
o
n
M
o
t
o
r
Slip
is d
e
fin
e
d as th
e
ratio
of th
e
d
i
fferen
ce
betwee
n t
h
e
synchronous s
p
eed and t
h
e a
c
tual m
o
tor
spee
d t
o
t
h
e
rat
i
o o
f
t
h
e sy
nc
h
r
o
n
ous
spe
e
d
.
In
g
e
n
e
ral in
ductio
n
m
o
to
r the to
rqu
e
is d
i
rectly p
r
o
portio
nal to
th
e p
r
o
duct o
f
th
e ro
tor cu
rren
t and
fl
u
x
per
st
at
or
pol
e.
T
h
e el
ect
rom
a
gnet
i
c
t
o
r
que
i
n
sy
nc
hr
o
n
o
u
s
wat
t
ca
n
be e
x
p
r
esse
d a
s
:
∗
St
at
or c
o
ppe
r l
o
ss
w
h
i
c
h
occ
u
rs at
t
h
e
i
n
du
ct
i
on m
o
t
o
r:
Ro
to
r copp
er lo
ss
wh
ich o
c
cu
rs at th
e i
n
du
ctio
n
m
o
to
r:
I
npu
t pow
er
wh
ich
of
th
e indu
ctio
n m
o
to
r
:
√
3
co
s
3
cos
Ai
r ga
p po
wer
of
t
h
e
i
n
d
u
ct
i
o
n
m
o
t
o
r:
Co
re l
o
ss
wh
ich
o
ccurs at t
h
e
in
du
ctio
n m
o
to
r:
Out
put
p
o
we
r whi
c
h of
t
h
e
i
n
duct
i
o
n
m
o
t
o
r:
Tor
q
ue
i
n
d
u
ce
d whi
c
h occu
rs
at th
e indu
ction
m
o
to
r:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
44 –
35
4
34
6
Fi
gu
re
2.
P
o
we
r fl
ow
di
a
g
ram
o
f
t
h
e
i
n
duct
i
o
n m
o
t
o
r
3.
La
bVIEW INTRODUCTION
& BUIL
DING T
H
E
MODEL
Nat
i
onal
In
st
ru
m
e
nt
s devel
o
p
e
d La
bV
IE
W s
o
ft
ware
fo
r the
first tim
e
in the y
ear 1
9
8
6
fo
r the
Ap
p
l
e
M
aci
nt
osh C
o
m
p
any
.
It
wa
s co
ncept
u
al
i
zed as a
pr
og
r
a
m
m
i
ng e
nvi
r
onm
ent
fo
r ha
rd
ware c
o
nt
r
o
l
.
Th
e
introduction
of an interface be
tween the Pe
rsonnel Com
puter and the inst
rum
e
nt which is to be cont
roll
ed by
soft
ware
was
the m
a
in aim
.
The
gra
p
hical user interface
whic
h is
use
d
t
o
sim
u
late the cont
rolled instrum
e
nt
o
n
th
e co
m
p
uter
m
o
n
ito
r itself with
th
e h
e
lp
of
Lab
V
IE
W s
o
ftwa
re. Lab
V
IE
W is also a graphica
l
pr
o
g
ram
m
i
ng l
a
ng
ua
ge, i
t
i
s
fam
i
l
i
a
rl
y
kno
wn a
s
“G c
o
d
e”. A
ppl
i
cat
i
o
ns creat
e
d
i
n
Lab
V
IE
W a
r
e
cal
l
e
d
“Vi
r
t
u
al
I
n
st
r
u
m
e
nt
s” [5]
.
No
waday
s
La
bV
I
E
W
so
ft
wa
re i
s
al
so com
p
at
ibl
e
wi
t
h
ot
he
r ope
rat
i
n
g sy
st
em
such
as
W
i
ndows
and Linux, et
c. T
h
e
word
LabVIE
W is
an ac
ro
ny
m
for
Lab
o
r
at
ory
Vi
rt
ual
I
n
st
r
u
m
e
nt
En
gi
neeri
n
g
Wo
r
kbe
nc
h w
h
i
c
h i
s
a
g
r
ap
hi
cal
p
r
o
g
ram
m
i
ng l
a
n
gua
ge
base
d
on
g
r
a
phi
cal
i
c
o
n
s i
n
st
ead
o
f
num
ber
of
p
r
o
g
ram
m
i
ng co
d
e
s f
o
r si
m
u
l
a
t
i
on
p
u
r
p
ose.
La
b
V
IEW so
ft
ware allo
ws th
e
user to
bu
ild
th
eir own
set o
f
v
i
rtu
a
l
in
stru
m
e
n
t
easily. Th
es
e pr
og
r
a
m
s
ar
e kn
ow
n
as
V
i
r
t
u
a
l I
n
st
rum
e
nts, or
VIs
,
due t
o
thei
r
o
p
e
ration
a
l rep
lica o
f
ph
ysi
cal in
stru
m
e
n
t
s, lik
e te
m
p
erature m
onitor, spectral scopes, pre
ssure gauge
s,
cath
o
d
e
ray o
s
cillo
sco
p
e
s, and
m
u
lt
i-
m
e
ters etc.Th
e in
pu
ts are k
n
o
w
n
as co
n
t
ro
ls and
the o
u
t
pu
ts are kn
own
as indicators
are placed on t
h
e
gra
p
hic
user i
n
terface
(GUI) called Front Panel (
FP). T
h
e
y
comm
unicate with
each bloc
k
diagram
through term
inals of
the icons. In La
bVIE
W the data
fl
ow
of the program
will be from
left to
write,
bu
t in
C/C++
prog
ramm
in
g
co
d
e
s will be
ex
ecu
ted
in order of t
o
p to
bo
tto
m
,
erro
rs
in
th
e
LabVIEW
will b
e
easily id
en
t
i
fied
d
u
ring
t
h
e ex
ecu
tion
o
f
th
e pro
g
ram
its
elf [6
].
4.
SIMU
LA
TION
OF
IN
DUCTION
M
O
TOR
C
H
A
RAC
TER
ISTIC
S
USIN
G
LabV
IEW
M
achi
n
e’
s m
o
del
l
i
ng
devel
o
ped i
n
Lab
V
I
E
W
s
o
ft
wa
re i
s
base
d o
n
t
h
e
m
a
t
h
em
ati
cal
exp
r
essi
ons
.
M
a
t
h
em
at
i
cal
equat
i
o
ns ar
e f
i
rst
deri
ve
d t
h
en co
nve
rt
ed i
n
t
o
m
odel
s
usi
ng i
c
o
n
s f
r
o
m
t
h
e ari
t
h
m
e
ti
c
boa
r
d
fo
r f
u
rt
her im
plem
entation in
Lab
V
IE
W f
o
r
gra
p
hical anal
ysis [7
]. List of sim
u
lat
i
o
n
for In
du
ction
Mach
in
e
in
Lab
V
IEW fo
llo
ws:
a)
Sim
u
l
a
t
i
on Tor
que
Vs Spee
d r
e
l
a
ti
onshi
p
of a
n
I
n
d
u
ct
i
on M
o
t
o
r
b)
Si
m
u
latio
n
o
f
In
du
ction
M
o
tor Lo
ad Test
The a
b
o
v
e sai
d
si
m
u
l
a
t
i
on can
be b
u
i
l
d
usi
n
g
t
h
e
param
e
ters. P
a
ram
e
t
e
rs w
h
i
c
h a
r
e
us
ed t
o
m
odel
t
h
e i
n
d
u
ct
i
o
n
m
o
t
o
r are des
c
ri
be
d bel
o
w
wi
t
h
t
h
ei
r c
o
r
r
esp
o
ndi
ng sy
m
bol
s t
o
have
a cl
ear i
d
ea bef
o
r
e
m
o
d
e
llin
g
m
o
to
r. Th
e sim
u
la
tio
n
s
p
e
rfo
r
m
e
d
h
e
re to
an
al
yses th
e
m
o
d
e
lled
m
o
to
r with
its ch
aracteristics
wh
ich
can
b
e
co
m
p
ared
to
th
e h
ealth
y
m
o
to
r in
real ti
me an
d
it
m
o
reo
v
e
r h
e
lp
s to
ach
ieve th
e i
m
p
r
o
v
e
men
t
s
i
n
m
o
t
o
r m
o
del
l
i
ng
bef
o
re
m
a
nufact
uri
n
g i
t
i
n
fact
o
r
i
e
s. B
y
chan
gi
n
g
t
h
e a
b
o
v
e i
n
put
para
m
e
t
e
rs
cor
r
es
po
n
d
i
n
g
val
u
es ca
n
be
obt
ai
ne
d i
n
t
h
e fo
rm
of g
r
ap
hi
cal
rep
r
ese
n
t
a
t
i
on. B
y
ch
an
gi
n
g
t
h
e
gi
ve
n
l
o
a
d
changes i
n
the
m
o
tor s
p
eed a
nd t
o
rque can
be achsiev
e
d
a
nd t
h
ei
r c
o
r
r
es
po
n
d
i
n
g cha
r
a
c
t
e
ri
st
i
c
s of i
n
duct
i
o
n
m
o
t
o
r can
be
di
spl
a
y
e
d i
n
t
h
e f
o
rm
of g
r
aph
re
prese
n
t
a
t
i
on. B
y
c
h
an
gi
n
g
t
h
e i
ndi
v
i
dual
param
e
t
e
r f
o
r
a
p
a
rticu
l
ar sp
eed
will also
b
e
d
i
sp
layed in this si
m
u
latio
n
.
Here core l
o
ss
is th
e con
s
id
ered
as th
e con
s
t
a
n
t
lo
ss
o
f
a
p
a
rticu
l
ar in
du
ction
m
o
to
r wh
ich
is to
b
e
m
o
d
e
led
[8
-1
7].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
l
i
ng a
n
d
An
al
ysi
s
of
In
d
u
ct
i
o
n
M
o
t
o
r u
s
i
n
g
La
bV
IEW
(
E
.Ra
m
pr
as
at
h
)
34
7
Tab
l
e
1
.
M
o
tor in
tern
al p
a
rameter
Par
a
m
e
ter
s
Sy
m
bols
I
nput
values
Rotor Resistance
R
1
8.
6
Rotor Reactance
R
2
0.
332
Stator Resistance
S
1
1.
106
Stator Reactanc
e
S
2
0.
464
Magnetizing React
ance
X
m
26.
3
M
o
t
o
r i
n
t
e
rnal
param
e
t
e
r are t
a
ken f
r
om
the best
ope
rat
i
ng c
o
n
d
i
t
i
ons
of i
n
d
u
ct
i
on
m
o
t
o
r t
h
es
e
v
a
lu
es are m
a
d
e
co
n
s
tan
t
fo
r t
h
e si
m
u
latio
n
s
o
f
m
o
to
r. Fo
r
a p
a
rticu
l
ar operatin
g
lo
ad
con
d
ition
th
ese valu
es
are
m
a
d
e
co
nstan
t
. Param
e
t
e
rs can
b
e
ch
ang
e
d
b
e
fo
re si
m
u
latin
g
fo
r d
i
fferen
t
lo
ad
co
nd
itio
n. Th
ey
corres
ponding characte
r
istic
s curve ca
n
be
drawn.
Tab
l
e
2
.
M
o
tor in
pu
t tem
i
n
a
l
Par
a
m
e
ter
s
Sy
m
bols
I
nput
values
Phase voltage
V
p
h
220
Fr
equency H
Z
50
Nu
m
b
er
of poles
P
4
Valu
es are m
a
d
e
con
s
tan
t
throug
hou
t th
e si
m
u
latio
n
b
ecau
s
e sm
al
l ch
an
g
e
s in
th
ese in
pu
t v
a
lu
es
will d
e
v
i
ate si
m
u
la
tio
n
resu
lt
.
Tabl
e
3. M
o
t
o
r
co
re l
o
s
s
Par
a
m
e
ter
s
Sy
m
bols
I
nput
values
Co
re Lo
ss
L
3
0
0
Core loss are
made constant
ly throughout
the si
m
u
lation because they
wo
n’t c
h
a
nge
for a m
o
tor
th
ro
ugh
ou
t its lifeti
m
e. So
it’s m
a
d
e
as con
s
tan
t
in
t
h
is sim
u
latio
n
.
5.
MOTOR LOAD TEST SE
LECTION
Fi
gu
re
3.
M
o
t
o
r l
o
a
d
t
e
st
sel
e
ct
i
on
bl
oc
k
di
a
g
ram
wi
n
d
o
w
AC induction m
o
tors are broadly
classified according to their phase
s suc
h
as single pha
s
e
and three
p
h
a
se ind
u
c
tion
m
o
to
rs.
In
t
h
is si
m
u
latio
n
,
m
o
to
r ch
aracteristics o
f
si
n
g
l
e p
h
a
se ind
u
c
t
i
o
n
m
o
to
r are tested
.
Test
i
ng an
d a
n
al
y
s
i
s
of m
o
tor i
n
cl
u
d
es t
h
e t
o
rq
ue vs
s
p
eed characteris
tics test
an
d
m
o
to
r lo
ad
test wh
ich
co
nsists of remain
in
g
ch
aracteristics ex
clu
d
i
n
g
th
e
t
o
r
que
vs
spee
d
charact
e
r
i
s
t
i
c
s. T
o
r
que
vs
spe
e
d
characte
r
istics are give
n prim
e
im
portance because
s
e
lection of motor is purely
depe
nd
upon this
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
44 –
35
4
34
8
ch
aracteristics, after th
is lo
ad
cu
rv
e
a
n
alysis the other
factors are also c
o
nsi
d
ere
d
s
u
ch as powe
r
rating, powe
r
factor, torque induce
d for a particular
loa
d
these cha
r
acteri
s
tics can also
be di
s
p
l
a
y
e
d u
s
i
ng t
h
e m
o
t
o
r l
o
a
d
test ch
aracteristics. Selectio
n o
f
lo
ad
test is n
o
t
h
i
ng
bu
t
g
i
v
e
s the u
s
er to
select th
e m
o
to
r ch
aracteristics
because if the user
wants to a
n
alyses
the torque
vs spee
d characteristics this
allows the user to select or if the
user
wants a
n
a
l
yses the
m
o
tor character
istics th
en
th
is pro
g
ra
m
allo
ws th
em to
co
n
tin
u
e
i
n
th
at req
u
i
red
field
.
Basically LabVIE
W flat se
quence
struct
ure
option e
n
able
s
the use
r
for t
h
e selection
process.
The e
num will
b
a
sically work to
ward
s t
h
e
d
e
fau
lt selection
.
In
sid
e
th
e
flat
sequ
en
ce it wil
l
h
a
ve th
e su
b
VI’s
wh
ich
cal
ls th
e
m
o
t
o
r charact
e
r
i
s
t
i
c
s. The
bl
o
c
k
di
ag
ram
panel
des
c
ri
be
s t
h
e e
x
ecut
i
o
n
st
ruct
ure
o
f
t
h
e
pr
o
g
ram
whi
c
h
ha
ve
b
een d
e
v
e
lop
e
d
with
a
flat seq
u
e
n
ce
st
ru
ct
u
r
e in
LabVIEW, th
eir
p
r
og
ram
fl
ow is illu
strat
e
d
in th
e
Figu
re 3
.
Th
e
u
s
er will
b
e
welco
m
e b
y
an
weclo
m
in
g m
e
ssag
e
wh
ich
will b
e
d
i
sp
l
a
yed
wh
ile ru
nn
ing
th
e th
e
VI i
n
La
b
V
IE
W.
Fi
gu
re 4.
W
e
l
c
om
e
m
e
ssage
Fron
t
p
a
n
e
l
d
i
sclo
ses th
e title o
f
t
h
e
p
r
o
j
ect an
d h
e
l
p
s th
e
u
s
er to
select th
e
VI’s
o
f
app
r
opriate
m
o
to
r
to study their
mechanical an
d electrical characteristics of
a particular
indu
ctio
n
m
o
to
r.
During
th
e ru
nn
ing
of
th
e v
i
rtu
a
l in
st
ru
m
e
n
t
atio
n
the selectio
n
o
f
m
o
to
r an
d thei
r characteristic
s appear
on
t
h
e LabV
IEW
win
d
o
w
s
whic
h ena
b
les
the use
r
to
procee
d
according to the
s
e
lection of motor
loa
d
test or torque
vs
spee
d
ch
aracteristics o
f
th
e i
n
du
ction
m
o
to
r. Th
e Fig
u
re
4
sh
o
w
s
m
o
tor load
test selection i
n
La
bV
IE
W s
o
ft
wa
re.
Fi
gu
re
5.
M
o
t
o
r l
o
a
d
t
e
st
sel
e
ct
i
on
fr
ont
pa
n
e
l
wi
n
d
o
w
Th
is co
mm
an
d will wait for th
e user t
o
select th
e m
o
to
r load
test th
is wil
l
b
e
d
i
sp
layed
in
th
e fi
g
u
re
d
i
sp
layed above.
5.
1.
Simulation of T
o
rque
vs Speed
Char
acteris
t
ics of I
nducti
on
Motor
Sim
u
l
a
t
i
on
of
t
o
r
que
vs
s
p
ee
d c
h
aract
e
r
i
s
t
i
c
s o
f
i
n
d
u
ct
i
o
n m
o
t
o
r i
s
sh
ow
n i
n
t
h
e Fi
gu
re
6.
T
h
i
s
m
o
d
e
llin
g
in
LabVIEW is
b
a
sed
on
th
e
math
e
m
atica
l
m
odel
whi
c
h
was di
sc
usse
d
.
Thi
s
si
m
u
l
a
ti
on i
s
go
ve
rne
d
by
a set
of e
quat
i
o
n
was u
s
ed t
o
b
u
i
l
d
t
h
e m
odel
s
i
n
t
h
e La
bV
I
E
W
s
o
ft
w
a
re.
The m
odel
l
e
d
can b
e
an
alysed
b
y
g
i
v
i
ng
lo
ad. Th
e fron
t
p
a
n
e
l d
i
sclo
ses in
th
e lo
ad
setting
s
. Th
e th
ree m
a
in
p
a
ram
e
tres are g
i
v
e
n
as i
n
p
u
t
t
h
ey
are m
o
t
o
r t
e
rm
i
n
al
i
nput
s,
m
o
t
o
r i
n
t
e
rnal
charact
eri
s
t
i
c
s and m
o
t
o
r l
o
ss. T
h
e m
o
t
o
r l
o
ss
specified he
re
is fixed loss
where e
v
e
r
y m
o
tor
has its
o
w
n l
o
ss
. T
h
e m
o
t
o
r m
odel
i
s
con
s
t
r
uct
e
d
usi
ng t
h
e
GUI,
where t
h
e icons
are
drawn from
th
e p
r
og
rammin
g
p
a
lette wh
ich
co
nsists of numeric p
a
lette an
d x
y
gra
p
hs pal
e
t
t
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
l
i
ng a
n
d
An
al
ysi
s
of
In
d
u
ct
i
o
n
M
o
t
o
r u
s
i
n
g
La
bV
IEW
(
E
.Ra
m
pr
as
at
h
)
34
9
Fi
gu
re
6.
B
l
oc
k
di
ag
ram
wi
ndo
w
of
t
o
rq
ue
vs s
p
ee
d c
h
ara
c
t
e
ri
st
i
c
s of i
n
duct
i
o
n m
o
t
o
r
Th
e arith
m
e
tic
p
a
lette co
m
p
rises of
v
a
ri
o
u
s
ico
n
s
wh
ich
h
e
lp
s to
bu
ild th
ese m
o
d
e
ls, th
e m
o
to
r
m
odel
l
e
d here are base
d o
n
t
h
e m
a
t
h
em
at
i
c
al
equat
i
o
n
.
M
e
chani
cal
cha
r
a
c
t
e
ri
st
i
c
s of i
nduct
i
o
n m
o
t
o
r are t
o
be a
n
alysed in that torque
vs s
p
ee
d c
h
aracteristics
p
l
ays a m
a
j
o
r
role in
an
alyses of indu
ction
m
o
to
r.
Whe
n
e
v
er t
h
e
spee
d get
s
cha
nge
d i
s
n
o
t
h
i
n
g b
u
t
w
h
en t
h
e
l
o
ad get
s
c
h
an
ged c
o
r
r
es
po
n
d
i
n
g spee
d an
d
t
o
r
q
u
e
eq
u
a
tion
s
g
e
ts ch
ang
e
d
.
Th
is d
i
agram
co
m
p
rises o
f
thr
ee d
i
fferen
t
typ
e
s of to
rqu
e
p
o
s
ition
s
kno
ws as st
arting
to
rq
u
e
, p
u
ll u
p
to
rq
u
e
,
fu
ll
lo
ad
torq
u
e
.
Fig
u
r
e
7
.
Torqu
e
an
d sp
eed par
a
m
e
ter
o
f
indu
ctio
n Mo
t
o
r
Th
is figu
re sh
ows th
e v
a
lu
es related
to
ch
anges in
th
e lo
ad
a relativ
e ch
ange in
th
e sp
eed
an
d
torqu
e
o
f
th
e m
o
to
r.
Characteristic
curve shown
here resem
b
les
the NE
MA Desig
n
A in
th
eo
retical i
t
w
ill
h
a
v
e
lo
w
resistance and reactance owing to that
it produce ve
ry s
m
all starting torque
and ha
ve high
brea
kdown torque
when com
p
ari
ng i
t
whet
her ot
her NEM
A
Desi
gns. St
art
i
ng t
o
r
que o
f
an i
nduct
i
on m
o
t
o
r i
s
m
e
rel
y
know
n as
st
all
e
d rot
o
r t
oque. Thi
s
l
o
ad
curve sh
ows t
h
ree di
fferent
regi
ons o
f
t
o
rq
u
e
t
h
ere are start
i
ng t
o
rque, p
u
l
l
out
to
rq
u
e
an
d
fu
ll lo
ad
to
rqu
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
44 –
35
4
35
0
Fi
gu
re
8.
To
r
q
ue
vs s
p
ee
d c
h
aract
eri
s
t
i
c
s o
f
i
n
d
u
ct
i
o
n m
o
t
o
r
5.2.
Si
mul
a
ti
o
n
of In
ducti
on
Mo
tor L
o
ad
T
e
st
The sim
u
l
a
t
i
o
n of i
n
duct
i
o
n
m
o
t
o
r l
o
ad test
co
m
p
ri
ses
of vari
o
u
s o
u
t
put
param
e
ters whi
c
h are
displayed in the below figure
, according to the va
riation in
param
e
ters
there are
various
param
e
ters displayed
associated with the speed.
Fi
gu
re
9.
O
u
t
p
ut
pa
ram
e
t
e
r of
i
n
d
u
ct
i
o
n m
o
t
o
r
During
the lo
ad
test, if th
e l
o
ad
ing
o
f
t
h
e mo
tor ch
ang
e
s t
h
ere
will b
e
a
ch
ang
e
i
n
p
a
rameter su
ch as
t
h
e i
n
p
u
t
po
w
e
r, p
o
we
r fact
or
, out
put
p
o
w
er
, sl
i
p
, effi
ciency and torque induce
d. The changes
in this
p
a
ram
e
ter are d
i
sp
layed
i
n
the Fig
u
re
9
.
Lab
V
IEW h
e
l
p
s
to
co
m
p
u
t
e quick
ly so
th
at th
ere
will b
e
a
q
u
i
ck
response to the
cha
nge
in t
h
e
loadin
g value
s
.
The value
s
va
ries
according
to the
variation
on t
h
e load,
if the
lo
ad
ch
ang
e
s ab
rup
tly th
en
there will b
e
ch
an
g
e
i
n
th
e
abov
e said
co
rrespo
nd
ing
fact
o
r
s su
ch
as in
pu
t po
wer,
out
put powe
r, efficiency,
slip,
power
factor
and the t
o
rque induced.
The
bl
oc
k di
a
g
ram
consi
s
t
s
of
param
e
t
e
rs i
n
t
e
rm
s
of cl
ust
e
rs, t
h
e i
n
p
u
t
pa
ram
e
t
e
rs gi
ven
fo
r m
o
t
o
r
m
o
d
e
llin
g
are
th
e m
o
to
r term
in
al inp
u
t
, m
o
t
o
r core l
o
ss and
m
o
to
r i
n
ternal ch
aracteristics wh
ere th
e
m
o
to
r
internal cha
r
ac
teristics are sta
t
or resistanc
e
,
stator
reactanc
e
, rot
o
r resista
n
ce,
rotor react
ance and m
a
gnetizing
reactance. The
values taken
here a
r
e from
the healthy m
o
to
r conditions,
m
o
reover t
h
e
m
o
tor conditions are
fr
om
cal
cul
a
t
e
d
fo
r t
h
e
best
wo
rki
n
g c
o
n
d
i
t
i
ons.
T
h
e c
o
r
e
l
o
ss
are
ke
pt
co
nst
a
nt
t
h
r
o
ug
h
out
t
h
e m
o
t
o
ri
n
g
o
p
e
ration
s
th
e
m
o
to
rs op
erati
n
g reg
i
on
are i
n
sing
le
quadrant ope
r
ations
. The
sim
u
lation are done
with re
al
vales a
n
d
a
rea
l
tim
e
param
e
ters
fo
r c
r
os
s c
h
eckin
g
with
a real ti
m
e
o
p
e
rat
i
o
n
of m
o
to
r. Fau
lty con
d
itions are
sim
u
lated duri
ng the
running
of the
program
to c
h
eck how t
h
e m
o
tors
will
ope
rate in a
rea
l
tim
e
conditions.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
l
i
ng a
n
d
An
al
ysi
s
of
In
d
u
ct
i
o
n
M
o
t
o
r u
s
i
n
g
La
bV
IEW
(
E
.Ra
m
pr
as
at
h
)
35
1
Fi
gu
re
1
0
. M
o
t
o
r
l
o
a
d
t
e
st
o
f
i
n
d
u
ct
i
o
n m
o
t
o
r
bl
oc
k
di
ag
ram
wi
n
d
o
w
Fi
gu
re
1
1
.
O
u
t
put
p
o
we
r
vs e
ffi
ci
ency
c
h
ara
c
t
e
ri
st
i
c
s of i
n
duct
i
o
n m
o
t
o
r
During
t
h
e lo
ad
ing
o
f
th
e m
o
to
r
efficiency tends
to increa
se
s with
t
h
e c
o
r
r
e
sp
on
di
n
g
l
o
ad
i
ng
o
f
t
h
e
machine.
Whe
n
the
m
achine
r
eaches nea
r
e
r
to the
full lo
ad, the e
fficiency
of the m
o
tor
will be m
a
xi
miz
e
d.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
44 –
35
4
35
2
Fi
gu
re
1
2
.
O
u
t
put
p
o
we
r
vs t
o
r
q
ue c
h
aract
e
r
i
s
t
i
c
s of
i
n
duc
t
i
on m
o
t
o
r
To
rqu
e
v
s
ou
tp
u
t
po
wer
ch
aracteristics
is lin
ear
i
n
nat
u
r
e
.
Whe
n
t
h
e t
o
r
q
ue i
n
c
r
ease
t
h
e
out
put
p
o
wer also tend
to in
crease to m
a
in
tain
th
e st
ab
ility o
f
th
e mo
tor.
If t
h
ere is a sudd
en
d
i
srup
tio
n, th
en
t
h
is will
cau
se t
h
e in
stab
ility in
n
a
ture.
Fi
gu
re
1
3
.
O
u
t
put
p
o
we
r
vs c
u
r
r
ent
c
h
a
r
act
eri
s
t
i
c
s of
i
n
duc
t
i
on m
o
t
o
r
Current vs
out
put power c
h
a
r
acteristics is linear
in
n
a
t
u
re.
W
h
en
th
e ou
tpu
t
p
o
wer in
crease the
cu
rren
t also
ten
d
t
o
in
crease to
m
a
in
tain
th
e stab
ility o
f
th
e
m
o
to
r. If th
ere is a lo
ad
ing
o
f
th
e m
o
to
r cu
rrent
will ch
ang
e
acco
rd
ing
t
o
th
e lo
ad
i
n
g of t
h
e
m
o
to
r.
Fi
gu
re
14
. P
o
w
e
r fact
or
vs
efficiency cha
r
acteris
tics o
f
ind
u
ctio
n
m
o
to
r
Power factor
vs efficiency characteristics show wh
en
th
e
m
o
to
r g
e
ts l
o
ad
ed to
t
h
e
rated
sp
eed
the
p
o
wer facto
r
of th
e m
o
to
r also
g
e
ts im
p
r
ov
ed
wh
ich
is
nea
r
l
y
t
o
t
h
e uni
t
y
p
o
we
r fact
o
r
.
The p
o
we
r fac
t
or of
th
e
m
o
to
r
also
g
e
ts i
m
p
r
ov
ed
if
th
e
m
o
to
r
is lo
ad
ed
is n
ear
er
to
th
e r
a
ted
sp
eed, bu
t in
mo
st o
f
th
e industr
ies
t
h
ey
’re l
o
ad
ed
opt
i
m
al
ly
and
not
t
o
t
h
e
f
u
l
l
r
a
nge
.
Efficiency inc
r
eases with the
Spee
d
of th
e
m
o
to
r if th
e
mo
tor is lo
ad
ed
to
th
e rated
speed
th
en
th
e
efficiency will
be m
a
xim
i
zed
if th
e m
o
to
r is lo
ad
ed
abov
e
th
e rated
sp
ee
d bot
h the e
ffici
ency and the
powe
r
facto
r
will be
decreased.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
l
i
ng a
n
d
An
al
ysi
s
of
In
d
u
ct
i
o
n
M
o
t
o
r u
s
i
n
g
La
bV
IEW
(
E
.Ra
m
pr
as
at
h
)
35
3
Fi
gu
re 1
5
. Spe
e
d vs
e
ffi
ci
enc
y
characte
r
istics of
indu
cton
m
o
to
r
6.
CO
NCL
USI
O
N
The analysis
of this experim
e
ntal result
s
hows that induction m
o
tor
m
odel was
built with the
LabVIE
W soft
ware. It
can be
used t
o
m
odel and sim
u
l
a
t
e
the wo
rki
n
g pr
ocess of i
n
d
u
ct
i
on m
o
t
o
r by
whi
c
h
m
o
to
r p
e
rfo
r
man
ce calcu
late
d
,
is set to
com
p
are wi
th
th
e real ti
me o
p
e
ratin
g
co
n
s
id
eratio
n
o
f
th
e i
n
du
ctio
n
m
o
t
o
r for t
h
e o
p
t
i
m
a
l
operat
i
on of m
achi
n
es.
The creat
i
on of
t
h
e i
nduct
i
on m
o
t
o
r
m
odel
can be bu
ndl
ed i
n
t
o
a
sub-Virtual Ins
t
rumentation,
for further experim
e
nt
a
l
studie
s
. This type of work
can be further proceeded to
the other
m
ach
ines such as DC
machin
e and special ele
c
trical
machine. It
hel
p
s t
h
e
m
a
nufact
urer t
o
st
udy
t
h
e
m
o
to
r p
e
rfo
r
man
ce b
e
fo
re man
u
f
actu
r
ing
it. Mo
d
e
llin
g
th
e electric
m
o
to
r in
Lab
V
IEW,
g
i
v
e
s th
e po
ssib
ilit
y,
to
u
s
e th
e cap
ab
ilit
ies o
f
th
is p
o
w
erfu
l g
r
aphical p
r
o
g
r
ammi
n
g
lang
u
a
g
e
, in stu
d
y
in
g
v
a
riou
s prob
le
m
s
, relate
d
to this com
ponent of the
power syst
em
. Sin
ce LabVIE
W interfaces easily to a large num
b
er of hardware by
m
u
l
t
i
f
unct
i
onal
dat
a
acqui
sit
i
o
n cards, el
ect
ric
m
o
t
o
rs
m
ode
l can be eas
ily
m
odelled and they are used to study
the various characteristics of m
o
tors
.Anal
y
si
s can be
fu
rt
her
used t
o
st
udy
t
h
e
perf
or
m
a
nce of t
h
e
m
o
t
o
r,
because testing a
m
o
tor in real time
s
ituation requires
huge
initial inve
stment and re
quire
s time. If the m
o
tor
fails to achieve
the rated effici
ency, efficacy,
then it b
eca
m
e
useless. This
modelling and a
n
alysis a
i
d to avoid
t
h
ese ty
pe of l
o
sses such recoverabl
e fi
na
nci
a
l
l
o
ss and non
-reco
vera
bl
e t
i
m
e
l
o
ss
and pr
ovi
de t
h
e best
platform
to stu
d
y the char
acteristics o
f
th
e
mo
to
r.
REFERE
NC
ES
[1]
RK Ra
j
put.
E
l
ect
ri
ca
l
Mac
h
i
n
e
s
.
First Edi
tion
,
N
e
w
Y
o
rk
. M
c
Graw-Hill.
199; 335
2-353.
[2]
R Krishnan. E
l
e
c
tri
c
Motor Driv
es
Modeling, Analy
s
is and Contr
o
l.
First Edition, Prentice-Ha
ll I
n
ternational, In
c.
Upper Saddle River, N
e
w
Jersey
07458
, 2001
.
[3]
R Gunabalan
et
al
. Simulation of Inverter fed
Induc
tion Motor
Drive with LabVIEW.
International Journal o
f
Electrica
l
, Robo
tics
Electronics
and Communica
tions Engineerin
g
. 2014; 8(1): 91
-95.
[4]
Gentian dume.
S
y
nchronous Generator
Model b
a
sed on LabVIEW Software.
WSEAS Transactio
ns on Advances
in
Engineering Edu
c
ation
. 2013; 10: 101-112.
[5]
RA Jabbar,
et
al
.
Si
mul
a
ti
on
of E
l
ec
t
r
ic
al
Ma
c
h
in
es Labor
ator
y
using
LabV
IEW.
Internatio
nal Conferen
ce
on
Computer, Electrical, andSystems Scie
nce, and Engineering
,
World Acade
my of Scien
c
e Engineering a
nd
Technology.
201
0; 29-31.
[6]
Abdenour Soualhi,
et
al
. Detection and Diagnosis of Faults in I
nduction Motor u
s
ing an Improved Artificial AN
T
Clustering
Tech
nique.
IEEE Tra
n
sactions on In
d
u
strial Electronics
. 2013; 60: 40
53 – 4062
.
[7]
M Aderiano d
a
Silva,
et al.
Rotor Bar Fau
lt Mo
nitoring method
based on
Analy
s
is of Air-Gap
To
rques of Induction
Motors.
IEEE Tr
ansactions on In
dustrial Informatics
. 2013; 9: 22
74–2283.
[8]
Bogdan Virlan
,
et al
. Induction
Motor with outer Rotor and R
i
ng
Stator Winding
for Multispeed
Applications.
IEE
E
Transactions on
Energy Con
version
. 2013; 28: 99
9 – 1007
.
[9]
L Daniel R
a
nsom, Rand
y
Hamilton.
Ex
tend
ing Motor
Lif
e
with
Updated Th
ermal Model Overload Protection.
IEEE
Transactions on
Industry Applica
tions
. 2013
; 49:
2471 – 2477
.
[10]
Gianmario Pellegrino,
et al
. Comparison of Ind
u
ction and PM S
y
nchr
onous Motor Drives for
EV Application
Including
Desig
n
Examples
.
IEEE Transactions
on Industry App
l
ications
. 2012; 4
8
: 2322 –
2332.
[11]
N Konstantinos
G
y
ftak
is,
et a
l
.
A Novel Approach for
Broken
Bar Fault
Diagn
o
sis in Inductio
n
Motors throug
h
Torque Monitoring.
IEEE Transactions on
En
ergy Conversion
. 20
13; 28: 267 –
27
7.
[12]
Lu´
ı
s Alberto Pereir
a,
et al
. Inf
l
uence of Satur
a
tion on th
e Airg
ap I
nduction Waveform of
Five-Phase Inductio
n
M
achines
.
IEEE Transactions
on
ener
gy Con
ver
s
i
on
. 2012; 27: 29
– 41.
[13]
Pinjia Zh
ang,
et
al
. A Nonintrusive Winding Heati
ng Method for
Induction Motor
usi
ng Soft Starter forPreventing
Moisture Condensation.
IEEE Tr
ansactions on In
dustry Applications
. 2012; 48
; 1
17 – 123
.
[14]
Sungho Lee,
et
al
. Ev
alu
a
tion
o
f
the Inf
l
uen
ce
of Rotor Axia
l
Air Ducts on C
ondition Monito
ring of Inductio
n
Motors
. IEEE Tr
ansactions on
In
dustry Applications
. 2013; 49
: 2
024 – 2033
.
Evaluation Warning : The document was created with Spire.PDF for Python.